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Abstract

Barrel distortion rectification aims at removing the ra-
dial distortion in a distorted image captured by a wide-
angle lens. Previous deep learning methods mainly solve
this problem by learning the implicit distortion parameters
or the nonlinear rectified mapping function in a direct man-
ner. However, this type of manner results in an indistinct
learning process of rectification and thus limits the deep
perception of distortion. In this paper, inspired by the cur-
riculum learning, we analyze the barrel distortion rectifi-
cation task in a progressive and meaningful manner. By
considering the relationship among different construction
levels in an image, we design a multi-level curriculum that
disassembles the rectification task into three levels, struc-
ture recovery, semantics embedding, and texture rendering.
With the guidance of the curriculum that corresponds to the
construction of images, the proposed hierarchical architec-
ture enables a progressive rectification and achieves more
accurate results. Moreover, we present a novel distortion-
aware pre-training strategy to facilitate the initial learning
of neural networks, promoting the model to converge faster
and better. Experimental results on the synthesized and
real-world distorted image datasets show that the proposed
approach significantly outperforms other learning methods,
both qualitatively and quantitatively.

1. Introduction

Rectifying the distorted images is an indispensable pre-

processing step for most computer vision tasks since the ge-

ometric distortion changes the original scene distribution.

Recent works [25][32][31][16][19][17][5] learn the barrel

distortion rectification model in a direct manner, which

feeds distorted images into networks and only supervises
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the final outputs. Despite the end-to-end architecture, di-

rectly learning such a complex nonlinear mapping function

between different domains (from the distortion domain into

the alignment domain) is challenging. The pixel-level su-

pervision on final output cannot fully guide the rectification

of geometry distribution. Moreover, this process cannot ex-

plicitly reason different construction levels of a distorted

image, limiting the models’ learning of the distortion fea-

tures in rectification task. Thus, previous direct learning

manners hinder the performance improvement of the rec-

tification algorithm. In this paper, inspired by curriculum

learning [4], we consider improving the barrel distortion

rectification in a progressive and meaningful manner.

Curriculum learning, proposed by Bengio [4], is one

general paradigm that introduces a guided and meaningful

strategy to train a machine learning model. By imitating the

learning process of humans, the model can converge faster

by learning different knowledge at different learning stages

based on a curriculum. Inspired by this process, we con-

struct a multi-level curriculum to train the deep barrel dis-

tortion rectification model. As illustrated in Fig. 1 (a), sim-

ilar to human painting from sketch, coloring to details, the

procedure of our curriculum displays a simple-to-complex

order from the structure, semantics to texture.

Additionally, to facilitate the initial learning of the recti-

fication model, we propose a distortion-aware pre-training

strategy. Pre-training on ImageNet [14] is a widely used

strategy in computer vision. Nevertheless, He et al. [9]

verified that it helps less if the target task is more sensi-

tive to localization. Thus, it is not suitable for the recti-

fication task requiring a precise coordinate transformation.

Pre-training on ImageNet was demonstrated that it counts

against the distortion estimation task in [18] as ImageNet

does not contain any distorted images. Since it is difficult

to make the model learn the implicit distortion parameters,

our distortion-aware pre-training strategy permits the model

a better network initialization and helps to perceive how dis-
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Figure 1. Motivation of the proposed method. (a) Similar to the human painting procedure (the bottom), the constructed curriculum (the

top) addresses the barrel distortion rectification task into three levels, structure, semantics, and texture. (b) Instead of the implicit and

detailed distortion parameters (top), the distortion-aware pre-training strategy focuses on the explicit and general distortion level (bottom).

torted the image is, as shown in Fig. 1 (b).

In particular, we propose a multi-level curriculum with a

distortion-aware pre-training strategy for training the deep

barrel distortion rectification model. First, we construct a

curriculum with three levels, structure, semantics, and tex-

ture. The curriculum is also related to the construction of

an image, as Marr [22] emphasized understanding an image

is a multiple stages procedure, where different components

at different construction levels of an image are strongly

linked. Subsequently, we develop a distortion-aware pre-

training strategy to enhance the distortion perception of the

model, teaching it to grasp the general prior knowledge of

distortion rather than obscure details. To gradually learn

the image rectification, we design a hierarchical framework

consisting of three modules, structure recovery, semantics

embedding, and texture rendering. Such an architecture en-

ables the progressive rectification from the low-level fea-

tures to high-level features. Compared with previous meth-

ods, the proposed rectification process can tackle the barrel

distortion by supervising the intermediate product of each

module. Experimental results on the synthesized and real-

world datasets demonstrate our approach outperforms the

state-of-the-art methods with a large margin.

In general, our contributions are summarized as follows:

• We propose a curriculum to train the deep barrel dis-

tortion rectification model in a progressive and mean-

ingful manner.

• A distortion-aware pre-training strategy is proposed to

enhance the initialization of the learning model.

• To learn the proposed multi-level curriculum, we de-

sign an effective hierarchical rectification framework.

2. Related Work

2.1. Barrel Distortion Rectification

Traditional methods mainly rely on the detection of

hand-crafted features [3][23][10][13][1][28]. However,

these methods usually performed poorly due to specific con-

straint such as the plumb-line and curve, leading to a poor

generalization ability to other scenes. Recently, the accu-

racy of rectification has been improved using deep learn-

ing [25][32][31][16][19][17][5]. Rong et al. [25] first used

convolutional neural networks (CNNs) to estimate the dis-

tortion parameters. However, the simple camera model

and AlexNet architecture limit its general application. To

rectify more complicated distortions, DR-GAN [17] and

FishEyeRecNet [32] trained their models based on adver-

sarial learning [8] and multi-task learning [6]. But these two

methods cannot guide the networks to explicitly learn dis-

tortion features due to the one-pass direct training manner.

Xue et al. [31] improved the performance through the curve

guidance, but this method suffered from inferior robustness

when facing the scene containing fewer hand-crafted fea-

tures. Liao et al. [19] and Li et al. [16] proposed to unify

different types of distortions using the distortion distribu-

tion map and distortion flow, respectively. Nevertheless,

their designed learning models are still hard to correct the

distortion in a progressive and meaningful way.

2.2. Curriculum Learning

The conception of curriculum learning can be found in

Elman et al. [7], which highlights the importance of start-

ing small and then gradually process the more challenging

levels. This work displayed a learning process as human
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Figure 2. The overview of our proposed approach. (a) We first decompose a distorted image into different levels and construct a simple-

to-complex curriculum. (b) We develop a distortion-aware pre-training strategy for the general cognition of distortion. (c) A hierarchical

rectification framework is presented to progressively correct the distortion from low-level to high-level features.

infants do, inspiring a more efficient strategy for machine

learning. Like methods in robotics [27], Krueger et al. [15]

exploited a shaping scheme to speed up the convergence of

the learning process. Bengio et al. [4] thoroughly described

the concept, details, and experiment of curriculum learning.

This strategy improved the performances of many challeng-

ing tasks by addressing them in a simple-to-complex order.

3. Method

In this section, we describe the proposed approach in de-

tail. The overview of our approach is illustrated in Fig. 2.

3.1. Parametric Camera Model

Assumed that a point Pw in the world coordinate

projects to a point Pc in the camera plane. Then, the re-

lationship between Pw and Pc can be given by:

Pc = MPw, (1)

where M ∈ R
3×4 is a perspective projection matrix, Pc =

(x, y, 1)T ∈ R
3×1 and Pw ∈ R

4×1 represent the homoge-

neous coordinates in the camera and world coordinate sys-

tem, respectively. For the barrel distortion, there will be

non-linear mapping introduced. The projection h(·) is such

a non-linear function to describe the radial distortion:

h(Pc) = (x, y, f(x, y))T. (2)

The wide-angle lens such as fisheye lens violates the per-

spective projection mode, and then f(·) can be approxi-

mated by a Taylor series expansion as follows:

f(x, y) = 1 + k1r + k2r
2 + k3r

3 + · · ·+ kNrN , (3)

where k1, k2, · · · are the distortion parameters. r indicates

the Euclidean distance between the distortion center Pd =
[xdc, ydc]

T ∈ R
2 and point in image.

3.2. Construction of Multi-level Curriculum

We first present a decomposition network (De-Net) to

decompose an image into structure, semantics, and tex-

ture levels, constructing a simple-to-complex curriculum as

shown in Fig. 2 (a). To be more specific, De-Net takes a

distorted image Idtex ∈ R
h×w×3 as input and gradually out-

puts the distorted semantics Idsem ∈ R
h×w×c and distorted

structure Idstr ∈ R
h×w×1, where h and w denote the height

and width of distorted image, and c is the number of object

categories. The backbone of De-Net is designed based on a

U-Net [26] style, in which an encoder-decoder network with

skip connections gets a final feature map Idfea ∈ R
h×w×64.

4391



Then, two convolutional groups with 1×1 kernels activated

by softmax function outputs Idsem and Idstr, respectively.

For the texture level, we keep the original appearance

of a distorted image due to its rich RGB information. De-

Net is trained using the label of semantic segmentation in

ADE20K dataset [34], which covers most of the scenes in

life. Besides, some objects such as the rainbow and arch

have their curve structure, which should not be detected as

the distorted line. Thus, we apply the contour of the seman-

tic segmentation map as our structure level, which contains

more general information than distorted lines do.

3.3. Distortion-Aware Pre-training Strategy

To enhance the distortion perception of the model, we

present a distortion-aware pre-training strategy. A standard

pre-training needs to meet two requirements: easy to learn

and helpful for the subsequent task. Although pre-training

on ImageNet [14] is widely used in computer vision, it can-

not facilitate the rectification task since the dataset contains

no distorted images. Moreover, the original classification

task on ImageNet is hard to inspire the rectification task,

which requires more accurate localization in terms of the

coordinate transformation. In this work, we initialize our

model based on the distortion level estimation [19] in the

proposed distortion-aware pre-training strategy.

The distortion level indicates the degree of distortion for

a pixel in the image, which is visually observable and ex-

plicit to the image features. All distortion levels constitute

a distortion distribution map. Compared with the distortion

parameter, the distortion level is a more general description.

Thus, it is easier to teach network to learn how distorted is

an image than what are the specific values of parameters in

an image. Specifically, we select the maximum distortion

level Dmax as the learning label given by:

Dmax =
1

1 + k1rmax + k2r2max + k3r3max + · · · , (4)

where rmax indicates the farthest Euclidean distance be-

tween the distortion center and pixel in a distorted image.

As shown in Fig. 2 (b), three encoder networks extract the

feature of corresponding construction levels, and the esti-

mation headers are used to estimate Dmax. The estimation

header consists of three fully connected layers with the fol-

lowing number of units: 512, 256, and 1. During the pre-

training process, encoder networks pay more attention to

extracting the geometric distortion feature constrained by

Dmax. Thus, the neural network gains a significant im-

provement in the extraction ability of the distortion feature,

accelerating the convergence of rectification tasks.

3.4. Hierarchical Rectification Framework

As illustrated in Fig. 2 (c), the hierarchical rectifica-

tion framework consists of structure recovery, semantics

1/2

Figure 3. Comparison of the original skip connection operation

(left) and our location-aligned connection mechanism that aims to

revise the distortion information from encoder to decoder (right).

embedding, and texture rendering modules. In particular,

the structure recovery module aims to recover the realistic

structure from the distortion distribution. This module is

a fully convolutional neural network including an encoder

and a decoder network, with skip connections between the

encoder and decoder features at the same spatial resolution.

There are 5 hierarchies progressively extracting the struc-

ture feature in the encoder, where each hierarchy has a con-

volutional layer with 3×3 kernels and 2 strides. Unlike the

encoder, at the beginning of each hierarchy in the decoder,

a bilinear upsampling layer is implemented to increase the

spatial dimension by a factor of 2. Observing that the input

and output domain differs greatly in geometric distribution,

we employ Coordinate Convolution [21] in the structure re-

covery module since it can facilitate the generalization abil-

ity of coordinate transformation in the network.

After the structure recovery module, the distorted se-

mantics can be corrected by embedding them into the recti-

fied structure. The architecture of the semantics embedding

module is similar to that of the structure recovery mod-

ule. To be noted, the skip connection from shallow lay-

ers would introduce the distortion information to deep lay-

ers in the encoder-decoder network. To revise this distor-

tion information, we present a location-aligned connection

mechanism as illustrated in Fig. 3. In the implementation,

we first downsample the resolution of rectified structure to

match each feature map in the encoder, which is regarded

as the aligned target. Then, the feature maps in the encoder

that would introduce the distortion information, are con-

catenated with the corresponding aligned targets. Finally,

we leverage a convolutional layer as a revised layer to align

the spatial distributions of feature maps, providing the low-

level and undistorted features to the decoder network.

Given a rectified semantics, the texture rendering module

performs the rectification in the final construction level of a

distorted image. The architecture of this module is similar

to that of the semantics embedding module, except for two

special designs. The first design is that we use both the rec-

tified structure and rectified semantics to improve the final

rectification result, which shows more coherent details in

the boundary of the scene. The second one is that we lever-
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age the Instance-Normalization layer [30] to replace the

Batch-Normalization layer since it it can reduce the num-

ber of artifacts in the generated images. Also, we use the

location-aligned connection mechanism to replace the skip

connection in the texture rendering module. Therefore, we

design a complete hierarchical framework to perform the

distortion rectification in a simple-to-complex order.

We argue that by presenting the hierarchical rectification

framework, we can have the following advantages.

1. In contrast to the direct manner, our framework can

be trained in a progressive and meaningful manner, promot-

ing the learning of the complex nonlinear mapping function

between the distortion domain and the alignment domain.

2. With the distortion-aware pre-training strategy, the

learning model obtains a general and clear prior knowl-

edge of distortion. In addition, this pre-training strategy can

boost convergence in the rectification training process.

3. Our framework fully considers different levels of fea-

tures in the image, such as the low-level structure and high-

level semantics. Thus, we gain more robust rectification

performance than other methods considering only one level.

3.5. Training Loss Functions

For the multi-level curriculum construction, we train the

De-Net by optimizing a hybrid per-pixel cross-entropy loss:

LDe = λLsem
De + Lstr

De, (5)

where Lsem
De and Lstr

De express the cross-entropy loss for se-

mantic and structure segmentation, respectively.

To enable the distortion-aware pre-training strategy, the

difference of the estimated distortion level D̂ and ground

truth D is measured by the smooth L1 loss [24]:

LPre =

{
0.5t2, if |t| ≤ 1.
|t| − 0.5, otherwise,

(6)

where t = D − D̂. LPre can be interpreted as the com-

position of L1 and L2 loss, which alleviates the problem of

explosive gradient in the training process.

Based on the multi-level curriculum, the final training

loss of hierarchical rectification framework is given by:

LRec = αLstr
Rec + βLsem

Rec + γLtex
Rec, (7)

where α, β, and γ are the weights to balance the losses of

structure recovery, semantics embedding, and texture ren-

dering modules. Concretely, we formulate Lstr
Rec as follows:

Lstr
Rec =

1

WH

W∑
x=1

H∑
y=1

||Ŝx,y − Sx,y||1 + Lw, (8)

where W and H are the width and height of distorted im-

age, Ŝ and S are the rectified structure and ground truth,

Table 1. Quantitative evaluation of the rectified results obtained by

different methods.
Comparison Methods PSNR ↑ SSIM ↑
Traditional Methods

Alemán-Flores [1] 8.42 0.13

Santana-Cedrés [28] 9.22 0.18

Learning Methods

Rong (ACCV’16) [25] 12.98 0.37

DR-GAN (TCSVT’19) [17] 16.43 0.56

Li (CVPR’19) [16] 17.19 0.63

DeepCalib (CVMP’18) [5] 18.43 0.67

Liao (TIP’20) [19] 23.02 0.71

Ours 26.71 0.88

respectively. Lw indicates the loss of the wasserstein-GAN

(WGAN) [2] , it can improve the stability of adversarial

training and the quality of generated images.

Like the structure loss function, we minimize the L1 loss

between rectified semantics M̂ and ground truth M by:

Lsem
Rec =

1

WH

W∑
x=1

H∑
y=1

||M̂x,y −Mx,y||1 + Lw. (9)

Finally, we implement the perceptual loss [11] and

wasserstein loss to train the texture rendering module:

Ltex
Rec =

1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

||φi,j(Î)x,y − φi,j(I)x,y||2 + Lw,

(10)

where the difference of rectified texture Î and ground truth

I are minimized on the feature map φi,j , which is obtained

from the j-th convolution (after activation) before the i-th
max-pooling layer in the VGG19 network [29].

4. Experiments
4.1. Experimental Settings

Dataset: To train and evaluate the proposed rectification

model, we build a comprehensive synthetic image dataset.

To be specific, we first select images and segmentation maps

in the ADE20K dataset [34] as the source data. The dis-

torted images and distorted segmentation maps are then

generated based on the parametric camera model in Section

3.1. For the structure level, we use the contour of the seg-

mentation map due to its general representation of the se-

mantics level. To achieve the distortion-aware pre-training

strategy, we provide the label of maximum distortion level

for each image. In total, this dataset contains 20,210 train-

ing, 1,000 test, and 1,000 validation image sequences.
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Implementation Details: The training of our learning

model is divided into three parts following the procedure

in Fig. 2. We first train De-Net to construct a multi-level

curriculum, optimized using SGD with the learning rate of

0.02. Then, we train the encoder networks and estimation

headers using Adam [12] with the learning rate of 1×10−3,

to conduct the distortion-aware pre-training. For the hierar-

chical rectification framework, the pre-trained weights are

loaded in each encoder, and then the structure recovery, se-

mantics embedding, and texture rendering modules are fine-

tuned based on our multi-level curriculum using Adam with

the learning rate of 1 × 10−4. All the networks are trained

on NVIDIA GeForce RTX 2080 Ti GPUs.

4.2. Comparison Results

Quantitative Evaluation: We compare our approach with

previous rectification methods including the traditional

methods: Alemán-Flores [1], Santana-Cedrés [28] and

learning methods: Rong [25], DR-GAN [17], DeepCalib

[5], Li [16], Liao [19]. The corrected images generated

by the state-of-the-art approaches are evaluated based on

the PSNR (peak signal-to-noise ratio) and SSIM (structural

similarity index). All the methods are leveraged to per-

form the distortion rectification on the test dataset, includ-

ing 1,000 images. Then, we compute these two metrics

through the pixel difference between each rectified image

and the ground truth image. As shown in Table 1, the rec-

tified images are evaluated with ground truth on PSNR and

SSIM. Owing to the strong dependence on hand-crafted fea-

tures, traditional methods [1][28] show poor performance

and are hard to apply for the scene-agnostic barrel rectifi-

cation task. Learning methods [16][19][17][25][5] outper-

form traditional methods due to the deep perception of se-

mantic features, but the direct training manner limits the

comprehensive understanding of distortion rectification.

Quantitative results demonstrate that our approach is su-

perior to other methods in both pixel correction and struc-

ture maintenance, achieving the best performance in quanti-

tative evaluation. There are three reasons: (1) the proposed

multi-level curriculum guides the learning of the rectifica-

tion model in a progressive and meaningful manner. (2) the

distortion-aware pre-training strategy enhances the distor-

tion perception of deep neural networks. (3) the hierarchi-

cal rectification framework reasons the different features of

different levels in a distorted image, and thus we gain more

robust rectification performance than other methods.

Qualitative Evaluation: To display an intuitive compari-

son, we visualize the rectified images of different methods

using our synthetic dataset in this part. As shown in Fig. 4,

the rectified image derived from Santana-Cedrés et al. [28]

displays a more severe distortion effect (the first and fourth

row). The main reason is that they heavily rely on detecting

distorted lines and the optimization of distortion parame-

ters, thus performing poorly in the scene where the hand-

crafted features are hard to distinguish. As a benefit of the

global semantic features provided by neural networks, the

learning methods [16][19][17][25][5] achieve better rectifi-

cation performance in terms of the visual appearance. Nev-

ertheless, these methods are hard to recover the accurate

distribution from the severely distorted scene, influenced

by the insufficient and plain learning manner. In contrast,

our approach obtains the best rectification performance and

leads most compared methods in the qualitative evaluation.

To evaluate the generalization ability of algorithms, we

compare our approach with the state-of-the-art methods

on the real-world images captured by various wide-angle

lenses, as illustrated in Fig. 5. For this evaluation, we col-

lect the real-world barrel distorted images from the videos

on YouTube, captured by widely used wide-angle lenses

such as the SAMSUNG 10mm F3, Rokinon 8mm Cine

Lens, Opteka 6.5mm Lens, and GoPro. From Fig. 5, we can

observe that our approach well rectifies the distorted objects

such as the buildings and roads, outperforming other meth-

ods in terms of global scene distribution and local visual

appearance. These results demonstrate that our approach

is more competent in practical barrel distortion rectifica-

tion. More qualitative comparison results can be found in

the supplementary material.

4.3. Exploring the Learning Strategy

To validate the effectiveness of the curriculum learning

and pre-training, we visualize the training loss curves and

the rectified images of different learning schemes: the di-

rect learning without pre-training (DL), pre-training strat-

egy based on the estimation of the distortion parameters

(DL + DP-1), pre-training strategy based on the estimation

of the maximum distortion level Dmax (DL + DP-2, also

named the distortion-aware pre-training), and the designed

curriculum learning with the distortion-aware pre-training

strategy (Ours) as shown in Fig. 6.

Overall, our curriculum learning with the distortion-

aware pre-training strategy achieves the best performance

on the convergence of training loss and visual rectifica-

tion result. Specifically, the proposed distortion-aware pre-

training strategy is based on the homogeneous and explicit

distortion level, enabling a proper initialization of the neu-

ral network with the general prior knowledge of distortion.

Thus, DL + DP-2 performs much better than DL and DL +

DP-1, demonstrating that our pre-training strategy is more

suitable for the distortion rectification task. We also present

a multi-level curriculum for training the distortion rectifica-

tion model. Such a learning manner enables a progressive

rectification process and weakens the difficulty of one-pass

rectification. Therefore, Ours obtains the fastest and best

learning process, which generates the rectified image with a

visually pleasing appearance.
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Figure 4. Qualitative results on our synthesized datasets. For each comparison, we show the distorted image, ground truth, and the rectified

results of the compared methods: Alemán-Flores [1], Santana-Cedrés [28], Rong [25], DR-GAN [17], DeepCalib [5], Li [16], Liao [19],

and our proposed approach, from left to right.

Figure 5. Qualitative results on the real-world distorted images. For each comparison, we show the distorted image and the rectified results

from methods: Santana-Cedrés [28], Rong [25], DR-GAN [17], Li [16], Liao [19], and our proposed approach, from left to right.

Table 2. Ablation study of the proposed rectification framework,

where HRF = TR + SR + SE + LAC.
Modules Metrics

TR TR+SR TR+SR+SE HRF HRF+DPS PSNR ↑ SSIM ↑
� � � � � 18.23 0.65

� � � � � 20.12 0.69

� � � � � 23.87 0.75

� � � � � 25.27 0.80

� � � � � 26.71 0.88

4.4. Ablation Study

We also investigate an ablation study to evaluate each

component in the proposed approach as shown in Table 2.

We mainly consider the crucial parts in hierarchical rectifi-

cation framework (HRF) as follows: texture rendering mod-

ule (TR), structure recovery module (SR), semantics em-

bedding module (SE), location-aligned connection (LAC),

and distortion-aware pre-training strategy (DPS). From Ta-

ble 2, we can observe: (1) TR + SR + SE achieves better

performance than only considering one or two construction

components, indicating that the proposed multi-level cur-

riculum is beneficial and robust for the distortion rectifi-

cation. (2) HRF (TR + SR + SE + LAC) obtains higher

values on both PSNR and SSIM than TR + SR + SE. Our

location-aligned connection can revise the distortion distri-

bution of feature maps from shallow layers and thus boost

more useful information messaging in the network. (3) The

complete version (HRF + DPS) gains the most considerable

improvement over other baselines. As discussed in Section

4.3, the proposed scheme initializes the neural network with

the general prior knowledge of distortion, which meets two

key requirements of a standard pre-training strategy: easy

to learn and helpful for the subsequent task.

4.5. Cross-Domain Evaluation

We further examine the generalization ability of the pro-

posed learning model across different domains, especially
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Figure 6. The comparisons of different learning schemes, which

are evaluated by the training loss curves (top) and the rectified

results (bottom).

Figure 7. Cross-domain qualitative evaluation on COCO dataset

[20] and Place365 dataset [33].

in two prevalent large scale datasets: COCO dataset [20]

and Place365 dataset [33]. In the implementation, we lever-

age the DeNet trained on the ADE20K dataset [34] to per-

form the semantic segmentation on the distorted images de-

rived from COCO and Place365 datasets. Then, the seg-

mentation results are fed into our distortion rectification

module. The experimental results are shown in Fig. 7. As

we know, the ADE20K dataset is the largest open-source

ADE20K
COCO
Place365

PSNR

20

22

24

26

28

30

24.03

24.89

26.71
ADE20K
COCO
Place365

SSIM

0.50

0.60

0.70

0.80

0.90

1.00

0.73

0.79

0.88

Figure 8. Cross-domain quantitative evaluation on ADE20K

dataset [34] COCO dataset [20] and Place365 dataset [33].

dataset for semantic segmentation, covering most of the

scenes in life (150 categories in total). Therefore, most seg-

mentation results tested on the COCO dataset and Place365

dataset look plausible and coherent, constructing reason-

able rectification results. As shown in Fig. 8, the quanti-

tative evaluations on ADE20K, COCO, and Place365 are

reported. Although the qualitative results on COCO dataset

and Place365 dataset look plausible and visually pleas-

ing, there are performance decreases compared to ADE20K

shown in the quantitative evaluation. The main reason is

that the domain difference influences the recognition ability

of neural networks. Nevertheless, our learning model still

outperforms the methods training on COCO dataset, such

as DR-GAN [19] and Liao [17].

5. Conclusions

In this paper, we revisit the challenging barrel distortion

rectification task and present a multi-level curriculum with a

distortion-aware pre-training strategy for training the deep

rectification model. We first propose a simple-to-complex

curriculum, following the construction levels of an image.

Then, we develop a distortion-aware pre-training strategy

to enhance the distortion perception of the deep rectification

model. By breaking down the rectification learning process,

we design a hierarchical rectification framework consist-

ing of structure recovery, semantics embedding, and texture

rendering modules. With the multi-level curriculum and the

distortion-aware pre-training strategy, the model learns to

rectify distorted images progressively and converges fast.

Experimental results demonstrate that our approach out-

performs state-of-the-art methods, both quantitatively and

qualitatively.
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