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Abstract

Object detection has been widely used in many safety-
critical tasks, such as autonomous driving. However, its
vulnerability to adversarial examples has not been suf-
ficiently studied, especially under the practical scenario
of black-box attacks, where the attacker can only access
the query feedback of predicted bounding-boxes and top-
1 scores returned by the attacked model. Compared with
black-box attack to image classification, there are two main
challenges in black-box attack to detection. Firstly, even
if one bounding-box is successfully attacked, another sub-
optimal bounding-box may be detected near the attacked
bounding-box.  Secondly, there are multiple bounding-
boxes, leading to very high attack cost. To address these
challenges, we propose a Parallel Rectangle Flip Attack
(PRFA) via random search. We explain the difference be-
tween our method with other attacks in Fig. 1. Specifi-
cally, we generate perturbations in each rectangle patch to
avoid sub-optimal detection near the attacked region. Be-
sides, utilizing the observation that adversarial perturba-
tions mainly locate around objects’ contours and critical
points under white-box attacks, the search space of attacked
rectangles is reduced to improve the attack efficiency. More-
over, we develop a parallel mechanism of attacking multi-
ple rectangles simultaneously to further accelerate the at-
tack process. Extensive experiments demonstrate that our
method can effectively and efficiently attack various pop-
ular object detectors, including anchor-based and anchor-
[free, and generate transferable adversarial examples.

1 indicates corresponding  authors. Corresponds  to
wubaoyuan@cuhk.edu.cnand caoxiaochun@iie.ac.cn

1. Introduction

Deep neural networks [42] has significantly boosted the
developments of many important tasks, such as image clas-
sification [19, 23], object detection [41, 39, 30, 31, 35],
medical image analysis [1 1], efc. For example, object de-
tection has been successfully applied in many safety-critical
scenarios, such as autonomous driving [25] and pedestrian
detection [43], efc. However, many studies [7, 3, 52, &,

, 4, 20, 47, 28, 27, 15, 49] have shown that the DNNs
are vulnerable to adversarial attacks and may produce false
predictions. If pedestrians or traffic signs are incorrectly
detected in autonomous driving, it will cause substantial se-
curity risks in the real world.

Compared with the massive works on attacking image
classification, adversarial attacks against DNN-based object
detection have not been thoroughly studied, especially in
the black-box scenario, where only the predicted bounding-
boxes and confidences of queries are accessible to the at-
tacker. There are two main challenges in attacking the
black-box object detection. Firstly, due to the widely used
module called non-maximum suppression (NMS) in main-
stream detectors, only the proposal with the highest confi-
dence score is predicted, while other proposals with similar
confidence in near locations are suppressed. Consequently,
even if one predicted bounding box is successfully attacked
(i.e., not detected), another sub-optimal bounding box may
be detected in similar locations(as shown in Section D of the
Supplementary Material). Secondly, the number of opti-
mized targets (i.e., proposals) in object detection is much
larger than that in classification [48]. Take a d-dimensional
image as an example, the computational complexity of the
candidate proposals is O(d?), while the complexity of clas-
sification is O(d). It will cause very high cost to attack
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object detector.

To address above two challenges, we propose an ef-
fective and efficient query based black-box attack method
against object detection, called Parallel Rectangle Flip At-
tack (PRFA). Specially, we first search a rectangle patch
randomly, and generate adversarial perturbations with the
sign flipping along the vertical or horizontal direction,
to present any detection in this attacked patch, includ-
ing any sub-optimal proposals. Besides, we observe that
adversarial perturbations generated by white-box attacks
against detection with large magnitudes mainly locate at
objects’ contours and some critical points [47]. Inspired
by this observation, the search space of attacked rectangles
can be significantly reduced to improve the attack perfor-
mance. Moreover, we design a parallel mechanism that
multiple rectangles can be attacked simultaneously, which
can further improve the attack efficiency. The proposed
PRFA method achieves successful attack on many popu-
lar object detectors, including anchor-based (e.g., two-stage
FR [41] and one-stage YOLO [16]), anchor-free model
(e.g., FCOS [44]), and the ATSS model [51].

The main contributions of this work are threefold. 1) To
the best of our knowledge, this is the first work about query-
based black-box attack against object detection. 2) We
propose an effective and efficient black-box attack method
specially designed for attacking object detection, such that
the main challenges including the sub-optical detection and
high attack cost can be well addressed. 3) Extensive exper-
iments demonstrate the superior attack performance of our
method on attacking many mainstream object detectors, in-
cluding both anchor-based and anchor-free detectors.

2. Related Work
2.1. Object Detection and White-box Attack

Mainstream object detectors are mostly based on deep
neural networks and can be roughly divided into two cat-
egories: anchor-based and anchor-free. The anchor-based
detector divides the predefined sliding windows or propos-
als into positive or negative samples, then refines and classi-
fies the prediction boxes. Due to the difference in the regres-
sion forms, it can be subdivided into the one-stage detector,
such as SSD [35], YOLOV2 [40] and two-stage detector,
Faster-RCNN [41], Mask-RCNN [18]. The most represen-
tative anchor-free detector may be YOLOv1 [39]. YOLOv1
abandons the anchor and directly predicates the bounding
box at the object’s center. Since anchor-free detectors do not
require extra parameter adjustment, these types of detectors
have gained widespread popularity. Representative methods
include CenterNet [14], ExtremeNet [54], CornerNet [24]
and FCOS [44]. Some methods focus on the gap between
anchor-based and anchor-free detectors, such as ATSS [51],
which improves the detection result by changing the sam-
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Figure 1. We use the coordinate axis to show the taxonomy of the
adversarial attack in object detection. Different from white box
attacks and migration attacks, our method PRFA only relies on the
prediction box and top-1 score output after NMS to attack through
queries without gradients. PRFA can also attack anchor-free and
anchor-based models at the same time.

pling and IoU threshold calculation.

The existing adversarial attacks for object detection tasks
are mainly white-box. As the first white-box attack method,
DAG [48] successfully fools Faster-RCNN by attacking the
RPN network’s proposals. [5] proposes a classification loss
to train a GAN and generates adversarial perturbations for
a face detector based on Faster-RCNN. [26] designs a loss
of predicting boxes and classification for the white-box at-
tack. [36] successfully attacks the YOLO and Faster-RCNN
models by generating an adversarial patch. Daedalus [46]
analyzes the vulnerability of NMS in the existing detection
systems and attacks multiple detectors by generating many
false-positive samples. [29] proposes an attack method for
the same category to attack the anchor-free detector. Since
most detectors use the same feature extractor, UEA [47]
generates transferable adversarial examples by destroying
image features to attack Faster-RCNN and SSD models.

However, above adversarial attacks for object detection
utilize the network’s gradient more or less. In the real world,
we cannot obtain the detector’s gradient, which makes the
attack very difficult. Therefore, we propose a query-based
adversarial attack in a black-box scenario.

2.2. Black-box Attack against Image Classification

The black-box attack includes the transfer-based attack
and the query-based attack. The attacker obtains adversarial
examples by accessing the model’s outputs and modifying

7698



clean images. Using a transferable attack strategy, the ad-
versary can train a substitute model [53] replacing the target
model to get the adversarial gradient. DI-FGSM [48] and
TI-FGSM [12] use ‘diverse inputs’ or ‘translation-invariant’
to generate more transferable adversarial examples against
the defense models. Dispersion Reduction [38] proposes an
attack to minimize the ‘dispersion’ of the feature map to
enhance the transferability across different computer tasks.
Other works focus on query feedback mechanisms against
the logistics scores of all categories. ZOO [9] proposed
a zero-order optimization method to estimate the gradient
of the target model. Some studies are based on gradi-
ent’s sign, such as [34], ZO-SignSGD extends SignSGD to
the zero-order case and achieves black-box attacks. Sign-
Hunter [1] accelerates the convergence by combining the
previous query results and converting the gradient estima-
tion from continuous to binary. The Boundary [6] and Evo-
lutionary [13] attack methods utilize the evolution strategy
to gradually search the adversarial example that is close to
the benign example in the scenario of decision-based black-
box attack. The Sign Flip attack method [10] proposes to
search the perturbation by gradually shrinking the ¢..-ball
around the benign example and randomly flipping the signs
of a few dimensions of the current perturbation. SquareAt-
tack [2] based on a random search generates square-shaped
perturbations at random positions. CG-ATTACK [17] pro-
poses to guide the search procedure by the conditional ad-
versarial distribution, which is partially transferred from
the distribution modeled by the c-Glow network [37] and
trained on surrogate models.

Different from the classification, the optimization prob-
lem on object detection is complex. Suppose that d denotes
the number of pixels in one image, each proposal is deter-
mined by two pixels/coordinates, the complexity of object
detection is O(d?) and of classification is O(d). The detec-
tor’s outputs are prediction boxes after NMS and the top-1
score (probability of the top-1 label), making the black-box
attack on object detection more like an intermediate set-
ting between score-based and decision-based settings. How
to achieve effective attacks with limited information and
queries on detectors is our research focus.

3. Parallel Rectangle Flip Attack

This section will model a query-based black-box attack
and introduce our method, which searches rectangle pertur-
bations at random positions parallelly with fliping/reversing
the sign of perturbations.

3.1. Problem Formulation

Suppose that a clean image x has M recognition ob-
jects O = {o01,02,...,opn}. For each object o,,,m =
1,2,..., M, is marked with ground-truth bounding box g,
and a class label y,,, € {1,2,...,Y}, where Y is the number

of classes. Object detection is an important computer vi-
sion task that predicts the position and a certain class(such
as humans, transportation, or animals) of instances in digi-
tal images. An object detector f(z) € RY*“+1) predicts
the prediction boxes b,,n = 1,2,...,N, and top-1 label
cnyn =1,2,..., N, with score fc (the probability after soft-
max normalization for predicted labels C') for IV objects.
To generate an adversarial examples £ € [0, 1]¢ which
is regarded as adversarial examples with an [,-norm of ¢
for the clean image z, i.e., || — ||, < ¢, and the goal
is to make the IoU of all prediction boxes and ground-truth
is less than a certain threshold or the labels of prediction
boxes are classified incorrectly, that is, Vn € N,Vm €
M, (ToU(by,, gm) < threshold) V (¢, # ym). Here, ToU
score is a standard performance measure for object detec-
tion, i.e., IoU(a,b) = (a Nb)/(a U b), and the threshold
is set to 0.5 for detection tasks. The task of find & can be
rephrased as solving the following optimization function:

N M
argmin H(f(&),B,Y) = Z Z 10U by, gim) - 1y, >¢
z€(0,1]4 n=1m=1
A- — -1
+ A (fen Jax fe) -1y, <l
s.t. ||§3 - m”p < €, fcn = .fC(:ﬁa bn)a (1)
where the 1 represents indicator function. The indicator
function 1, = 1 if a is true, otherwise 0. Since the at-

tack satisfies one condition in Eq. (1), we can use the top-1
score f., asone of the judgment optimization formula one.
Specifically, when the top-1 score is greater than the thresh-
old ¢, we consider reducing the IoU of the corresponding
prediction box and ground-truth, and when it is less than
the threshold (, we optimize the top-1 score. A is a is a hy-
perparameter that adjusts balance.

However, the optimization in Eq. (1) needs to match
all the prediction boxes with the ground-truth one by one,
which makes the computation complexity reach O(M % N)
and costs a lot of time for one query. Therefore, we pro-
pose a category-based optimization function, which opti-
mizes the prediction box and ground-truth under the same
category, and sets the computational complexity to O(M
N/|Y]). Because the detection dataset has too many cat-
egories, this will greatly improve one query speed. The
(N]y) means the index set of objects with the label y, i.e.,
(Nly) = {ile;s = y,i =1,2,..., N}. The new optimization
function H is as follow:

Y (Nly) (Mly)

Z Z Z IOU n:gm) ]]-fcn>c+ (2)

y=1 n=1 m=1

A (fen=y(Z,0n)

s.t. ||i - wHP S €, fcn - fc(ﬁ:,b”).

arg min
&€(0,1]4

_ 1
max fo) - 1., <c]
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Figure 2. The adversarial perturbations generated by the white-
box attack methods UEA and DAG respectively on the SSD and
Faster-RCNN. These perturbations are basically distributed at the
contours and critical points of the object.

3.2. Prior-guided Dimensionality Reduction

Dimensionality reduction has been shown to be effective
to improve the efficiency of black-box attacking against im-
age classification [45]. Inspired by this, we use the detec-
tor’s prior information and the prior observation under the
white-box attack to reduce the random search space. Al-
though the anchor-based and anchor-free models are sub-
stantially different in anchor, they consider the objectness
into prediction. Objectness is essentially a measure of the
probability that an object exists in the region of interest.
If the objectness is high, it means that the image window
likely contains an object. We attack areas with high ob-
jectness instead of the entire image. Besides, we use DAG
and UEA methods to observe the distribution of adversar-
ial perturbations on different models. Although the attack
methods and target models are different, the distributions of
perturbations are concentrated on objects’ critical areas or
contours. As shown in Fig. 1, we show the perturbations
generated by DAG and UEA.

We use the prediction box or prior information to cal-
culate an area with high objectness and perform a random
search in this area. We optimize Eq. (2) by generating rect-
angular perturbations through random sampling. The per-
turbations in this way are relatively close with white-box
in position distribution. We considered three methods for
calculating objectness, anchor-based priors(segmentation
results from Mask-RCNN [18]), anchor-free priors(key
points representation from RepPoints [50]), and prediction
boxes(outputs from detectors). Unlike the latter, the first
two priors use the other detector’s transferability to obtain
critical areas.

3.3. Parallel Attack Accelerating Breadth Search

We successfully modify the black-box attack methods
such as SignHunter, SquareAttack, NES, and ZO-SignSGD

a
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— 2, #
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Flip Atack by nconsisten Signs
_
Vertical
Flip

Figure 3. The process of flipping perturbation’s sign. We force the
points with the same feature to be different by flipping sign, which
will cause the detector to separate them to achieve an effective
attack.
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to the object detection task by optimizing Eq. (2). Among
them, the attack performance of SquareAttack is the most
ideal. By observing the attack process of SquareAttack,
we find that as the number of queries increases, the gen-
erated adversarial perturbations gradually gather around the
object. This phenomenon shows that, under the constraints
of Eq. (2), the black-box attack method can find the vulner-
able pixels with a large number of queries. we can attack
multiple positions parallelly in one query, thereby indirectly
increasing the number of pixel searches, which can be a way
to accelerate breadth search.

Next, we will theoretically analyze that it is not the best
choice to generate adversarial perturbations § at only one
random position at each query ¢. Suppose the optimized
detector f is the smoothness and has a Lipschitz gradient.
There exists a constant L satisfying:

Flwg) — £ < (f @e).5) + 518 )

According to the assumption 2 in [33], the stochastic gra-
dient is unbiased and with bounded variance, and its upper
bound is a constant 2. The SquareAttack method satisfies
the following:

Q
1 / f(xo) — E[f(zg11)] 2
S BN (@)IP) S + Lo,
0 (1S (24)II7] o
“)
where v is step size and when v = #Qf, the conver-

gence rate is O(1/4/Q). The < means small and equal to
up to a constant factor. The Eq. (4) means that the number
of iterations Q is large enough, and the random search algo-
rithm will converge.

We propose a parallel random search on the image. Each
iteration ¢ can randomly sample P positions in the search
space D. In this way, we reduce the variance of the gradient
estimation E[||g” (x) — f (2)|]?] < (2=£)2% and accel-
erate the convergence of the algorithm. At this time, the
convergence can be expressed as:

Q
l ’ 9 £ \/ZO'
0 ;E[Hf (@Il < o Jop Q)

In Eq. (5), the influence of queries () on the algorithm con-
vergence is still more significant than the number P of par-
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allel attacks and the convergence rate is O(1//QP) faster
than Eq. (4). We adopted a parallel number scheduling strat-
egy. Due to the small number of iterations in the early stage
of the query, our sample number P is the largest. As the
number of iterations increases, we gradually decrease the
value of P until it is 1. See Section B in Supplementary
Material for detailed proof.

3.4. Rectangle Flip Attack for Depth Search

Generally speaking, objects marked with a rectangular
box in detection datasets have fixed sizes and scales. Itis a
typical prior for the detector to use predefined anchors with
a fixed ratio. For example, Faster-RCNN uses 1:1, 1:2, and
2:1 anchor settings, and YOLO through k-means cluster-
ing learns different anchors from the training set. It is ini-
tially inspired by our experimental observation that given
one region within one bounding box, perturbing different
sub-regions with different noises is more likely to cause
that this region is separately detected to different bound-
ing boxes, compared to perturbing with similar noises. Fur-
thermore, as shown in Fig. 3, the square patch often covers
one local region of one object, flipping sign horizontally or
vertically may improve the perturbation diversity. Hence,
this region is more likely to be detected falsely as different
bounding boxes, causing the change of the original bound-
ing box on this object.

Given an initial square-shaped 6 € R*** with bound €
and a convolutional filter w € R¥**. Let 2 = F((z, + §) *
w) denotes outputs of the CNN for updating §, where F de-
notes activation function and x,, is the clean patch. (m,n)

represents coordinate in adversarial patch &,. We can di-

vided (m, n) into |Y'|+1 cliques {TZ}LZLH and (u,v) € T;

denotes one point’s coordinates in the ¢-th clique. The « is
a constant greater than 0. The maximal change /,,-norm of
z represents:

||2]|oc =max [z,
m,n

k
=max|F( Y (2 +0),0_ |4 |wim |5 ]4+5 " Wi
’ i,j=1
k
<max|F( D 8 4] i g)4s Wea) Ok

i,j=1

6

For adversarial attack in object detection, the maximum
change component of the correct label y of an object con-
tained in a patch should be smaller than the maximum
change component of other classes. The optimization func-
tion H in patch &, can be expressed as follows, the d,,. ,,. is

a shorthand in Eq. (6):

Ty k
n%mH = rnﬁm[ Z max \F(Z Oueyvr - Wi j) + iyl
(u,v)€Ty i,j=1
Y| Ty k
—max» [ > max|[F(Y ] buw - wij) + o]l
I#y (u,v)eT i,j=1

(N
Since Eq. (7) is difficult to optimize, we combine adver-
sarial perturbation and image semantic information to sim-
plify Eq. (7). If two points locate in the same patch and
belong to the same clique, then their perturbation should
be the same, that is (u1,v1) € T; and (ug,v2) € Ty, then

Our:yvr: = Oug:ug:- We propose an approximation to Eq. (7),

as follows:
T, k
mémH %méln[ Z max |F(Z 8y - wi ) + oy
(u,v)€Ty i,j=1
Y] Ty k
—InaxZ[ Z max|F(Z 8 - wi 5) + agl]]-
I#y (u,v)eTy 3,j=1

®)
The change value of the clique 7}, is maximum when the
perturbations sign in every point is correct and consistent.
Since the critical areas we attacked contain the object y, the
clique labeled T, dominates. To minimize the Eq. (8), we
can minimize the upper bound of the previous term. Points
that belong to the same clique in a patch are highly simi-
lar in spatial location (close to value) and semantic feature
(close in the property). Hence, if the sign of perturbations
can change the semantic feature of one point, it will be ef-
fective for other points with high probability. Consequently,
we can generate a rectangular perturbation by flipping the
sign, which makes points in the same clique are inconsis-
tent and pushes them into different classified classification
boundaries. By this, we can minimize the Eq. (8) for effec-
tive black-box.

3.5. Generating Adversarial Examples

Firstly, we use the detector’s prior information in
Sect. 3.2 to calculate the high objectness area and deter-
mine the critical points to perform a random search. Then,
we set the side length a of the square perturbations, and
the number of parallel points P according to the dynamic
scheduling algorithm. We first generate square-shaped per-
turbations with side length a for each iteration. Next, we
flip half of the square perturbations’ sign (a rectangle with
a * a/2 ) vertically or horizontally. We calculate scores by
Eq. (2) and update adversarial perturbations if the current
score is greater than the optimal score. See Section A in
Supplementary Material for the specific algorithm.
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Table 1. Ablation study on the Faster-RCNN model

Method mAP mAPsq mAPrs mAPS mAPM mAPL AQ

Clean 0.52 0.72 0.57 0.28 0.55 0.74 N/A

Square Shaped 0.28 0.50 0.27 0.21 0.38 0.32 3787

SS w. Prior 0.26 0.48 0.25 0.20 0.30 0.33 3667

SS w. Prior & Flip 0.24 0.42 0.23 0.18 0.27 0.28 3342

SS w. Prior & Parallel 0.22 0.40 0.21 0.16 0.26 0.28 3513

Parallel Rectangle Flip Attack 0.21 0.41 0.19 0.16 0.26 0.27 3331

Table 2. Untargeted attack against object detectors.
Faster-RCNN [41] ATSS [51]
Method mAP mAPg,() mAP75 mAPS mAPM mAPL AQ mAP mAPs[) mAP75 mAAPS m44P1\/[ mA4PL 44Q
Clean 0.51 0.72 0.57 0.28 0.55 0.74 N/A 054 0.73 0.60 0.32 0.58 0.74 N/A
NES[21] 049 0.69 0.54 0.26 0.52 0.69 4000  0.52 0.70 0.57 0.29 0.56 0.73 4000
ZSS [34] 0.49 0.71 0.54 0.20 0.52 0.71 4040  0.52 0.70 0.58 0.21 0.56 0.73 4040
SH[!] 0.39 0.63 0.38 0.24 0.43 0.57 3987  0.40 0.55 0.44 0.20 0.40 0.59 3852
SA [2] 0.28 0.50 0.26 0.21 0.38 0.32 3786  0.23 0.34 0.24 0.13 0.28 0.31 3505
PRFA 0.21 0.42 0.19 0.16 0.26 0.27 3331 0.20 0.30 0.23 0.12 0.25 0.30 3500
YOLOV3 [16] FCOS [43]

Method o Ap  1mAPsy mAP;s mAPs mAPy mAP, AQ mAP mAPsy mAPrs mAPs mAPy mAPL  AQ
Clean 0.45 0.70 0.47 0.16 0.47 0.65 N/A 054 0.75 0.58 0.33 0.56 0.74 N/A
NES[21] 041 0.68 0.43 0.16 0.44 0.59 3958  0.53 0.73 0.57 0.23 0.56 0.77 4000
ZSS [34] 0.39 0.64 0.40 0.19 0.43 0.59 3958  0.52 0.71 0.56 0.27 0.57 0.74 4040
SH[1] 0.39 0.66 0.40 0.19 0.40 0.58 3911 0.27 0.40 0.31 0.09 0.37 0.64 3633
SA [2] 0.25 0.49 0.22 0.15 0.31 0.34 3192 0.21 0.35 0.22 0.14 0.20 0.37 3578
PRFA 0.24 0.46 0.22 0.13 0.29 0.36 2949 0.23 0.34 0.23 0.15 0.29 0.41 3395
4. Experiments An effective black-box attack means a small mAP. In

4.1. Experiments Settings

We will introduce the experiment settings from four as-
pects: detection datasets, evaluation criteria, targeted mod-
els and parameters setting.

Detection Datasets The MS-COCO [32] is the most chal-
lenging object detection datasets today. A large number of
object detectors use MS-COCO as a benchmark to evaluate
the model’s performance. MS-COCO includes 118k images
for the training set and Sk images for the validation set. The
objects in these pictures are divided into 80 categories. In
order to ensure fairness, we attack the validation set. Specif-
ically, we selected first 100 images as clean images for the
black-box attack according to the MS-COCO API’s loading
order. These samples include a wealth of object instances,
such as small objects or dense objects.

Evaluation Criteria AP is defined as the average detection
accuracy under different recall rates, and we usually evalu-
ate it in a category-specific way (the mean AP, mAP). Re-
fer to the detector, we use the evaluation criteria provided
by MS-COCO, for example, m A P( averaged over multiple
ToU threshold between 0.5 and 0.95), m A Psp(mean AP at
IoU=0.5), m A P7s(mean AP at IoU=0.75), mAPs(area <
322), mAPy (322 < area < 96%), mAP;(area > 962).

terms of algorithm efficiency, we use AQ(average queries)
to evaluate the convergence of the algorithm. We hope to
minimize the number of queries.

Targeted Models We selected four representative detectors
as targeted models. The first type is anchor-based. We
chose the two-stage detector Faster-RCNN with ResNet50
and the YOLOv3 model with DarkNet53 as backbones. The
second type belongs to anchor-free. We chose the FCOS
model with ResNet50 as the backbone. We also selected
ATSS, a detector that can adaptively select positive and
negative samples. This model can eliminate the perfor-
mance difference between anchor-based and anchor-free al-
gorithms. The above models and codes are based on the
open-source mmdetection library.

Parameters Setting Given images of size w * h, the
length @ of square is vVexwxh, e € [0,1]. The
e is set to 0.05, and we halve it at query q €
{20, 100, 400, 1000, 2000, 4000,8000}.  The parallel P
is 4 in the initial stage, and we halve them at ¢ €
{20, 100, 1000, 2000}. In Eq (2), the ¢ is 0.90 and the € is
0.05. The threshold for IoU is 0.50. The prior information
from the same type of detector is more beneficial to attack
similar detectors, our PRFA in all reported experiments only
utilized the attacked model’s outputs.
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Table 3. Black-box transferability across different Detectors. The result with *num™ represents the adversarial examples from one black-
box detector to attack itself, and the ordinary result represents transferability.

Faster-RCNN ATSS
Adv. Dataset mAP  mAPso mAPr;s mAPs mAPyy mAPr, mAP mAPsy mAP;; mAPs mAPy  mAPL
Clean 0.51 0.72 0.57 0.28 0.55 0.74 0.54 0.73 0.60 0.32 0.58 0.74
Faster-RCNN  *0.21* *0.42* *0.19* *0.16* *0.26* *0.27* 0.30 047 0.29 0.11 0.35 0.47
ATSS 0.26 0.42 0.25 0.11 0.28 0.42 *0.20* *0.30* *0.23* *0.12* *0.25* *0.30*
YOLO 0.32 0.51 0.32 0.13 0.34 0.50 0.36 0.55 0.37 0.18 0.39 0.55
FCOS 0.28 0.42 0.31 0.06 0.31 0.45 0.35 0.37 0.34 0.36 0.45 0.52
YOLO FCOS
Adv. Dataset mAP  mAPsg mAP;s mAPs mAPy  mAPL mAP  mAPsg mAP;s mAPs  mAPy  mAPL
Clean 0.45 0.70 0.47 0.16 0.47 0.65 0.54 0.75 0.58 0.33 0.56 0.74
Faster-RCNN 0.22 0.39 0.22 0.08 0.23 0.41 0.27 0.44 0.26 0.09 0.31 0.46
ATSS 0.24 0.43 0.24 0.10 0.26 0.41 0.28 0.45 0.28 0.11 0.33 0.47
YOLO *0.24* *0.46* *0.22* *0.13* *0.29* *0.36 0.35 0.54 0.36 0.11 0.38 0.54
FCOS 0.16 0.35 0.08 0.07 0.28 0.32 *0.23* *0.35* *0.24* *0.14* *0.22* *0.36*
= Square Shaped SS w. Prior SS w. Prior & Flip SS w. Prior & Parallel FPRA to aCCC]el‘ate the a]gorlthm s Convergence and prOVIde a par-

0.55

0.50

0.45
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0 118 50.55 193.95 47895 953.95 190395  3786.31

Figure 4. mAP changes w.r.t. the number of queries for differ-
ent attacks. FPRA achieves the fastest convergence and the most
effective attack.

4.2. Abaltion Study

We discuss the effectiveness of each component of the
PRFA method through ablation experiments. In Tab. 1, we
show the ablation experiment on the Faster-RCNN model.
‘Clean’ represents the detection result of Faster-RCNN on
clean images. ‘Square Shaped’ means that we only use
square perturbations to perform random searches across the
entire picture. By adding prior information, we can limit the
space of random search. We add the prior restriction ‘SS w.
Prior’ to SS (short for square-shaped) to reduce the search
space. Next, we generate rectangular perturbations by flip-
ping the perturbations’ sign. The method ‘SS w. Prior &
Flip’ can be regarded as a combination of depth search and
breadth search. Finally, we combine a parallel search attack

allel rectangle flip attack algorithm, namely PRFA.

The contribution of ‘Flip’ is evaluated by attack perfor-
mance (e.g., mAP reduction) and queries. As shown in
Fig. 4, in terms of mAP, the values of ‘SS w. Prior’, ‘SS
w. Prior & Flip’ and PRFA are 0.26, 0.24 and 0.21, respec-
tively; in terms of queries, the values of these three methods
are 3666, 3342 and 3331, respectively. ‘Flip’ contributes
29% to the mAP reduction and 97% to the query reduction.
‘Flip’ can also accelerate the convergence compared to ‘SS
w. Prior’ Therefore, the attack problem can be regarded as
a trade-off between breadth search and depth search. The
Fig. 4 shows the change in m AP of each method over the
number of iterations. By introducing parallel attacks, we ef-
fectively accelerated the model’s convergence (yellow line)
and got the best attack results.

4.3. Untargeted Attacks against Detectors

We evaluated four state-of-the-art black-box attack al-
gorithms and our method PRFA on the four detectors ac-
cording to the settings in Sect. 4.1. The four methods are
the NES black box attack combining PGD and NES strate-
gies, the ZO-SignSGD(ZSS) algorithm combining zero-
order optimization and sign stochastic gradient descent, the
SignHunter(SH) method that converts the gradient estima-
tion from a continuous problem to a binary problem, and
the SquareAttack(SA) that generates square perturbations
at a random location. We limited the number of queries for
these methods, where NES is 4000, ZO-SignSGD is 4040,
and SignHunter, SquareAttack, and PRFA are all 4000.

The performance of NES is the worst, and it can hardly
affect the existing object detector. The performance of ZO-
SignSGD on the models Faster-RCNN, ATSS, and FCOS is
also inferior. He can only attack the YOLOv3 model. Al-
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Figure 5. The detection results of the four detectors on clean im-
ages (yellow lines) and adversarial samples (red lines).

though SignHunter can attack the existing object detector to
a certain extent, we found that it uses nearly 4000 queries,
which could not effectively converge with our query lim-
its. SquareAttack and our method showed the effectiveness
of the attack on all four models. Nevertheless, our method
has a better attack effect on Faster-RCNN and ATSS, es-
pecially on Faster-RCNN, which drops 7 points and fewer
queries (about 440). In the same attack effect (YOLOv3 and
FCOS), the number of queries of our method is also better
than the SquareAttack method.

In summary, our method can achieve fewer queries or
more effective attack, which means that our method will
have faster convergence and search for more effective per-
turbations.

4.4. Black-box Transferability across Models

Finally, we investigate black-box transfer, i.e., using the
perturbations generated by a black-box detector to attack
other detectors. In Tab. 3, the result with *num™ represents
the adversarial examples from one black-box detector to at-
tack itself, and the ordinary result represents transferability.

In Tab. 3, The attack effects of the three models Faster-
RCNN, ATSS, and FCOS are robust. The reason is that they
can resist attacks from other datasets. Among them, the
most robust method is ATSS, which achieves an effect of at
least 0.30 mAP on other datasets. The indicators of Faster-
RCNN on other datasets are slightly lower than FCOS by

1-2 percentage points. Among all the models, YOLO is the
most accessible model to attack. The adversarial examples
generated by other models can attack him effectively, even
surpassing the adversarial examples generated by itself.

Here we compare with three mentioned transfer meth-
ods, including ‘Dispersion’, ‘DIFGSM’ and ‘TIFGSM’.
They firstly conduct white-box attacks on Faster-RCNN.
Specifically, ‘Dispersion’ attacks intermediate features of
the ResNet50 backbone, while ‘DIFGSM’ and ‘TIFGSM’
attack the bounding box loss. Then, the obtained per-
turbations are transferred to attack the black-box target
models ATSS, YOLOvV3 ,and FCOS, respectively. The
mAP values of these three methods and our PRFA method
are (0.05,0.01,0.02,0.21) (PRFA conducts black-box at-
tack) for Faster-RCNN, (0.51,0.48,0.39,0.3) for ATSS,
(0.43,0.43,0.4,0.22) for YOLOV3, (0.51,0.48,0.42,0.27)
for FCOS, respectively. PRFA significantly surpasses these
transfer-based black-box methods.

5. Conclusion

In this paper, we propose a query-based black-box attack
with the prediction boxes and top-1 scores. We adapt the
existing black-box attack method to detection as the base-
line. We propose a parallel rectangle flip attack via ran-
dom search. We use prior information from detectors to
reduce the search space by observing the white-box pertur-
bations’ distribution. We regard the optimization problem
of searching perturbations for the detector as a trade-off be-
tween breadth search and depth search. We accelerate the
model’s convergence by parallel random walks in the search
space in terms of breadth. We obtain a better attack effect by
flipping the perturbations’ sign locally to generate rectangu-
lar perturbations in terms of depth. Experiments show that
our proposed method PRFA can attack mainstream object
detectors and generate transferable adversarial examples.
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