
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

Zhihao Liang1,2, Zhihao Li3, Songcen Xu3, Mingkui Tan1 and Kui Jia1,4,5*

1South China University of Technology, 2DexForce Technology Co., Ltd.
3Noah’s Ark Lab, Huawei Technologies, 4Pazhou Laboratory, 5 Peng Cheng Laboratory

eezhihaoliang@mail.scut.edu.cn, {kuijia, mingkuitan}@scut.edu.cn,
{zhihao.li, xusongcen}@huawei.com

Abstract

Instance segmentation in 3D scenes is fundamental in
many applications of scene understanding. It is yet chal-
lenging due to the compound factors of data irregularity
and uncertainty in the numbers of instances. State-of-the-
art methods largely rely on a general pipeline that first
learns point-wise features discriminative at semantic and
instance levels, followed by a separate step of point group-
ing for proposing object instances. While promising, they
have the shortcomings that (1) the second step is not super-
vised by the main objective of instance segmentation, and
(2) their point-wise feature learning and grouping are less
effective to deal with data irregularities, possibly resulting
in fragmented segmentations. To address these issues, we
propose in this work an end-to-end solution of Semantic
Superpoint Tree Network (SSTNet) for proposing object in-
stances from scene points. Key in SSTNet is an interme-
diate, semantic superpoint tree (SST), which is constructed
based on the learned semantic features of superpoints, and
which will be traversed and split at intermediate tree nodes
for proposals of object instances. We also design in SST-
Net a refinement module, termed CliqueNet, to prune super-
points that may be wrongly grouped into instance propos-
als. Experiments on the benchmarks of ScanNet and S3DIS
show the efficacy of our proposed method. At the time of
submission, SSTNet ranks top on the ScanNet (V2) leader-
board, with 2% higher of mAP than the second best method.
The source code in PyTorch is available at https://
github.com/Gorilla-Lab-SCUT/SSTNet.

1. Introduction

The task of 3D instance segmentation is fundamental in
many applications concerned with 3D scene understanding.
Given an observed scene of point cloud reconstructed from
depth cameras via multi-view fusion techniques [8, 14], the
task is to both assign semantic labels of pre-defined object

*Correspondence to Kui Jia <kuijia@scut.edu.cn>

categories to individual scene points, and differentiate those
belonging to different object instances. Learning to achieve
3D instance segmentation is challenging at least in the fol-
lowing aspects: (1) observed scene points are usually sparse
and irregular, which poses difficulties for learning point-
wise classification based on shape features of local (and
possibly global) contexts around individual points; (2) the
unknown number of object instances in a scene introduces
additional uncertainties to the problem of learning point-
instance associations that is already combinatorial; (3) even
though point-wise classification and point-instance associa-
tions can be conducted, learning consistencies among spa-
tially adjacent points are not guaranteed, which may cause
fragmented segmentations, especially around object bound-
aries (cf. Fig. 1 for an illustration).

State-of-the-art methods [16, 37, 9], e.g., those rank-
ing top on the ScanNet benchmark [7], tackle (some of)
the above challenges with the following general pipeline.
They first train networks to learn point-wise features that
are discriminative at both the semantic and instance levels,
followed by a separate step of point clustering that groups
together those believed to be on same instances, using the
learned point-wise features. While promising, they have the
following shortcomings. Firstly, the second step of point
clustering is independent of network training, whose results
are thus not guaranteed by guiding towards the ground-truth
groupings of object instances. Secondly, while superpoints
[19] have been commonly used for semantic segmentation
of 3D points [18, 4], when coming to instance segmenta-
tion, these state-of-the-art methods, except OccuSeg [15],
choose to conduct both feature learning and grouping in a
point-wise manner, which takes away their chance to lever-
age the geometric regularities established at the mid-level
shape representation of superpoints.

To overcome these shortcomings, we are motivated to
develop an end-to-end solution for proposing object in-
stances from an observed scene of points. Considering
that a superpoint represents a geometrically homogeneous
neighborhood, we choose to work with superpoints pre-

2783

https://github.com/Gorilla-Lab-SCUT/SSTNet
https://github.com/Gorilla-Lab-SCUT/SSTNet

computed from the scene points, and the problem of in-
stance segmentation boils down as learning a network that
groups superpoints on same object instances. In this work,
we design such a solution called Semantic Superpoint Tree
Network (SSTNet), as illustrated in Fig. 2. Similar to ex-
isting methods, SSTNet starts with a backbone that learns
point-wise semantic and instance-level features; differently
from them, SSTNet immediately aggregates these features
as superpoint-wise ones efficiently via point-wise pooling.
Key in SSTNet is an intermediate, semantic superpoint
tree (SST), with the superpoints as its tree leaves. SST is
constructed based on the pooled semantic (and instance-
level) features of superpoints, and will be traversed and
split by the subsequent SSTNet module of binary classifi-
cation; starting from the root, a proposal of object instance
is formed as the superpoints of a tree branch when non-
splitting decision is made at the intermediate tree node that
spans the branch (cf. Fig. 3 for an illustration). Our tree
construction is highly efficient by choosing ways of feature
inheritance from leaves to the root and pair-wise similar-
ity metric, which support fast algorithms such as nearest-
neighbor chain [35]. We note that erroneous assignments
of superpoints to instances may occur when constructing
and traversing the tree. To compensate, we design a subse-
quent refinement module termed CliqueNet, which converts
each proposed branch as a graph clique and learns to prune
some of the branch nodes. A ScoreNet [16] is finally used
to evaluate the generated proposals, which gives instance
segmentation results of our SSTNet.

Thorough experiments on the benchmark datasets of
ScanNet [7] and S3DIS[1] show the efficacy of our pro-
posed method. Notably, SSTNet outperforms all existing
methods on the two benchmarks, and at the time of sub-
mission, it ranks top on the ScanNet (V2) leaderboard, with
2% higher of mAP than the second best method. We finally
summarize our technical contributions as follows.

• We propose an end-to-end solution of Semantic Super-
point Tree Network (SSTNet) to directly propose and
evaluate object instances from observed 3D scenes. By
working with superpoints, our method enjoys the ben-
efit of geometric regularity that supports consistent and
sharp segmentations, especially at object boundaries.

• We choose a strategy of divisive grouping in SSTNet,
which first builds the tree, followed by tree traversal
for object proposal via node splitting. By constructing
the tree with appropriate node merging and feature in-
heritance, our strategy is an order of magnitude faster
than the alternative, agglomerative grouping, thus en-
abling efficient training and inference of SSTNet.

• Considering that erroneous assignments of superpoints
to instances may occur when constructing and travers-

ing the tree, we design a refinement module in SST-
Net, termed CliqueNet, which converts each proposed
branch as a graph clique and learns to prune some of
the branch nodes. Experiments show its efficacy.

Figure 1. Visualization of example instance segmentation results
from an existing, point-wise grouping method (PointGroup[16],
left) and our SSTNet (right). Different colors represent segmented
instances.

2. Related Works
In this section, we briefly review the literature of 3D seg-

mentation, focusing on those relevant to elements of our
proposed method.
3D Semantic Segmentation Establishing geometric regu-
larities is essential to realize semantic segmentation for an
irregular point cloud. Recent methods used projection[20],
voxelization[12, 5] or local aggregation[26, 34] to perform
brief regularization, while the subsequent semantic learning
task is still challenging. Instead, superpoint-based[19, 18]
methods aggregated the geometrically homogeneous points
as superpoints to establish a certain degree of geometric reg-
ularities. Furthermore, superpoints become the mid-level
shape representation to boild down the problem of instance
segmentation as grouping the superpoints that belong to the
same instance.
3D Instance Segmentation Considering bottom-up meth-
ods, which cluster results based on semantic segmentation.
[38, 33, 17] heuristically[6, 3] clustered instance masks
based on discriminative instance-level features[2]. Intu-
itively, PointGroup[16] utilized the adjacency of instance-
wise coordinates. The above clustering results relied on the
boundary conditions due to the lack of explicit boundary
supervision. To address this issue, SSTNet combines the
bottom-up clustering strategy with top-down traversal to re-
alize end-to-end learning proposal generation.
Image Segmentation for Object Proposals To over-
come the complexity caused by sliding windows[11, 28],
segmentation-based[32, 27, 31] methods treat 2D detec-
tion as image segmentation, where the candidates are hy-
pothesized from hierarchical image segmentation using an
agglomeration manner. Furthermore, SSTNet involves a
greedy agglomeration strategy and employs a learning split-
ting classifier to get rid of dependence on the times of ag-
glomeration and generate precise mask results.

2784

(1)

Over-Segmentation

(2)

Sparse
3D U-Net

Pooling in each Superpoint

Tree Split
Classifier

Bottom-up Construction

Top-down traversal

NN Chain

(3)

ScoreNet

Final Instance
Predictions

CliqueNet

(4)

Refined
Proposals

HNIR

†

†

- Feature Block

- Learning Block

- Learning-Free Block

MLP MLP

Feature Learning

Proposal Generation

- Addition

- Concatenation

- point cloud coordinates
- features
- semantic scores
- offsets
- augmented semantic scores
- nodes’ features for SST

†
†

HNIR: hierarchical node-inheriting relations
Merging relation: Feature inheriting:

† †
†

1{ }Mi i 1

| |

1

1
| | 1 ii

p

Softmax

Figure 2. Overview of our proposed Semantic Superpoint Tree Network (SSTNet). Please refer to the main text for details of the individual
modules. N is the number of scene points, M is the number of superpoints, K is the number of categories, and n is the dimension of
output features from the backbone. f̃ , ã, õ denote the point-wise features, semantic scores and offsets respectively. (1) input scene, (2)
generated superpoint set {Pi}Mi=1, (3) foreground superpoints and Semantic Superpoint Tree(SST)T , (4) generated proposals R after tree
traversal and splitting. Nearest-neighbor chain (NN Chain) is the algorithm we use for efficiently constructing the tree.

3. Overview

Assume an input point set I = {p ∈ R3} of recon-
structed 3D scene from depth cameras via multi-view fu-
sion techniques (e.g., SLAM [8, 14]), which contains an
unknown number of object instances of K categories. The
task is to segment out those points in I that define each of
such instances, and is challenging as analyzed in Section 1.
To alleviate the difficulty, we choose to establish a certain
degree of geometric regularities for points in I, by lever-
aging a mid-level shape representation called superpoints
[19, 18] — for an input I, superpoints define geometri-
cally homogeneous neighborhoods of its local points, and
are usually computed by over-segmenting I using graph
partition. 1 With the set of superpoints {P} pre-computed
from I, the problem of instance segmentation boils down
as grouping together spatially close {P} that belong to a
same object instance and assigning them a semantic label.
This is technically a clustering/grouping problem in the 3D
space where superpoints live; given spatial compactness for
superpoints on a same instance, it is natural to consider hier-
archical clustering/grouping to achieve the goal. The strat-
egy resembles those used for object proposals in 2D images
via hierarchical image segmentation [32, 29, 13]. To imple-
ment the above idea, we propose in this work an end-to-end,
hierarchical segmentation network that is trained to seman-
tically group superpoints of a scene as object instances of
pre-defined categories. The key in our network is an inter-
mediate, semantic superpoint tree (SST); it is constructed

1By using superpoints, we rely on the assumption that individual super-
points would not be across object boundaries; while this is not guaranteed,
it is the cost that we would like to trade for the benefit of geometric regu-
larities which the superpoints bring to the original, irregular point set I.

based on the learned semantic features in the preceding net-
work module, and will be traversed and split in the subse-
quent network module; we thus term our proposed method
as Semantic Superpoint Tree Network (SSTNet). Fig. 2
gives the illustration.

More specifically, SSTNet starts with a backbone that
learns point-wise feature f̃ ∈ Rn for each p ∈ I, which
is then fed into a subsequent module of semantic scoring
to output semantic score ã ∈ [0, 1]K and offset õ ∈ R3,
where ã is a K-dimensional probability vector represent-
ing soft label prediction of the point p, and õ is a pre-
dicted coordinate offset relative to center of the instance to
which p belongs. In parallel with this module we apply
over-segmentation to I to have the superpoints {P}; note
that this is applied only once during network training. The
point-wise {f̃}, {ã}, and {õ} are aggregated, via average
pooling, inside each superpoint to form the superpoint fea-
ture f ∈ Rn, score a ∈ [0, 1]K , and offset o ∈ R3. As-
sume that a collection of superpoints are obtained from I,
we use the thus obtained {f}, {a}, and {o} for use in sub-
sequent modules of the network. To achieve efficient train-
ing of SSTNet, we choose divisive grouping (i.e., in a top-
down manner) after construction of semantic superpoint
tree T , instead of agglomerative grouping commonly used
in hierarchical image segmentation [29, 32], which means
that the whole tree T is first constructed whose leaf nodes
represent individual superpoints. We then design a mod-
ule of tree traversal and splitting that learns to hierarchi-
cally split the tree nodes; starting from the root, a proposal
of object instance is formed as a tree branch when non-
splitting decision is made at an intermediate tree node. We
note that erroneous assignments between superpoints and
object instances may occur during both stages of tree con-

2785

struction and tree traversal and splitting. [25, 24] demon-
strated the refinement can achieve higher accuracy for mesh
reconstruction. Inspired by them, we design a subsequent
refinement module termed CliqueNet to compensate for
some of these errors. This module converts each proposal
branch as a graph clique and learns to prune some of the
branch nodes. We finally use a ScoreNet [16] to evaluate
the generated proposals, which gives instance segmentation
results of our SSTNet. The whole network is trained in an
end-to-end manner, which, to the best of our knowledge,
is the first one for the task of 3D instance segmentation on
point set. The intermediate SST construction is highly ef-
ficient, whose computational complexity and running time
are given in Section 4.2. Section 4 also presents individ-
ual modules of the network and compares with alternative
designs.

4. Individual Modules of the Proposed Net-
work

4.1. Backbone and Semantic Scoring

Assume that the input I contains N points. Given
{pi ∈ I}Ni=1, we use a 3D convolutional backbone of U-Net
style [30] to learn the point-wise features {f̃i ∈ Rn}Ni=1,
whose layers are implemented as submanifold sparse con-
volution (SSC) or sparse convolution (SC) [12]. We give
layer specifics in the supplementary material.

We obtain the semantic scoring {ãi ∈ [0, 1]K}Ni=1 and
offset prediction {õi ∈ R3}Ni=1 from {f̃i}Ni=1, by employ-
ing two multi-layer perceptrons (MLPs) respectively. Let
{ã∗

i }Ni=1 denote the ground-truth semantic labels of the N
points in the form of K-dimensional, one-hot vector. We
use the following loss to train the MLP for semantic scor-
ing

Lsemantic = − 1

N

N∑
i=1

CE(ãi, ã
∗
i) +

1−
2
∑N
i=1 ã

⊤
i ã

∗
i∑N

i=1 ã
⊤
i ãi +

∑N
i=1 ã

∗⊤
i ã∗

i

, (1)

where CE(·, ·) denotes the cross-entropy loss, and the re-
maining terms in (1) define a dice loss that alleviates the
imbalance among the K categories [22]. Let c∗p denote the
geometric center of the object instance to which any p ∈ I
belongs. We use the following loss to train the MLP for
offset prediction

Loffset =
1

N ′

N∑
i=1

∥õi − (c∗pi
− pi)∥2 · I(pi)−

1

N ′

N∑
i=1

õ⊤
i

∥õi∥2
·

c∗pi
− pi

∥c∗pi
− pi∥2

· I(pi), (2)

where I(p) ∈ {0, 1} is an indicator function telling whether
the point p belongs to any object instance, and N ′ =∑N
i=1 I(pi) counts the number of such points. We give

specifics of the two MLPs in the supplementary material.

4.2. Construction of Semantic Superpoint Tree

As stated in the preceding section, our construction of
SST T is based on superpoints {P} pre-computed from the
input I; without loss of generality, we assume M ones are
computed from I. Features {fi ∈ Rn}Mi=1, semantic scores
{ai ∈ [0, 1]K}Mi=1, and offsets {oi ∈ R3}Mi=1 at the su-
perpoint level are obtained simply via average pooling over
those point-wise ones inside each of superpoints {Pi}Mi=1.

Given the predicted {fi,ai,oi}Mi=1 for {Pi}Mi=1, a tree
can grow greedily [23], starting from merging the leaf nodes
of superpoints (cf. Fig. 3 for an illustration). To define
the linkage criteria, there exist many choices of similar-
ity metric between any pair of Pi and Pj . In this work,
we choose semantic score and offset prediction over the
triple {f ,a,o} to define the metric. Specifically, for a
superpoint P , we first compute the predicted geometric
center of a (possible) object instance to which it may be-
long as cP = o + 1

|P|
∑|P|
i=1 pi, and then concatenate

a† = [a; cP] ∈ RK+3 2. We use the augmented a†
i and

a†
j to represent Pi and Pj , and compute the Euclidean dis-

tance ∥a†
i −a†

j∥ as the linkage criterion that determines the
ordering of pair-wise superpoint merging. Merging two su-
perpoints Pi and Pj results in an intermediate tree node,
denoted as t ∈ T . We compute semantic score of t, via
weighted averaging, as

at = wiai + wjaj , (3)

where the weights wi and wj are proportional to the respec-
tive sizes of Pi and Pj , i.e., wi = |Pi|/(|Pi| + |Pj |) and
wj = |Pj |/(|Pi|+ |Pj |). Offset prediction of t is computed
similarly as ot = wioi + wjoj . We then compute the aug-
mented a†

t from the obtained at and ot. Note that we also
compute the feature ft = wifi+wjfj for the node t, which
will be used in the subsequent module of proposal genera-
tion via tree traversal and splitting. Given the augmented
a†
t for any t ∈ T and the pair-wise similarity metric based

on Euclidean distance, the tree can be constructed hierarchi-
cally, as illustrated in Fig. 3, whose depth ranges between
logM2 and M − 1. For clarity, we write the M leaf nodes as
{tPi

∈ T }Mi=1 and any root or intermediate one as t ∈ T .
Our use of the augmented semantic score a† = [a; cP]

to represent each tP (and t) is based on the argument that
for any pair of Pi and Pj on a same instance, both their se-

2Considering the domain difference of a ∈ [0, 1]K and cP ∈ R3, we
ever try weighted concatenation such as a† = [αa;βcP], where α and β
are hyper-parameters. We end with the empirical setting of α = β = 1,
which gives good results in practice.

2786

Tree Split Classifier

00

44

332211

55

66

77 88

99

Figure 3. Illustration on the construction and traversal of semantic
superpoint tree (SST). → represents the bottom-up construction
process; → represents the top-down traversal process.

mantic scores and instance centers are expected to be con-
sistent. Empirical results in Section 5.1 show that it gives
better performance than alternative choices do, which veri-
fies the hypothesis. We thus term the constructed T as se-
mantic superpoint tree.
Remarks Given the M superpoints, the hierarchical tree
construction described above has a complexity of O(M3).
Due to the linear feature inheritance (3) and the use of Eu-
clidean distance as the similarity metric, construction of
T can be made highly efficient by employing the fast al-
gorithm of nearest-neighbor chain [23], which results in a
same T at a complexity of O(M2). On a machine run-
ning at 13 Hz, it takes ∼ 75 milliseconds per construction
(e.g., scenes of ScanNet [7]), thus supporting online SST
construction per iteration of network training.

4.3. Proposal Generation via Tree Traversal and
Splitting

Given the constructed SST T , our proposed SSTNet gen-
erates proposals of object instance by learning a binary clas-
sifier that traverses and splits nodes of T . For any root or
intermediate node t, denote its two child nodes as s1 ∈ T
and s2 ∈ T . Each t in fact defines a tree branch, de-
noted as Bt, that contains leaf nodes of superpoints. As
stated in Section 4.2, feature ft and augmented score a†

t

associated with each t have been hierarchically inherited
from its contained superpoints. We use the concatenated
f †
t = [ft;a

†
t] ∈ Rn+K+3 as feature of node t.

Denote the binary classifier to be learned as ϕ :
Rn+K+3 × Rn+K+3 ∈ (0, 1). Starting from the root node,
we maintain a queue of tree traversal in a breadth-first man-
ner. Let Q and R be two empty sets, and push the root into
the queue Q. A node t is to be split once ϕ(f †

s1 ,f
†
s2) < 0.5 ,

i.e., the two child nodes of t are believed to belong to differ-
ent object instances; we then push s1 and s2 into the queue
Q. Conversely, when ϕ(f †

s1 ,f
†
s2) ≥ 0.5, we consider all

superpoints contained in the tree branch Bt as a proposal of
object instance, and push t into R; we stop traversing the
intermediate nodes contained in Bt. Note that we have es-

tablished an index table of the hierarchical node-inheriting
relations when constructing T , which supports efficient re-
trieval of both intermediate and leaf nodes/superpoints con-
tained in any branch Bt. All proposals of object instance
would be obtained in R when the queue Q becomes empty.
Algorithm 1 gives pseudo code of the above procedure.

In this work, we implement the classifier ϕ as an MLP,
whose details are given in the supplementary material. To
train ϕ, we define the instance-level, ground-truth labels for
nodes of the tree as follows. Assume that a training scene
I contains J object instances, which may belong to some
of the K categories. For any superpoint P (i.e, a leaf node
tP), we assign its instance-level, soft label q∗

P ∈ [0, 1]J ac-
cording to what proportions its contained points belong to
(some of) the J instances. The soft label q∗

t ∈ [0, 1]J for
any intermediate or root t is again hierarchically inherited,
via weighted averaging, from those of superpoints, similar
to the inheritance of features. Given that s1 and s2 are the
two child nodes of t in T , we use the following loss sym-
metric to them to train ϕ

Lsplitting = Et∈T /{tPi
}M
i=1

1

2
[BCE(ϕ(f †

s1 ,f
†
s2), q

∗⊤
s1 q∗

s2) +

BCE(ϕ(f †
s2 ,f

†
s1), q

∗⊤
s1 q∗

s2)], (4)

where BCE(·, ·) denotes a binary cross-entropy loss, and
q∗⊤
s1 q∗

s2 ∈ [0, 1] indicates, in a soft manner, whether the two
child nodes belong to a same instance.
Remarks In the proposed SSTNet, we choose to first build
the tree, as described in Section 4.2, and then learn to tra-
verse and split tree nodes to generate instance proposals;
in other words, we choose a strategy of divisive grouping,
instead of an agglomerative one commonly used in hierar-
chical image segmentation [32, 29, 13]. Our motivation for
such a design is mostly computational: by using nearest-
neighbor chain [23], our tree construction has a complexity
of O(M2), and the tree traversal to propose all the branches
of object instances has a complexity of O(M), giving rise
to an overall complexity of O(M2+M); in contrast, learn-
ing to generate proposals in an agglomerative manner has
an order-of-magnitude higher complexity of O(M3).

4.4. CliqueNet for Refinement of Proposals

We note that in the forward pass of SSTNet, once a su-
perpoint P truly on an object instance is constructed into a
wrong branch Bt of SST T , e.g., Bt corresponding to the
background or a different instance, the mistake cannot be
corrected. Nevertheless, when any branch Bt is proposed as
an object instance, we have the chance to improve its score
evaluation (cf. Section 4.5) by pruning its contained super-
points that may belong to other instances or the background.

Consider a proposed branch Bt consisting of Mt leaf
nodes of superpoints. A straightforward way to imple-
ment the pruning is to concatenate feature representation

2787

Algorithm 1 Pseudo code of proposal generation via tree
traversal and splitting

Input: tree T , node features {f †
i }

|T |
i=1, classifier ϕ;

1: initialize R = ∅ to store proposals, and queue Q = ∅;
2: push the root of T into Q;
3: while - Q.isempty() do
4: t = Q.dequeue()
5: if - t.isleaf() then
6: {s1, s2} = t.getchild()
7: f †

s1 = s1.getfeature()
8: f †

s2 = s2.getfeature()
9: if ϕ(f †

s1 ,f
†
s2) ≥ 0.5 then

10: push t into R, and Bt = t.getbranch()
11: else
12: Q.enqueue(s1, s2)
13: end if
14: end if
15: end while
16: return R;

00

33

22

11

00

33

22

11

Figure 4. Illustration on conversion of a tree branch as a (graph)
clique.

f †
t at node t with each f †

P of {f †
Pi
}Mt
i=1, and to learn

a binary classifier that decides whether the superpoint P
should be removed. This, however, involves only the pair-
wise relation between f †

t and each f †
P , and we empiri-

cally find that it is less effective to prune erroneously as-
signed superpoints. In this work, we propose a more ef-
fective scheme, termed CliqueNet, that determines which
superpoints to remove by learning the feature interactions
among {f †

t ,f
†
P1
, . . . ,f †

PMt
}. Specifically, given the pro-

posed branch Bt as shown in Fig. 4, we first connect
the node t directly with individual leaf nodes/superpoints,
which forms a clique C when thinking of the whole SST
T as a graph — we note that the cliques formed for differ-
ent proposed branches are independent with each other, i.e.,
they are not on a same graph. An adjacency matrix AC ∈
{0, 1}(Mt+1)×(Mt+1) can be computed that specifies node
connections of the clique. Let ĀC = AC + I , where I is
an identity matrix, and write features of clique nodes com-
pactly as F †

C = [f †
t ,f

†
P1
, . . . ,f †

PMt
] ∈ R(n+K+3)×(Mt+1).

Denote the CliqueNet as a function ψ, the first layer of ψ
computes

ReLU(D̄−1/2
C ĀCD̄

−1/2
C F †

CW
1
ψ), (5)

where D̄C is the diagonal degree matrix of ĀC , and W 1
ψ

denotes weight matrix of the first layer of ψ. In this work,

we use a three-layer CliqueNet whose specifics are given in
the supplementary material.

CliqueNet outputs scores ψ(F †
C ,AC) ∈ (0, 1)Mt+1 de-

fined respectively for the Mt + 1 nodes in C. To train
ψ, we impose supervision on each node pair of t and Pi,
i ∈ {1, . . . ,Mt}, giving rise to

Lrefining =
1

Mt

Mt∑
i=1

BCE(ψ(F †
C ,AC), q

∗⊤
t q∗

Pi
), (6)

where the instance-level, soft labels q∗
t ∈ [0, 1]J and q∗

P ∈
[0, 1]J are defined in Section 4.3.

4.5. Proposal Evaluation

Denote a proposed branch of object instance, after prun-
ing some superpoints by CliqueNet, as B−

t , and assume that
it contains N−

t raw points. Recall that their point-wise fea-
tures have been computed by the backbone of SSTNet. We
write these features compactly as F̃B−

t
= [f̃1, . . . , f̃N−

t
] ∈

Rn×N
−
t . We follow [16] and use a ScoreNet, denoted as ω,

to evaluate the proposal. The ScoreNet is simply a minia-
ture of U-Net; one may refer to [16] for the network details.
Depending on the intersection-over-union (IoU) value with
the ground-truth instances in the scene I, we define label of
the proposal as v∗t ∈ [0, 1] (cf. the supplementary material
for details of setting the v∗t value), and train the ScoreNet
with the following loss

Levaluation =
1

|R|
∑
t∈R

BCE(ω(F̃B−
t
), v∗t), (7)

where |R| is the number of proposals generated by our SST-
Net (cf. Algorithm 1).

4.6. Training and Inference

We write our overall objective for training SSTNet as

LSSTNet = Lsemantic + Loffset + Lsplitting + Lrefining + Levaluation. (8)

Note that SSTNet is trained in a greedy, module-wise man-
ner, which means that the individual loss terms applied to
their respective modules are sequentially invoked into the
overall loss (8). Although the tree T needs to be con-
structed in every forward pass of SSTNet, it is highly ef-
ficient as indicated by the complexity and practical running
time given in preceding sections. The complexity of tree
traversal for instance proposals is linear w.r.t. the number
of superpoints; furthermore, once a proposal is formed at
an intermediate tree node, it is not necessary to traverse all
the descendant nodes. The inference is simply a same pro-
cedure as a forward pass of SSTNet training. Given the non-
overlapping nature of our proposed object instances, post-
processing steps such as non-maximum suppression are not
necessary.

2788

Input Semantic GT Semantic Pred Instance PredInstance GT

Figure 5. Visualization of the semantic and instance segmentation results on the validation set of ScanNet v2 (top) and S3DIS (bottom).

5. Experiments
Datasets We conduct experiments using the benchmark
datasets of ScanNet (V2) [7] and S3DIS[1]. ScanNet has
1201 training, 312 validation, and 100 test scenes that con-
tain object instances of 18 categories. Surface normals are
also provided for each scene. We do analysis and ablation
studies on its validation set, and submit our results to the
hidden test set. S3DIS contains 6 large-scale indoor scenes
with 13 object classes, we evaluate our model in the fol-
lowing aspects: (1) Area-5 is treated as the testing, while
residuals are used for training, and (2) 6-fold cross valida-
tion that each area is treated as the testing once.
Implementation Details For each input scene, we concate-
nate the RGB values and point coordinates as the point-wise
inputs of SSTNet. The network is trained using AdamW op-
timizer [21], with an initial learning rate of 1e-3 and weight
decay of 1e-4; learning rates follow a polynomial learning
rate policy. We set the batch size as 4. We pre-process
scenes of S3DIS dataset by sub-sampling its points at a rate
of 1/4. We employ a graph-based segmentation method [10]
to generate superpoints for ScanNet scenes. For S3DIS,
each scene is represented by colored point cloud and we
employ SPP + SPG [19, 18] to generate its superpoints.
Module and layer specifics of SSTNet are given in the sup-
plementary material.
Evaluation Metrics Following the official ScanNet (V2)
evaluation protocol, we report mean Average Precisions
(mAPs) at different thresholds of IoU as the evaluation
metric to compare different methods. The mAP@25 and
mAP@50 denote the average precision scores with IoU
thresholds respectively set to 25% and 50%, and the mAP

averages the scores with IoU thresholds set from 50% to
95%, with a step size of 5%.

5.1. Ablation Studies and Analyses

We first conduct ablation studies to evaluate the efficacy
of individual components proposed in SSTNet. These stud-
ies are conducted on the ScanNet (V2) dataset [7].
Analysis on Features for SST Construction The quality
of SST depends on what features are used when contructing
the tree. In this work, for a superpoint P , we choose se-
mantic score a and predicted instance center cP over the
triple {f ,a, cP}, where cP is computed from the offset
prediction o (cf. Section 4.2), and form the augmented
a† = [a; cP] for SST construction. Results in Table 3 ver-
ify our argument that for any pair of superpoints on a same
instance, their semantic scores and instance centers are ex-
pected to be consistent, while their superpoint-wise features
are not necessarily to be similar.
Efficacy of Proposal Generation via Tree Traversal and
Split Learning To verify the efficacy of our main pro-
posal generation scheme via SST, we compare with two al-
ternatives. The first alternative conducts the same traver-
sal of SST but replaces the node-splitting classifier ϕ with
a simple thresholding scheme, which we term as SST-
Thresholding; to determine whether an intermediate node
t is to be split into its child nodes s1 and s2, it thresh-
olds the Euclidean distance ∥a†

s1 − a†
s2∥2 where we opti-

mally tune the thresholds for its best performance 3. For

3We also try thresholding of the Euclidean distance ∥f†
s1 − f†

s2∥2,
where f†

s1 = [fs1 ;a
†
s1] and f†

s2 is computed similarly. It empirically
gives even worse performance.

2789

Method AP bath bed bkshf cab chair cntr curt desk door ofurn pic fridg showr sink sofa table toilet wind
3D-MPA[9] 35.5 45.7 48.4 29.9 27.7 59.1 4.7 33.2 21.2 21.7 27.8 19.3 41.3 41.0 19.5 57.4 35.2 84.9 21.3
SSEN[38] 38.4 85.2 49.4 19.2 22.6 64.8 2.2 39.8 29.9 27.7 31.7 23.1 19.4 51.4 19.6 58.6 44.4 84.3 18.4

PE[37] 39.6 66.7 46.7 44.6 24.3 62.4 2.2 57.7 10.6 21.9 34.0 23.9 48.7 47.5 22.5 54.1 35.0 81.8 27.3
PointGroup[16] 40.7 63.9 49.6 41.5 24.3 64.5 2.1 57.0 11.4 21.1 35.9 21.7 42.8 66.0 25.6 56.2 34.1 86.0 29.1

OccuSeg[15] 48.6 80.2 53.6 42.8 36.9 70.2 20.5 33.1 30.1 37.9 47.4 32.7 43.7 86.2 48.5 60.1 39.4 84.6 27.3
Our SSTNet 50.6 73.8 54.9 49.7 31.6 69.3 17.8 37.7 19.8 33.0 46.3 57.6 51.5 85.7 49.4 63.7 45.7 94.3 29.0

Table 1. 3D instance segmentation on ScanNet (V2) benchmark (hidden testing set). Results of SSTNet are obtained by submitting onto
the testing server the model trained on the ScanNet training set on January 4th, 2021.

Method mAP AP@50 AP@25
3D-MPA[9] 35.5 61.1 73.7
SSEN[38] 38.4 57.5 72.4

PE[37] 39.6 64.5 77.6
PointGroup[16] 40.7 63.6 77.8

OccuSeg[15] 48.6 67.2 74.2
Our SSTNet 50.6 69.8 78.9

Table 2. 3D instance segmentation on ScanNet (V2) benchmark
(hidden testing set). Results of SSTNet are obtained by submitting
onto the testing server the model trained on the ScanNet training
set on January 4th, 2021.

Superpoint Semantic Instance mAP AP@50 AP@25
feature score center

✓ 40.1 55.3 66.2
✓ 43.5 59.8 72.2

✓ 47.3 61.6 71.4
✓ ✓ ✓ 48.9 63.6 72.9

✓ ✓ 49.4 64.3 74.0
Table 3. Analysis on the features used for SST construction. Ex-
periments are conducted on the validation set of ScanNet (V2) [7].
Refer to Section 4.2 for how the three types of features are com-
puted.

the second alternative, instead of relying on SST construc-
tion, given the M superpoints with its augmented semantic
scores {a†

i}Mi=1, we first build a K-nearest-neighbor graph
based on pair-wise Euclidean distances, and then train a
classifier to decide whether some graph edges should be
disconnected; the resulting, disconnected graph cliques are
proposed as object instances; we term this alternative as Su-
perpoint Graph, which can be interpreted as a flattened ver-
sion of learning to propose object proposals. Table 4 shows
that SST-thresholding performs the best at the low-precision
metric of mAP@25, suggesting our construction of SST is
indeed useful for generation of object proposals. On the av-
eraged metric of mAP, SSTNet greatly outperforms the two
alternatives.
Efficacy of the CliqueNet Refinement Ablation study on
the efficacy of CliqueNet is presented in Table 5, which
shows that pruning superpoints from proposed tree branches
is effective at high-precision regimes of mAP metrics.

5.2. Results on the ScanNet Benchmark

We train SSTNet on the training set of ScanNet (V2) and
submit our model onto the testing sever. Table 1 shows
that on the leaderboard of ScanNet (V2) test set, SSTNet
outperforms all existing methods. Results at the metrics of

Method mAP AP@50 AP@25
SST-Thresholding 46.3 62.6 74.7
Superpoint Graph 44.4 60.6 69.5

Our SSTNet 49.4 64.3 74.0
Table 4. Analyses on the efficacy of our proposal generation via
traversal and node-splitting learning of semantic superpoint tree.
Experiments are conducted on the validation set of ScanNet (V2)
[7]. Reer to the main text for how the two alternatives are designed.

CliqueNet Refining mAP AP@50 AP@25
49.4 64.3 74.0

✓ 50.0 64.7 73.9
Table 5. Ablation study on the efficacy of CliqueNet for proposal
refinement. Experiments are conducted on the validation set of
ScanNet (V2) [7].

Method mAP AP@50 mPrec mRec
ASIS[33] - - 55.3 42.4

PointGroup[16] - 57.8 61.9 62.1
Our SSTNet 42.7 59.3 65.5 64.2

ASIS†[33] - - 63.6 47.5
3D-BoNet†[36] - - 65.6 47.6
OccuSeg†[15] - - 72.8 60.3

PointGroup†[16] - 64.0 69.6 69.2
Our SSTNet† 54.1 67.8 73.5 73.4

Table 6. Results of instance segmentation on the S3DIS validation
set. Methods without the † marks are evaluated on Area-5; meth-
ods marked with † are evaluated on 6-fold cross validation.

AP@25 and AP@50 are reported in Table 2.

5.3. Results on S3DIS

Following the protocols used in previous methods, we
employ the Area-5 and 6-fold cross validation, and use the
mAP/AP@50/mean precision (mPrec)/mean recall(mRec)
with IoU threshold 0.5 to evaluate SSTNet on the S3DIS
dataset. One may refer to [33] for precise definitions of
these metrics. Table 6 shows that SSTNet outperforms all
exist methods, confirming the generalizable advantage of
our proposed method.
Acknowledgement This work was partially supported
by the Guangdong R&D key project of China (No.:
2019B010155001), the National Natural Science Founda-
tion of China (No.: 61771201), and the Program for Guang-
dong Introducing Innovative and Entrepreneurial Teams
(No.: 2017ZT07X183).

2790

References
[1] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis

Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic
parsing of large-scale indoor spaces. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1534–1543, 2016. 2, 7

[2] Bert De Brabandere, Davy Neven, and Luc Van Gool.
Semantic instance segmentation with a discriminative loss
function, 2017. 2

[3] Ricardo Campello, Davoud Moulavi, and Joerg Sander.
Density-based clustering based on hierarchical density esti-
mates. volume 7819, pages 160–172, 04 2013. 2

[4] Mingmei Cheng, Le Hui, Jian Xie, Jin an Yang, and Hui
Kong. Cascaded non-local neural network for point cloud
semantic segmentation. arXiv preprint arXiv:2007.15488,
2020. 1

[5] Christopher Choy, JunYoung Gwak, and Silvio Savarese.
4d spatio-temporal convnets: Minkowski convolutional neu-
ral networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3075–
3084, 2019. 2

[6] Dorin Comaniciu and Peter Meer. Mean shift: A robust ap-
proach toward feature space analysis. IEEE Transactions on
pattern analysis and machine intelligence, 24(5):603–619,
2002. 2

[7] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017. 1, 2, 5, 7, 8

[8] Angela Dai, Matthias Nießner, Michael Zollöfer, Shahram
Izadi, and Christian Theobalt. Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly surface
re-integration. ACM Transactions on Graphics 2017 (TOG),
2017. 1, 3

[9] Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian
Leibe, and Matthias Nießner. 3d-mpa: Multi-proposal ag-
gregation for 3d semantic instance segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9031–9040, 2020. 1, 8

[10] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient
graph-based image segmentation. International journal of
computer vision, 59(2):167–181, 2004. 7

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2014. 2

[12] Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3d semantic segmentation with submanifold sparse
convolutional networks. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2018. 2, 4

[13] Silvio Jamil F Guimarães, Jean Cousty, Yukiko Kenmochi,
and Laurent Najman. A hierarchical image segmentation
algorithm based on an observation scale. In Joint IAPR

International Workshops on Statistical Techniques in Pat-
tern Recognition (SPR) and Structural and Syntactic Pattern
Recognition (SSPR), pages 116–125. Springer, 2012. 3, 5

[14] L. Han and Lu Fang. Flashfusion: Real-time globally con-
sistent dense 3d reconstruction using cpu computing. In
Robotics: Science and Systems, 2018. 1, 3

[15] Lei Han, Tian Zheng, Lan Xu, and Lu Fang. Occuseg:
Occupancy-aware 3d instance segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2940–2949, 2020. 1, 8

[16] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-
Wing Fu, and Jiaya Jia. Pointgroup: Dual-set point group-
ing for 3d instance segmentation. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 1, 2, 4, 6, 8

[17] Jean Lahoud, Bernard Ghanem, Marc Pollefeys, and Mar-
tin R Oswald. 3d instance segmentation via multi-task metric
learning. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 9256–9266, 2019. 2

[18] Loic Landrieu and Mohamed Boussaha. Point cloud over-
segmentation with graph-structured deep metric learning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 7440–7449, 2019. 1, 2,
3, 7

[19] Loic Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4558–4567, 2018. 1, 2, 3, 7

[20] Felix Järemo Lawin, Martin Danelljan, Patrik Tosteberg,
Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg.
Deep projective 3d semantic segmentation. In International
Conference on Computer Analysis of Images and Patterns,
pages 95–107. Springer, 2017. 2

[21] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization, 2019. 7

[22] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.
V-net: Fully convolutional neural networks for volumetric
medical image segmentation. In 2016 fourth international
conference on 3D vision (3DV), pages 565–571. IEEE, 2016.
4

[23] Daniel Müllner. Modern hierarchical, agglomerative cluster-
ing algorithms. arXiv preprint arXiv:1109.2378, 2011. 4,
5

[24] Yinyu Nie, Xiaoguang Han, Shihui Guo, Yujian Zheng, Jian
Chang, and Jian Jun Zhang. Total3dunderstanding: Joint lay-
out, object pose and mesh reconstruction for indoor scenes
from a single image. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020. 4

[25] Junyi Pan, Xiaoguang Han, Weikai Chen, Jiapeng Tang, and
Kui Jia. Deep mesh reconstruction from single rgb images
via topology modification networks. In Proceedings of the
IEEE International Conference on Computer Vision, pages
9964–9973, 2019. 4

[26] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.

2791

Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. 2

[27] Pekka Rantalankila, Juho Kannala, and Esa Rahtu. Gener-
ating object segmentation proposals using global and local
search. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2014. 2

[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Proceedings of the 28th International
Conference on Neural Information Processing Systems - Vol-
ume 1, NIPS’15, page 91–99, Cambridge, MA, USA, 2015.
MIT Press. 2

[29] Zhile Ren and Gregory Shakhnarovich. Image segmentation
by cascaded region agglomeration. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2013. 3, 5

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 4

[31] Chaoyang Wang, Long Zhao, Shuang Liang, Liqing Zhang,
Jinyuan Jia, and Yichen Wei. Object proposal by multi-
branch hierarchical segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2015. 2

[32] Huiqun Wang, Di Huang, Kui Jia, and Yunhong Wang. Hier-
archical image segmentation ensemble for objectness in rgb-
d images. IEEE Transactions on Circuits and Systems for
Video Technology, 29(1):93–103, 2019. 2, 3, 5

[33] Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen, and
Jiaya Jia. Associatively segmenting instances and semantics
in point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4096–
4105, 2019. 2, 8

[34] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 2

[35] P WILLETT. Multidimensional clustering algorithms-
murtagh, f, 1987. 2

[36] Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen
Wang, Andrew Markham, and Niki Trigoni. Learning ob-
ject bounding boxes for 3d instance segmentation on point
clouds. In Advances in Neural Information Processing Sys-
tems, pages 6737–6746, 2019. 8

[37] Biao Zhang and Peter Wonka. Point cloud instance seg-
mentation using probabilistic embeddings. arXiv preprint
arXiv:1912.00145, 2019. 1, 8

[38] Dongsu Zhang, Junha Chun, Sang Cha, and Young Min
Kim. Spatial semantic embedding network: Fast 3d instance
segmentation with deep metric learning. In arXiv preprint
arXiv:2007.03169, 2020. 2, 8

2792

