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Abstract

Normalizing flows have recently demonstrated promis-
ing results for low-level vision tasks. For image super-
resolution (SR), it learns to predict diverse photo-realistic
high-resolution (HR) images from the low-resolution (LR)
image rather than learning a deterministic mapping. For
image rescaling, it achieves high accuracy by jointly mod-
elling the downscaling and upscaling processes. While ex-
isting approaches employ specialized techniques for these
two tasks, we set out to unify them in a single formula-
tion. In this paper, we propose the hierarchical condi-
tional flow (HCFlow) as a unified framework for image SR
and image rescaling. More specifically, HCFlow learns
a bijective mapping between HR and LR image pairs by
modelling the distribution of the LR image and the rest
high-frequency component simultaneously. In particular,
the high-frequency component is conditional on the LR im-
age in a hierarchical manner. To further enhance the per-
formance, other losses such as perceptual loss and GAN
loss are combined with the commonly used negative log-
likelihood loss in training. Extensive experiments on gen-
eral image SR, face image SR and image rescaling have
demonstrated that the proposed HCFlow achieves state-of-
the-art performance in terms of both quantitative metrics
and visual quality.

1. Introduction

Normalizing flows [7, 8, 22, 12, 16, 36] are powerful
deep generative probabilistic models that allow for efficient
and exact likelihood calculation and sampling. They have
been used in the generation of image [8, 22], blur ker-
nel [28], and audio [20] data. Recently, in the low-level
vision community, normalizing flows have attracted much
interest and have achieved promising progress for image
super-resolution (SR) [32] and image rescaling [47].
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Figure 1: The comparison between SRFlow [32], IRN [47] and
the proposed HCFlow. x, y and z denote HR image, LR im-
age and the latent variable, respectively. Blue boxes are invert-
ible neural networks, while green ones are non-invertible mod-
els (e.g., CNN). Solid bi-directional arrows denote bijective map-
pings, while dashed arrows represent conditional relations.

SRFlow [32] is a seminal flow-based model for image
SR. Unlike previous CNN-based models that learn a deter-
ministic mapping from the low-resolution (LR) image to the
high-resolution (HR) image, SRFlow learns the distribution
of HR images and is able to generate diverse photo-realistic
HR images. However, as shown in Fig. 1(a), it treats the LR
image as an external conditional prior and thus is not fully
invertible between HR and LR image pairs, making it hard
to be used for image rescaling. Another work IRN [47] em-
ploys an invertible neural network to learn downscaling and
upscaling for image rescaling. Since the model is bijective,
it can recover the input HR image with high accuracy af-
ter downscaling. Nevertheless, as shown in Fig. 1(b), it as-
sumes the high-frequency and low-frequency components
of the image are independent of each other and thus lacks
the ability to exploit their dependency for image SR.

In this paper, we propose a hierarchical conditional flow
(HCFlow) as a unified framework for both image SR and
rescaling. As shown in Fig. 1(c), HCFlow is an invertible
flow-based model for modelling the HR-LR relationship,
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in which the high-frequency component is hierarchically
conditional on the low-frequency component of the im-
age. More specifically, in the forward propagation, HCFlow
learns to decompose the input HR image into the LR im-
age and a latent variable. In the inverse propagation, it
generates HR images based on the LR input and random
samples of the latent variable. The modelling of the latent
variable (high-frequency component) is conditional on the
generated LR image (low-frequency component) in a hier-
archical manner.

When trained for image SR, HCFlow is optimized by
minimizing the negative log-likelihood loss on the basis of
tractable Jacobian determinant computation. To further im-
prove visual quality, we integrate a pixel loss, perceptual
loss, and GAN loss in the inverse propagation to constrain
the learned HR space. Moreover, HCFlow can be used for
the image rescaling task. It can decompose the HR image to
a visually-pleasing LR image and a latent variable that fol-
lows a simple distribution. In this case, HCFlow is trained
as an encoder-decoder framework, in which the forward and
inverse processes are jointly optimized. As HCFlow is bi-
jective, it can recover the HR image faithfully by sampling
from the latent space given the generated LR image.

Our contributions can be summarized as follows:

1) We propose a unified framework for image SR and
image rescaling. It learns to model the LR image
and the residual high-frequency component simultane-
ously. The high-frequency component is hierarchically
conditional on the generated LR image.

2) We propose additional losses to train normalizing
flows, including pixel, perceptual, and GAN losses,
which effectively enhances the HR image quality.

3) We perform extensive experiments on three tasks: gen-
eral image SR, face image SR and image rescaling.
HCFlow achieves state-of-the-art results on all tasks in
terms of both quantitative metrics and visual quality.

2. Related Work

In this section, we will briefly review image SR and im-
age rescaling with a particular focus on two highly related
flow-based methods, i.e., SRFlow [32] and IRN [47].

2.1. Image SR

Image SR aims to reconstruct the HR image given the LR
image. Since the pioneer work SRCNN [9], many CNN-
based models have been proposed in recent years [9, 19, 24,

, 50]. Most of them focus on delicate feature extraction
module design and generate over-smoothed images when
trained with the pixel loss. To remedy this, the perceptual
loss [17, 43] and GAN loss [10, 24, 43, 53] are introduced
to improve the perceptual quality. Despite of above pro-
gresses, they usually learn a deterministic mapping between

the LR image and HR image, which is unnatural for image
SR since one LR image may correspond to multiple HR im-
ages.

SRFlow [32]. Normalizing flows [7, 8, 22, 12, 16, 36, 46]
provide a new possible solution for image SR. SRFlow de-
signs a conditional flow to model the distribution of HR
images, conditional on LR images. It can generate di-
verse photo-realistic images by sampling different latent
variables. Our proposed HCFlow differs from SRFlow in
two main aspects: First, SRFlow uses the LR image as an
external conditional prior and maps the HR distribution to
a simple latent distribution. Therefore, it cannot generate
LR image and thus is not applicable for image rescaling. In
contrast, HCFlow models the LR image and treats it as part
of the latent space. Second, SRFlow basically follows the
flow framework proposed in [&], while HCFlow proposes a
new framework with hierarchical conditional mechanism.

2.2. Image Rescaling

Image rescaling aims to downscale the HR image to a
visually meaningful LR image, and then recover the HR
image plausibly. Different from image SR that works on
a given LR image space, image rescaling tries to maintain
as much information from the HR image as possible for a
better subsequent reconstruction, for the purpose of reduc-
ing the storage and bandwidth cost. In other words, it can
define its own LR image space which is expected to be more
informative than that by simple downscaling such as bicu-
bic downscaling. In general, in image rescaling, the down-
scaling and upscaling processes are jointly modelled by an
encoder-decoder framework [18, 25, 38], so that the down-
scaling model is optimized for the later upscaling operation.

IRN [47]. Recently, IRN proposes to use a bijective invert-
ible neural network to model the downscaling and upscaling
processes. High-frequency component is well-captured and
transformed to a structured latent space in training. In test-
ing, the HR image can be recovered by inputting the gener-
ated LR image and a randomly sampled latent variable. In
particular, IRN assumes the LR image and high-frequency
component is independent to each other. These two compo-
nents are divided apart and learned separately. By contrast,
HCFlow assumes the removed high-frequency component
is dependent on the LR image and thus employs a hierar-
chical conditional framework to model the LR image and
the conditional distribution of the high-frequency compo-
nent. Besides, although IRN designs a bijective mapping
between HR and LR image pairs, it can only be trained by
Monte Carlo simulation rather than maximum likelihood es-
timation (MLE). HCFlow can be trained in the same way for
image rescaling, but it further models the LR image distri-
bution and allows for tractable Jacobian determinant com-
putation, making it possible for probabilistic modelling of
HR and LR images when trained by MLE.
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(a) Forward propagation

(b) Inverse propagation

Figure 2: Schematic computational graphs of the hierarchical conditional flow (HCFlow) with 3 flow levels. On level [, y;—1 (note that
Yo = Xx) is decomposed to low-frequency component y; and high-frequency component a;. The transformation between a; and z; is
conditional on [yr,yr-1, ..., yi], as indicated by the blue arrows. The computation orders in forward and inverse propagation are shown

on the top of each node.

3. Methodology
3.1. Preliminaries

Flow-based models [7, 8,23, 37, 13,22,2, 16, 12,36, 28]
aim to learn a bijective mapping between the target space
and the latent space. For a high-dimensional random vari-
able (e.g., an image) x with distribution x ~ p(x) and a
latent variable z with simple tractable distribution z ~ p(z)
(e.g., multivariate Gaussian distribution), flow models gen-
erally use an invertible neural network fg to transform x to
z: z = fo(x). Conversely, x can be recovered from z by
the inverse mapping x = f, ' (z).

Generally, fg is composed of a series of invertible trans-
formations: fg = fgofZo---o f&<. The intermediate vari-
ables are defined as h* = f§(h*=1) for k € {1,...,K}.
The input h® and output h?N of fg are x and z, respectively.
Concretely, f[; are flow layers such as squeeze layer, batch
normalization layer, affine coupling layer, efc.

According to the change of variable formula and the
chain rule, for a sample x, the log probability log(x) can
be calculated as

ofy(0*h)

det Ohk—1

log p(x) = log p(fe(x , (1)

Jerog

af(m*
ahk—l

value of the determinant of the Jacobian of f§ at h*~!.
The flow model can thereby be optimized by minimizing
the negative log-likelihood loss.

where log |det is the logarithm of the absolute

3.2. Model Specification

Both image SR and image rescaling try to reconstruct the
HR image x given a LR image. Since the image degrada-
tion process (or image downscaling) is the inverse of image
super-resolution (or image upscaling), we can model these
two processes with an invertible bijective transformation:
X ¢ [y, a], where y and a are the generated LR image and

the rest high-frequency component, respectively. As mod-
elling the probability of natural images is a non-trivial task,
it is reasonable to design a flow model conditional on the
ground-truth LR image y* as,

p(x|y*) < p(y,aly”) = p(yly*)p(aly,y"). (2

Ideally, we hope the model can generate exactly the same
LR image as the ground-truth LR image. This can be for-
mulated as a Dirac delta function é(y — y*) and further
approximated by a multivariate Gaussian distribution as,

") =0y —y")p(aly)
= lim N(yly", Z)p(aly),

p(yly™)p(aly,y
3)

where 3 is a diagonal covariance matrix with all diagonal
elements close to zero. Note that y is nearly equal to y*
in this case. By further mapping p(aly) to a standard mul-
tivariate Gaussian distribution p(z) = N (z|0,I), the flow
model is defined as,

p(xly”)  lim N(yly", Z)N (20, I). 4)
—0
As we can see, part of the latent space is constrained to
be the LR image space. In particular, decomposed high-
frequency component a is conditional on another decom-
posed component y. Once trained, following the forward
direction, HCFlow can decompose the HR image x into LR
image y and latent variable z that follows a simple distribu-
tion. Following the inverse direction, HCFlow can generate
x given the LR image input y* and a random sample z from
the latent distribution, as it is an invertible bijective model.
Note that this model regards y* as an input or output,
rather than as an external conditional prior. Therefore, it is
not explicitly conditional on y* and is fully invertible be-
tween HR and LR image pairs. Besides, by approximating
the distribution of y with a multi-variate Gaussian distribu-
tion, it allows for tractable Jacobian determinant computa-
tion, so that the model can be optimized by maximum like-
lihood estimation (MLE).
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Figure 3: The architecture of the hierarchical conditional flow (HCFlow) with 2 flow levels. For a HR image x, we first squeeze, transform
and split it to low-frequency component y; and high-frequency component a;. Similarly, y; is decomposed to y2 (i.e., the LR image in this
case) and as in the next level. a; and a are transformed to latent variables z; and z2, conditional on ¢1([¢2(y2), y1]) and ¢2(y2) (note
that ¢1 and ¢ are feature extractors, e.g., CNN) respectively, in a hierarchical manner. The model is trained by negative log-likelihood
loss, and can be further enhanced by pixel loss, perceptual loss and GAN loss.

3.3. Model Architecture

The multi-scale architecture proposed in RealNVP [§]
is a popular normalizing flow architecture [32, 22, 12]. It
consists of L levels and at the end of each level, half of
the dimensions are factored out. Generally, the factored out
dimensions are directly Gaussianized for the computation
of negative log-likelihood loss, lacking sufficient modelling
of these dimensions. Therefore, based on the multi-scale
architecture, we take a further step to model factored out
dimensions conditional on the reserved dimensions.

As illustrated in Fig. 2, at each level [, y;_; is decom-
posed to low-frequency component y; and high-frequency
component a;. Then, a; is modelled by an additional
flow that is conditional on the concatenation of tensors
Y.,YL—1,-..,y: from multiple flow levels. By this de-
sign, the reconstruction of high-frequency component is hi-
erarchically conditional on frequencies reconstructed from
all previous levels. In forward propagation, similar to the
depth-first traversal of a binary tree, we first compute y1,
Y2, ..., ¥, in order. Then, we model the factored out dimen-
sions in a reverse order: ar, ar_1, ..., ai. In inverse prop-
agation, we compute y; and a; level by level, from level
L to level 1. Note that the determinant of Jacobian of the
whole flow can still be efficiently computed, since the con-
ditional relations between a, as,...,ar and y1,yo,..., YL
can be represented as an upper triangle block matrix.

The detailed architecture of HCFlow is shown in Fig. 3.
For each level, the first layer is the squeeze layer, which
transforms the H x W x C'input to a % X % x 4C ten-
sor by trading spatial size for number of channels. Then,
K flow-steps are used for transforming the tensor and de-
composing it into different components. More specifically,
each flow-step consists of a sequence of three layers: Act-
norm layer, invertible 1 x 1 convolution layer and affine
coupling layer [8, 22]. After that, the split layer is used to

evenly split the tensor into two tensors y; € Rz g x20
and a; € Rz 'z x2C along the channel dimension. Note
that, for the last level, we only keep 3 channels for y; to
make it fit the RGB space of the LR image. Next, y; is fed
to the next level, while a; is input into an additional flow.
In the [-th additional flow, a; is transformed to the latent
variable z; by P flow-steps. Different from above flow-
steps, we use conditional affine coupling layer [3, 45] rather
than ordinary affine coupling layer to obtain a conditional
flow. In particular, we first upscale the conditional feature
c;41 from level [ + 1 by x2 nearest neighbor interpolation,
and concatenate it with y;. Then, we use a feature extractor
¢; to extract image features, which act as the conditional
feature c¢; for level [. Note that the feature extractor only
provides scale and shift for an affine coupling during both
forward and inverse propagation. Hence the constrains on
being invertible and having a tractable Jacobian do not hold
for this part. More formally, the hierarchical conditional
mechanism of HCFlow is formulated as follows,

.

where conditional features of different levels are computed
in a reverse order, from cy, to c;.

Particularly, for the last level, we directly model y;, by
a Dirac delta function 6(y — y*) instead of transforming it
to another latent variable. This constrains part of the latent
space to be the LR image space and implicitly makes the
model be conditional on y*.

ou(y1)

=L )
éi(le,cr—1, s Ci41,¥1]) ’

l=L—-1,..,1

3.4. Training Objectives

Image SR. When HCFlow is used for image SR, it can be
trained by minimizing the negative log-likelihood loss,

Loy = —logp(x), (6)
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which is unsupervised and converges stably. However, in
practice, this loss converges slowly and does not provide
strong supervision for image SR. To achieve better HR im-
age PSNR, we can add £; pixel loss on the generated SR
image in inverse propagation, leading to a loss function as
follows,

L= )\lﬁnll (X) + )\2£pizcl<xv XT:O)a (7)

where x is the ground-truth HR image and x,—¢ is the gen-
erated SR image by inputting the ground-truth LR image y*
and sampling the latent variable z with temperature 7 = 0.
The added pixel loss can help the flow to learn the SR mani-
fold centered around the PSNR-oriented SR image. Further-
more, we can add perceptual loss [17] and GAN loss [10]
on the generated SR image to improve the visual quality.
This is formulated as,

L :)\lﬁnll (X) + )\2£pizel (X7 XT:O)

(®)
+ )\SEpercep(Xa XT:T()) + )\4£gan (Xv XT:T())7

where x—., is the generated SR image by inputting y* and
sampling z with 7 = 7. Note that unlike the pixel loss that
uses 7 = 0, 7¢ is set to 0.8 or 0.9 to preserve the diversity
of HR images.

Image rescaling. Different from image SR, image rescal-
ing aims to recover exactly the same HR image. Follow-
ing [47], we regard the invertible HCFlow as an encoder-
decoder framework, in which the forward and inverse pro-
cesses correspond to the encoding and decoding stages, re-
spectively. The loss is as follows,

L :Alﬁpixel,hr (xa XT=1) + )\ZEpiacel,lr(y*v Y)

9)
+ )\3‘Clatent (Z) )

where Lpizernr is the £; pixel loss to ensure that, after
downscaling and upscaling, the reconstructed image x,—1
is close to the input x. Note that this loss would dramati-
cally decrease the diversity of generated images. Besides,
Lpizel1r 18 the Lo pixel loss on the LR image, which guides
y to be close to the bicubic LR image y*, so as to generate
visually-pleasing LR images in downscaling. The last term
Liatent(2) is the Lo regularization on the latent variable z.

4. Experiments
4.1. Experimental Setup

We conduct experiments on general image SR, face im-
age SR and image rescaling to show the effectiveness of
HCFlow. For image SR experiments, we train the model
by three loss combinations: L1, L1 + Lpiger and Ly +
Lypizel + Lpercep&Lgan. The corresponding learned mod-
els are denoted as HCFlow, HCFlow+ and HCFlow++, re-
spectively.

Image SR. For general image SR (x4), we set L, K, P
to 2, 13 and 13, respectively. Two 13-block RRDB net-
works [43] are used as feature extractors. More details on
the architecture are provided in the supplementary. The
model is trained on the training set of DIV2K [I] and
Flickr2K [39] with random flips. The crop patch size and
mini-batch size are set to 160 x 160 and 16, respectively.
Adam optimizer [21] with §; = 0.9 and B3 = 0.99 is used
for optimization. For HCFLow (with only L,,;;), the learn-
ing rate is 2.5 x 10~* and reduced by half at 50%, 75%,
90% and 95% of 300k iterations. We fine-tune HCFLow+
(with L,y + Lpizer) for 50k iterations from the pretrained
HCFlow. The weight of £,,;; and Lz, are Ay = 2 x 1073
and Ao = 1, respectively. It is worth pointing out that
we can achieve even higher PSNR (about 0.2dB) if we
train HCFlow+ from scratch. Similarly, we can fine-tune
HCFlow++ by further adding Lpercep and Lgqn. The loss
weighting parameters are \; = 2 x 1073, Ay = 1, A3 =
5x102and \y, =5 x 10~ L.

For face image SR (x8), L, K, P are set to 3, 13 and
13, respectively. Three 8-block RRDB networks are used
as feature extractors. We train the model on the CelebA
training set [31] and test it using first 5,000 images from
the testing set. Following [22, 32], we crop and resize the
HR images to the resolution of 160 x 160, and flip them
randomly for data augmentation. Other training details are
the same as general image SR.

Image rescaling. For image rescaling (x4), we set
L,K,P to 2, 8 and 6, respectively. Two 3-block RRDB
networks are used as feature extractors. In particular, we
use Haar transformation to replace the squeeze layer and
remove invertible 1 x 1 convolution layers. Details on data
preparation and optimizer are the same as general image
SR. The learning rate is initialized as 2.5 x 10~* and halved
at [100k, 200k, 300k, 400k] (500k iterations in total). The
loss weighting parameters are \; = 1, A, = 5 x 1072 and
Az =1 x 1072, respectively.

Performance evaluation. Following SRFlow [32] and
IRN [47], we evaluate PSNR and SSIM on the RGB color
space for image SR, and on the Y channel of the YCbCr
color space for image rescaling. We also use perceptual
metric LPIPS [52] and two no-reference metrics, NIQE [35]
and BRISQUE [34], for better visual quality comparison.
Pixel standard deviation of 5 samples is used to compare
the diversity of results. In addition, Consistency (PSNR be-
tween the downscaled SR image and the ground-truth LR
image) and LR-PSNR (PSNR between the generated LR
image in forward propagation and the ground-truth LR im-
age) are also reported.

4.2. Ablation Study

Fitting to the LR image space. To learn a fully invertible
flow between HR and LR image pairs, HCFlow constrains
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Table 1: Ablation study on latent space and conditional priors for general image SR (x4). Results are tested on DIV2K [1] validation set.

Conditional Prior | Conditional Prior PSNRT SSIM?T LPIPST Consistency T
Case Latent Space (=2 (=1 (r = 0) (r = 0) (r = 0.9) (r = 0.9))/ LR-PSNRT

1 72,71 - - 4.76 0.34 0.863 10.56 -

2 72,71 y* vy, y1 28.73 0.81 0.123 41.97 -

3 V2,22, Z1 yv* v, y1 28.71 0.81 0.124 41.79 52.77

4 V2,22, Z1 - - 18.95 0.47 0.361 40.79 53.88

5 y2,22,Z1 y2 yi 28.60 0.80 0.126 41.94 52.19
HCFlow y2,22,Z1 y2 y2,¥1 28.71 0.81 0.124 42.01 53.37

Table 2: General image SR (x4) results on DIV2K [ 1] validation set. For SRFlow and our method, the mean results of 5 draws are reported.

Method [ #Param [ PSNRT [ SSIM{ [ LPIPS] [ NIQE| | BRISQUE][ Diversity? [ Consistencyf| LR-PSNRT
Bicubic - 26.70 0.77 0.409 5.20 53.8 0 38.70 -
EDSR [29] 43.1M 28.98 0.83 0.270 4.46 433 0 54.89 -
RRDB [43] 16.7M 29.44 0.84 0.253 5.08 52.4 0 49.20 -
ESRGAN [43] 16.7M 26.22 0.75 0.124 2.61 22.7 0 39.03 -
RankSRGAN [53] 13.7M 26.55 0.75 0.128 245 17.2 0 4233 -
SRFlow, 7 = 0 [32] 39.5M 29.07 0.81 0.254 5.20 39.4 0 55.13 -
SRFlow, 7 = 0.9 [32] 39.5M 27.09 0.76 0.121 3.57 17.8 5.6 49.96 -
HCFlow, 7 = 0 23.2M 28.71 0.81 0.285 4.61 441 0 42.03 53.37
HCFlow, 7 = 0.9 23.2M 27.02 0.76 0.124 2.79 21.7 4.8 42.01 53.37
HCFlow+, 7 =0 23.2M 29.25 0.83 0.212 445 432 0 51.11 53.95
HCFlow++, 7 = 0.9 23.2M 26.61 0.74 0.110 2.85 22.0 52 50.07 52.59

Table 3: Face image SR (x8) results on CelebA [

] testing set. For SRFlow and our method, the mean results of 5 draws are reported.

Method | #Param | PSNRT [ SSIM{ [ LPIPS] [ NIQE| | BRISQUE]] Diversity? [ Consistencyf| LR-PSNRT
Bicubic - 23.15 0.63 0.517 7.82 58.6 0 35.19 -
RRDB [43] 16.7M 26.59 0.77 0.230 6.02 49.7 0 48.22 -
ESRGAN [43] 16.7M 22.88 0.63 0.120 3.46 23.7 0 34.04 -
SRFlow, 7 = 0 [32] 40.0M 26.74 0.76 0.216 5.74 40.4 0 56.57 -
SRFlow, 7 = 0.8 [32] 40.0M 25.24 0.71 0.110 4.20 232 52 50.85 -
HCFlow, 7 = 0 27.0M 26.66 0.77 0.210 6.42 48.0 0 51.83 54.50
HCFlow, 7 = 0.8 27.0M 24.99 0.71 0.104 434 31.6 5.9 51.81 54.50
HCFlow+, 7 = 0 27.0M 27.02 0.78 0.212 6.04 49.5 0 51.11 53.95
HCFlow++, 7 = 0.8 27.0M 24.83 0.69 0.090 3.87 23.8 4.0 51.57 51.82

part of the latent space to be the LR image space, instead
of using the LR image as an external prior. To show the
impact, we remove the LR image y, from the latent space
as shown in case 1 and 2 of Table 1. When there is no
conditional prior (case 1), the model fails to converge as it
does not have enough information for SR . When we replace
y, with ground-truth LR image y* as a conditional prior
(case 2, similar to SRFlow [32]), it achieves slightly better
performance than HCFlow although they have almost the
same conditional information. The underlying reason might
be that it has a larger latent space than HCFlow.

Ground-truth LR image as a conditional prior.
HCFlow is conditional on y; and yo, which are generated
during propagation. When we use the ground-truth LR im-
age y* as a conditional prior to replace y (case 3, Table 1),
the model achieves similar performance as HCFlow. In fact,
since we model the distribution of y» as a Dirac delta func-
tion 0(y2 —y™*), y2 would be nearly equal to y* after model
convergence, which is confirmed by the high LR-PSNR.
Therefore, conditional on the generated y, and the exter-
nal y* have similar effects.

Hierarchical conditional mechanism. As shown in case
4 of Table 1, similar to IRN [47], we assume the LR image
and the rest high-frequency component is independent by
removing all conditional priors. It yields significantly worse
performance because the reconstruction of HR image (high-
frequency component) is highly conditional on the LR im-
age (low-frequency component) for image SR. Despite this,
it has better results than case 1, as fitting to the LR image
space could partly play the role of conditional prior. In case
5, we change from hierarchical conditional mechanism to
single-scale conditional mechanism, by removing y» from
level 1. In this case, z; (I = 1,2) is only conditional on y;
from the same level. The performance drops in terms of all
kinds of metrics, which shows that the hierarchical condi-
tional mechanism can better model the conditional relations
between high-frequency and low-frequency components.

4.3. Experiments on Image SR

General image SR. For general image SR (x4), we com-
pare HCFlow with state-of-the-art CNN-based and flow-
based SR models, including the PSNR-oriented EDSR [29]
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Figure 4: Visual results of general image SR (x4) on the DIV2K [1] validation set.
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Figure 5: Visual results of face image SR (x8) on the CelebA [31] testing set.

and RRDB [43], perception-oriented ESRGAN [43] and
RankSRGAN [53], as well as SRFlow [32]. All methods
are trained on the same training dataset. From Table 2 and
Fig. 4, we have several observations as follows. First, when
sampling HR images with temperature 7 = 0, HCFlow
acts like a PSNR-oriented model, achieving similar per-
formance as EDSR and RRDB. Adding the HR pixel loss
(i.e., HCFlow+) can further improve the PSNR and SSIM
by large margins. Second, when 7 = 0.9, the perceptual
metrics of HCFlow are boosted dramatically. With per-
ceptual loss and GAN loss (i.e., HCFlow++), the percep-
tual metrics are further improved by significant margins in

terms of LPIPS and BRISQUE, which is confirmed by the
visual results. Note that, unlike ESRGAN and RankSR-
GAN, the generated HR images of HCFlow++ are still di-
versified. Third, HCFlow achieves state-of-the-art perfor-
mance in terms of both quantitative metrics and visual qual-
ity. It generates sharp images with few artifacts. In contrast,
RRDB and SRFlow tend to produce blurry images, while
ESRGAN and RankSRGAN suffer from over-sharpen arti-
facts and distortions. In addition, HCFlow only has about
half of the number of parameters compared with SRFlow.

Face image SR. We also test HCFlow on face image SR
(x8) to show its effectiveness. The compared methods
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Table 4: Image rescaling (x4) results (Y-channel PSNR / SSIM) on different datasets. For IRN [47] and our method, the mean results of 5
draws are reported. Differences of PSNR / SSIM of different samples are less than 0.02.

Downscaling & Upscaling | Param | Set5 [4] \ Set14 [48] | BSDIO0[33] | Urbanl00[14] | DIV2K [1]
Bicubic & Bicubic - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 26.66 /0.8521
Bicubic & SRCNN [9] 57.3K 30.48 /0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 -
Bicubic & RDN [55] 22.3M 32.4770.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 —
Bicubic & EDSR [29] 43.1M 32.62/0.8984 28.94/0.7901 27.79/0.7437 26.86 /0.8080 29.38 /0.9032
Bicubic & RCAN [54] 15.6M 32.63/0.9002 28.87/0.7889 27.7710.7436 26.82 /0.8087 30.77 /1 0.8460
Bicubic & RFANet [30] 11.2M 32.67/0.9004 28.88/0.7894 27.79/0.7442 26.92/0.8112 —
Bicubic & RRDB [43] 16.3M 32.74/0.9012 29.00/0.7915 27.84/0.7455 27.03/0.8152 30.92/0.8486
TAD & TAU [18] - 31.81/- 28.63 /- 28.51 /- 26.63 /- 31.16 /-
CAR & EDSR [38] 52.8M 33.88/0.9174 30.31/0.8382 29.15/0.8001 29.28 /0.8711 32.82/0.8837
IRN [47] 4.4M 36.19/0.9451 32.67/0.9015 31.64/0.8826 31.41/09157 35.07/0.9318
HCFlow 4.4M 36.29 / 0.9468 33.02/0.9065 31.74/0.8864 31.62/0.9206 35.23/0.9346

include PSNR-oriented RRDB, perception-oriented ESR-
GAN and the flow-based SRFlow. As shown in Table 3 and
Fig. 5, similar observations as in general image SR can be
concluded for face image SR. HCFlow achieves best quan-
titative and visual performance compared with competing
methods. In particular, HCFlow generates sharp faces with
natural details, especially on eyes, teeth and hairs. By com-
parison, other methods suffer from either over-smoothed re-
sults or obvious artifacts.

4.4. Experiments on Image Rescaling

As a unified framework for image SR and image rescal-
ing, HCFlow also achieves state-of-the-art performance in
image rescaling. We compare it with three kinds of rescal-
ing methods: (1) bicubic interpolation & state-of-the-art SR
models [9, 55, 29, 54, 43, 30]; (2) encoder-decoder mod-
els [18, 38]; (3) invertible neural networks [47].

As can be seen from Table 4, when the downscaling pro-
cess is fixed (i.e., bicubic interpolation), performances of
different state-of-the-art SR models are similar and limited.
When the downscaling models are optimized for the up-
scaling models, the results are largely improved. IRN fur-
ther boosts the performance by joint optimization based on
the invertible architecture. Compared with IRN, the pro-
posed HCFlow achieves better performance on all testing
datasets with an increased PSNR of 0.10 ~ 0.35dB. Be-
sides, as shown in Fig. 6, HCFlow can better preserve image
details and generates sharper edges than IRN. Since these
two models have same number of parameters, HCFlow is
more efficient than IRN for image rescaling, which can
be attributed to the conditional modelling between high-
frequency and low-frequency components.

5. Conclusion

In this paper, we proposed a unified framework, i.e., hier-
archical conditional flow (HCFlow), for both image super-
resolution and image rescaling. It learns a fully invertible
mapping between HR image and LR image as well as the la-
tent variable. Particularly, we learn the LR image space and

. . T v L 5 T W s
T T . 5 5 e L 5 s . W L 0 5 6 D 6 2 E
huuwy X S = = e e e 1w ST

ey = = S T e

—

Ground Truth

IRN HCFlow

Figure 6: Visual results of image rescaling (x4) on the DIV2K [1]
validation set. More results are shown in the supplementary.

design a hierarchical conditional mechanism between the
latent variable (high-frequency component) and the LR im-
age (low-frequency component). For image SR, HCFLow
is trained by the negative log-likelihood loss, and is further
enhanced by pixel loss, perceptual loss and GAN losses for
better performance. For image rescaling, it is trained as an
encoder-decoder framework, where the forward and inverse
progresses are jointly optimized. Experiments demonstrate
that HCFlow achieves state-of-the-art performance on gen-
eral image SR, face image SR and image rescaling, in terms
of both quantitative metrics and visual quality.

Acknowledgements We thank Dr. Suryansh Kumar for
helpful discussion. This work was partially supported by
the ETH Zurich Fund (OK), a Huawei Technologies Oy
(Finland) project, the China Scholarship Council and a Mi-
crosoft Azure grant. Special thanks goes to Yijue Chen.

4083



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge
on single image super-resolution: Dataset and study. In
IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, pages 126-135, 2017. 5,6, 7, 8

Lynton Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich
Kothe. Analyzing inverse problems with invertible neural
networks. In International Conference on Learning Repre-
sentations, 2018. 3

Lynton Ardizzone, Carsten Liith, Jakob Kruse, Carsten
Rother, and Ullrich Koéthe.  Guided image generation
with conditional invertible neural networks. arXiv preprint
arXiv:1907.02392, 2019. 4

Marco Bevilacqua, Aline Roumy, Christine Guillemot, and
Marie line Alberi Morel. Low-complexity single-image
super-resolution based on nonnegative neighbor embedding.
In British Machine Vision Conference, pages 135.1-135.10,
2012. 8

Jiezhang Cao, Yawei Li, Kai Zhang, and Luc Van Gool.
Video super-resolution transformer. arXiv preprint
arXiv:2106.06847,2021. 2

Wenlong Cheng, Mingbo Zhao, Zhiling Ye, and Shuhang
Gu. Mfagan: A compression framework for memory-
efficient on-device super-resolution gan. arXiv preprint
arXiv:2107.12679, 2021. 2

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:
Non-linear independent components estimation.  arXiv
preprint arXiv:1410.8516,2014. 1,2, 3

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016. 1, 2, 3, 4

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Learning a deep convolutional network for image
super-resolution. In European Conference on Computer Vi-
sion, pages 184-199, 2014. 2, 8

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, pages 2672-2680,
2014. 2,5

Yong Guo, Jian Chen, Jingdong Wang, Qi Chen, Jiezhang
Cao, Zeshuai Deng, Yanwu Xu, and Mingkui Tan. Closed-
loop matters: Dual regression networks for single image
super-resolution. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 5407-5416, 2020. 2
Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and
Pieter Abbeel. Flow++: Improving flow-based generative
models with variational dequantization and architecture de-
sign. In International Conference on Machine Learning,
pages 2722-2730, 2019. 1,2, 3,4

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and
Aaron Courville. Neural autoregressive flows. arXiv preprint
arXiv:1804.00779, 2018. 3

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Sin-
gle image super-resolution from transformed self-exemplars.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 5197-5206, 2015. 8

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

4084

Takashi Isobe, Xu Jia, Shuhang Gu, Songjiang Li, Shengjin
Wang, and Qi Tian. Video super-resolution with recurrent
structure-detail network. In European Conference on Com-
puter Vision, pages 645—660. Springer, 2020. 2

Priyank Jaini, Kira A Selby, and Yaoliang Yu. Sum-of-
squares polynomial flow. arXiv preprint arXiv:1905.02325,
2019. 1,2,3

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European Conference on Computer Vision, pages 694-711,
2016. 2,5

Heewon Kim, Myungsub Choi, Bee Lim, and Kyoung Mu
Lee. Task-aware image downscaling. In European Confer-
ence on Computer Vision, pages 399-414, 2018. 2, 8

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate
image super-resolution using very deep convolutional net-
works. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1646-1654, 2016. 2

Sungwon Kim, Sang-gil Lee, Jongyoon Song, Jaechyeon
Kim, and Sungroh Yoon. Flowavenet: A generative flow
for raw audio. arXiv preprint arXiv:1811.02155, 2018. 1
Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. In Advances in Neural
Information Processing Systems, pages 10215-10224, 2018.
1,2,3,4,5

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen,
Ilya Sutskever, and Max Welling. Improved variational infer-
ence with inverse autoregressive flow. In Advances in Neural
Information Processing Systems, pages 4743-4751, 2016. 3
Christian Ledig, Lucas Theis, Ferenc Huszdr, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 4681-4690, 2017. 2

Yue Li, Dong Liu, Houqiang Li, Li Li, Zhu Li, and Feng
Wu. Learning a convolutional neural network for image
compact-resolution. /EEE Transactions on Image Process-
ing, 28(3):1092-1107, 2018. 2

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. SwinIR: Image restoration us-
ing swin transformer. In IEEE Conference on International
Conference on Computer Vision Workshops, 2021. 2
Jingyun Liang, Guolei Sun, Kai Zhang, Luc Van Gool, and
Radu Timofte. Mutual affine network for spatially variant
kernel estimation in blind image super-resolution. In /EEE
Conference on International Conference on Computer Vi-
sion, 2021. 2

Jingyun Liang, Kai Zhang, Shuhang Gu, Luc Van Gool, and
Radu Timofte. Flow-based kernel prior with application to
blind super-resolution. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 10601-10610, 2021.
1,3

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single



(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

image super-resolution. In IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 136-144,
2017. 6,8

Jie Liu, Wenjie Zhang, Yuting Tang, Jie Tang, and Gang-
shan Wu. Residual feature aggregation network for image
super-resolution. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 2359-2368, 2020. 2, 8
Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In IEEE Confer-
ence on International Conference on Computer Vision, pages
3730-3738, 2015. 5, 6, 7

Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and
Radu Timofte. Srflow: Learning the super-resolution space
with normalizing flow. In European Conference on Com-
puter Vision, pages 715-732,2020. 1, 2,4, 5,6, 7

David Martin, Charless Fowlkes, Doron Tal, and Jitendra
Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and
measuring ecological statistics. In IEEE Conference on In-
ternational Conference on Computer Vision, pages 416423,
2001. 8

Anish Mittal, Anush K Moorthy, and Alan C Bovik.
Blind/referenceless image spatial quality evaluator. In Asilo-
mar Conference on Signals, Systems and Computers, pages
723-727,2011. 5

Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Mak-
ing a “completely blind” image quality analyzer. /IEEE Sig-
nal processing letters, 20(3):209-212, 2012. 5

Didrik Nielsen, Priyank Jaini, Emiel Hoogeboom, Ole
Winther, and Max Welling. Survae flows: Surjections to
bridge the gap between vaes and flows. arXiv preprint
arXiv:2007.02731,2020. 1,2, 3

George Papamakarios, Theo Pavlakou, and Iain Murray.
Masked autoregressive flow for density estimation. In Ad-
vances in Neural Information Processing Systems, pages
2338-2347,2017. 3

Wanjie Sun and Zhenzhong Chen. Learned image downscal-
ing for upscaling using content adaptive resampler. [/EEE
Transactions on Image Processing, 29:4027-4040, 2020. 2,
8

Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-
Hsuan Yang, and Lei Zhang. Ntire 2017 challenge on single
image super-resolution: Methods and results. In /IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 114-125,2017. 5

Longguang Wang, Yingqian Wang, Xiaoyu Dong, Qingyu
Xu, Jungang Yang, Wei An, and Yulan Guo. Unsuper-
vised degradation representation learning for blind super-
resolution. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 10581-10590, 2021. 2
Longguang Wang, Yingqian Wang, Zhengfa Liang, Zaiping
Lin, Jungang Yang, Wei An, and Yulan Guo. Learning paral-
lax attention for stereo image super-resolution. In /EEE Con-
ference on Computer Vision and Pattern Recognition, pages
12250-12259, 2019. 2

Longguang Wang, Yinggian Wang, Zaiping Lin, Jungang
Yang, Wei An, and Yulan Guo. Learning a single network for

(43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

(54]

[55]

4085

scale-arbitrary super-resolution. pages 10581-10590, 2021.
2

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
European Conference on Computer Vision Workshops, pages
701-710, 2018. 2,5,6,7, 8

Yunxuan Wei, Shuhang Gu, Yawei Li, Radu Timofte, Long-
cun Jin, and Hengjie Song. Unsupervised real-world im-
age super resolution via domain-distance aware training. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 13385-13394, 2021. 2

Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and
Max Welling. Learning likelihoods with conditional normal-
izing flows. arXiv preprint arXiv:1912.00042, 2019. 4
Valentin Wolf, Andreas Lugmayr, Martin Danelljan, Luc
Van Gool, and Radu Timofte. Deflow: Learning complex im-
age degradations from unpaired data with conditional flows.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 94—-103, 2021. 2

Mingqing Xiao, Shuxin Zheng, Chang Liu, Yaolong Wang,
Di He, Guolin Ke, Jiang Bian, Zhouchen Lin, and Tie-Yan
Liu. Invertible image rescaling. In European Conference on
Computer Vision, pages 126—-144,2020. 1, 2, 5, 6, 8

Roman Zeyde, Michael Elad, and Matan Protter. On sin-
gle image scale-up using sparse-representations. In Interna-
tional Conference on Curves and Surfaces, pages 711-730,
2010. 8

Kai Zhang, Luc Van Gool, and Radu Timofte. Deep unfold-
ing network for image super-resolution. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 3217—
3226, 2020. 2

Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc
Van Gool, and Radu Timofte. Plug-and-play image restora-
tion with deep denoiser prior. /EEE Transactions on Pattern
Analysis and Machine Intelligence, 2021. 2

Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte.
Designing a practical degradation model for deep blind im-
age super-resolution. In IEEE Conference on International
Conference on Computer Vision, 2021. 2

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In I[EEE Conference on
Computer Vision and Pattern Recognition, pages 586-595,
2018. 5

Wenlong Zhang, Yihao Liu, Chao Dong, and Yu Qiao.
Ranksrgan: Generative adversarial networks with ranker for
image super-resolution. In IEEE Conference on Interna-
tional Conference on Computer Vision, pages 3096-3105,
2019. 2,6,7

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In European Confer-
ence on Computer Vision, pages 286-301, 2018. 2, 8

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image super-resolution.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 2472-2481, 2018. 2, 8



