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Abstract

The wide-angle lens gains increasing attention since it
can capture a wide field-of-view (FoV) scene. However, the
obtained image is contaminated with radial distortion, mak-
ing the scene not realistic. Previous distortion rectification
methods rectify the image in a rectangle or invagination,
failing to display the complete content and regular shape si-
multaneously. In this paper, we rethink the representation of
rectification results and present a Rectification OutPainting
(ROP) method, aiming to extrapolate the coherent seman-
tics to the blank area and create a wider FoV beyond the
original wide-angle lens. To address the specific challenges
such as the variable painting region and curve boundary,
a rectification module is designed to rectify the image with
geometry supervision, and the extrapolated results are gen-
erated using a dual conditional expansion strategy. In terms
of the spatially discounted correlation, a curve-aware cor-
relation measurement is proposed to focus on the generated
region to enforce the local consistency. To our knowledge,
we are the first to tackle the challenging rectification via
outpainting, and our curve-aware strategy can reach a rec-
tification construction with complete content and regular
shape. Extensive experiments well demonstrate the supe-
riority of our ROP over other state-of-the-art solutions.

1. Introduction
A wide-angle lens that can capture the wide field-of-

view (FoV) scene, gains increasing applications in recent

years. Humans have the natural ability to rectify and un-

derstand the distorted scene induced by a wide-angle lens.

For computer vision, accomplishing this task requires re-

covering the realistic geometric distribution based on hand-

crafted features [6, 8, 29, 14, 1, 26] or deep features

[23, 39, 18, 35, 17, 16, 5]. The existing distortion recti-

fication methods generate the rectified image as rectangle
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Figure 1. Motivation of the presented Rectification OutPainting

(ROP) method. ROP aims to combine the advantages of two tra-

ditional rectification constructions: complete content and regular

shape, while gaining wider field-of-view (FoV) beyond the origi-

nal wide-angle lens. Note that the structure of the rectangle recti-

fied image is used as a shape reference for outpainting.

or invagination, both of which have the limitations to dis-

play the complete content and regular shape simultaneously.

For instance, the rectangle construction displays the recti-

fied scene in a regular shape, but it discards the content in

the image boundary. Such a representation cannot provide

the complete scene and weakens the advantage of the wide-

angle lens. Although the invagination construction covers

complete contents, it introduces an irregular shape with a

visually narrow FoV. These two representations have their

strengths and weaknesses. It would be appealing and mean-

ingful if we contribute a representation combined with the

complete content and regular shape in the meantime.

Given an incomplete image, the goal of the image ex-

trapolation is to hallucinate plausible visual contents out-

side the original boundaries [25, 31, 33, 37, 9, 34]. Dif-

ferent with the actively studied inpainting [40, 41, 38, 12,

36, 13, 42, 43, 44], outpainting receives less attention and

is more challenging due to its one-side constraint. In this

paper, we rethink the traditional construction of distortion
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rectification and explore to establish a new representation

using outpainting.

As shown in Fig. 1, we propose a Rectification OutPaint-

ing (ROP) method. Given a distorted image captured by a

wide-angle lens, ROP aims to recover the realistic complete

scene in the invagination form and construct a regular shape.

However, ROP is challenging due to the following charac-

teristics: (1) Variable painting regions. For the rectifica-

tion result, the blank region surrounding the valid content is

different in each image, owing to various degrees of distor-

tions. (2) Curve boundary. In contrast to the straight bound-

ary, our ROP extrapolates the coherent semantics and details

from the curve boundary. This special structure causes a

more complicated spatial correlation between the generated

content and the original content.

To be specific, we design a parametric framework to ad-

dress the aforementioned challenges. First, the distortion

rectification module rectifies the input image in the form

of invagination with general geometry supervision. Sub-

sequently, the rectified image and the filling mask are fed

into an outpainting module to extrapolate the semantically

consistent content into the blank region using a dual condi-

tional expansion strategy. Such a strategy considers both the

global distribution and expanded content, guiding the net-

work to perceive different filling regions explicitly. More-

over, a curve-aware correlation measurement is presented

to enforce the local consistency of the extrapolated content.

Extensive experiments demonstrate that our approach can

recover the realistic details from the distorted image, with

a complete scene and regular shape. We also show that our

ROP method enables the captured scene to exhibit a wider

FoV beyond the original wide-angle lens, which allows for

more accurate scene reasoning and other applications.

In general, our contributions are summarized as follows:

• We are the first to propose a Rectification OutPainting

(ROP) method to eliminate the inherent limitations of

traditional rectification representations.

• A general geometry supervision and a dual conditional

expansion strategy are designed to achieve accurate

distortion rectification and image outpainting.

• To address the spatially discounted correlation, a

curve-aware correlation measurement is proposed to

enforce the local consistency of extrapolation results.

2. Related Works
Distortion Rectification: Suffering from the severe distor-

tion induced by a wide-angle lens, the distortion rectifica-

tion task plays a vital role in computer vision. Previous

methods solve the rectification problem mainly based on the

hand-crafted features [6, 8, 29, 14, 1, 26] or deep features

[23, 39, 18, 35, 17, 16, 5]. For example, Kang et al. [14]

leveraged the consistency of pairwise tracked point features

in a sequence to self-calibrate the catadioptric camera. The

curve-based methods [6, 8, 29, 1] predicted the distortion

parameters in terms of the detected distorted lines and re-

moved the distortion using the estimated parameters. On

the other hand, learning methods expanded the distortion

rectification with deep features. For instance, the convo-

lutional neural networks are used to extract the semantic

features of distorted images and predict the distortion pa-

rameters [23, 39, 35, 5]. To achieve the blind rectification,

the generation-based methods [18, 17, 16] employed the

encoder-decoder architecture to rectify the distorted image,

enables a flexible paradigm of parameter-free rectification.

Despite the encouraging performance achieved by the

above methods, the construction of rectification results has

the limitations of displaying a complete content and regular

shape simultaneously. In this work, we would like to draw

attention from the precise rectification performance to the

few concerned representations of rectification results.

Image Completion: Image completion targets reconstruct-

ing missing parts in damaged images, of which the image

inpainting technique gains well explored. Prior works in in-

painting can be classified into traditional methods [2, 4, 3,

27] and learning methods [40, 38, 12, 36, 42, 43, 44]. Im-

age outpainting is more challenging than inpainting due to

the one-side constraint. For the first time, Sabini et al. [25]

achieved the deep learning-based outpainting with the pow-

erful generation ability of the generative adversarial net-

works. The feature expansion module and content predic-

tion module are proposed to improve the outpainting per-

formance gradually in [33]. Teterwak et al. [31] condi-

tioned the discriminator with pre-trained features from In-

ceptionV3 network, which enables the outpainting image to

match the ground truth in the semantics space. Guo et al. [9]

designed a spiral generative network to conduct the image

extrapolation following the perception fashion of humans.

Thanks to the above methods’ promising efforts, we get

a meaningful inspiration and investigate to utilize the out-

painting technique to construct a novel representation for

the distortion rectification result.

3. Methodology

3.1. Problem Formulation

Given a distorted image Id ∈ R
h×w×3, our rectification

outpainting (ROP) aims to generate a rectified and extrap-

olated image Ire ∈ R
h×w×3. To be specific, the distor-

tion rectification module takes Id as the input and outputs

a rectified image Ir ∈ R
h×w×3 and a filling binary mask

M ∈ R
h×w×1. Then, the outpainting module receives the

Ir and M , generating Ire with the complete content and

regular shape.
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Figure 2. An overview of our rectification outpainting (ROP) framework. In this work, the crucial concept: curvature, can bridge the

relationship between the distortion rectification module and the outpainting module.

3.2. Framework Design

3.2.1 Distortion Rectification Module

Our framework comprises a distortion rectification module

(DRM) and an outpainting module (OM), as shown in Fig.

2. DRM rectifies the distorted image in the form of invagi-

nation and generates a filling mask, which is supervised by

the proposed general geometry rectification.

Detailed Parameter Estimation: Considering that the

general polynomial camera model [15] is widely used in

the approximation of wide-angle lens, we formulate the re-

lationship between the projection manner and distortion pa-

rameters as follows.

r(θ) =

N∑
i=1

kiθ
2i−1, N = 1, 2, 3, · · · , (1)

where r is the distance between the principal point and the

pixels in the image, and θ represents the angle between the

incident ray and the optical axis of wide-angle lens.

To rectify the distorted image, we design a learning

model consisting of a backbone network and a header net-

work. In particular, the backbone network extracts the gen-

eral representation of the distortion context in the form of

the high-level semantic features using stacked convolutional

layers. We pre-train the backbone network on ImageNet

dataset [7] and fine-tune it on our distorted image dataset.

Here, the classical networks such as the VGG and ResNet

(removed the fully connected layers) can be exploited in the

architecture. The header network, composed of fully con-

nected layers, combines the general representation of the

distorted image and constructs a feature vector to estimate

ρ1 

ρ2 

ρ3 

ρ1 

ρ2 

ρ3 

Rectified Image Mask with Curvature  Distortion Distribution Map

Figure 3. Explicit geometry relation between the rectified image

and distortion feature bridged by the curvature.

the distortion parameters. Then, the pixel in the distorted

image can be warped and rectified by the estimated param-

eters. In addition, we rectify a black rectangle using the

same parameters to provide a filling mask.

General Geometry Supervision: Using the above net-

work, we can obtain the distortion parameters and rectify

the distorted image. However, accurately regressing these

parameters is still difficult due to the implicit relationship

between the learning target and the image’s visual feature.

Thus, we present a general geometry supervision to con-

strain the explicit structure of the rectified image.

As illustrated in Fig. 3, we show two examples of rec-

tified images, filling masks marked with osculating circles

and curvatures, and 3D distortion distribution maps (DDM).

Intuitively, the greater the degree of invagination in a recti-

fied image, the greater the curvature of the rectified bound-

ary, and the greater the distortion in its corresponding 3D
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DDM. For a boundary curve f(x) of rectified image or fill-

ing mask, the curvature ρ of point (t, f(t)) can be described

by the radius ros of an osculating circle Oos

ρ =
1

ros
=

|f ′′(t)|
(1 + (f ′(t))2)

3
2

. (2)

3D distortion distribution map denoted as D, shows the

distortion degree and distortion distribution in a distorted

image, which is formed based on the distortion level D [18]:

D(x, y) = {x, y,D(x, y)}, 0 ≤ x ≤ W, 0 ≤ y ≤ H, (3)

where W and H indicate the width and height of distorted

image. Then, the description of D can be given as follows:

D(x, y) =
x′

x
=

y′

y
= k1 + k2l + k3l

2 + · · · , (4)

where (x′, y′) is the coordinate of the corresponding pixel

in rectified image, l represents the Euclidean distance be-

tween the pixel (x, y) in a distorted image and the principal

point. Assuming a pixel (xb, yb) located at the boundary in

a distorted image is rectified to a pixel (x′
b, y

′
b) located at the

curve boundary, then the distortion level D(xb, yb) that rep-

resents the ratio relation of coordinates also indicates the de-

viation degree of this curve boundary, i.e., curvature. Con-

sequently, a mathematical relation can be derived: D ∝ ρ.

From the above equations and Fig. 3, we can con-

struct an intuitive relationship between the structural ap-

pearance ros of the rectified image and the parametric dis-

tortion model D of a distorted image, bridged by the cur-

vature ρ. Thus, the rectification process of a distorted im-

age can be constrained in terms of the global structure. In

the implementation, we define a maximum curvature ρmax

for the curve boundary in the rectified image as another la-

bel. Besides the detailed distortion parameter supervision,

we also teach the learning model to focus on the general

prior knowledge of distortion using the ρmax estimation.

As a result, our distortion rectification module gains a more

comprehensive perception of distortion and achieves more

accurate rectification performance. Most important of all,

the estimated curvature, also implying the area of extrapo-

lated content in the filling mask, effectively guides the sub-

sequent outpainting module.

3.2.2 Outpainting Module

Outpainting module consists of a content extrapolation net-

work, a curvature conditional critic network, and a semantic

conditional critic network. The last two parts are dubbed as

a dual conditional expansion paradigm.

Content Extrapolation Network: The outpainting can be

regarded as an image-to-image transformation task, and

thus we apply the encoder-decoder architecture. Differ-

ent from the classical U-Net [24], our content extrapola-

tion network G has the following specific designs. First, to

capture the long-range spatial information with a large re-

ceptive field, we leverage the kernels of size 7 × 7 in the

first hierarchy of the encoder part. Moreover, the dilated

convolutional group with the dilation rate of 2, 4, 8, 16 is

used at the end of the encoder. Second, due to some coarse-

rectified results, we implement the Coordinate Convolution

(CoordConv) [20] in each convolutional layer of the de-

coder to help recover the accurate distribution. Finally, a di-

lated residual connection (DRC) is designed to replace the

skip connection. Particularly, the DRC module that con-

sists of three residual blocks with increasing dilated rates,

takes various receptive fields of inputs to selectively adopt

the useful content from early layers to the decoder. Thus,

we can relieve the issues such as introducing the blurred

content caused by common skip connection operations and

pre-paint the feature maps from the encoder.

Curvature Conditional Critic: In the adversarial learning

strategy, a critic or discriminator network is often utilized

to judge if the generated result is real or fake, improving

the reasonable approximation of data distribution. For the

outpainting task that hallucinates plausible semantics out-

side the original boundaries, it requires a more discerning

critic than that of simple image-to-image translation tasks.

As mentioned above, our outpainting differs from conven-

tional outpainting, especially in the variable filling regions

and curve boundaries. In Section 3.2.1, we built a intu-

itive relationship between the degree of invagination in the

rectified image and the curvature of the rectified boundary.

The degree of invagination also shows a positive correlation

with the area of the filling region. Thus, we can guide the

network to explicitly perceive the variable filling regions of

rectified images using this prior knowledge. Specifically,

we design a critic network Dc and condition it with the

maximum curvature of the rectified boundary,

min
G

max
Dc

Ladv1(G,Dc) = Ey∼data(y) logD
c((y �M)|ρmax)

+ Ex∼data(x) log (1−Dc((G(x)�M)|ρmax)).

(5)

Recall that ρmax implies the extrapolated area and M in-

dicates the filling mask. We denote the data distributions

as x∼data(x) and y∼data(y), where x and y represent

the rectified image and the ground truth extrapolated result.

During the adversarial learning, we encourage the curvature

conditioned critic to pay more attention to the extrapolated

results with the larger filling region. Thus, the outpainting

module gains an evident cognition regarding the variable

filling regions and produces better expansion images.

Semantic Conditional Critic: Inspired by the conditional

projection adversarial works [21, 31], we then present a se-

mantic conditioned expansion scheme. Unlike the above
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Figure 4. Curve-aware correlation measurement strategy. At the

first two columns, we show different spatially discounted correla-

tions in conventional outpainting and our outpainting. The spatial

correlation (D1) of a filling pixel P can be calculated by the sub-

traction of the radius R and its distance (D2) to center (O), based

on a circle including the curve boundary as an arc.

works, our main aim is to enable an authoritative reference

feature from a pre-trained learning model to the outpainting

critic network Ds. In detail, the backbone network of Incep-

tionV3 model I [30] is added into our adversarial learning

strategy, which is pre-trained on ImageNet [7] and provides

the high-level semantic features of the input image. These

reference features are further combined with the features

extracted by the original convolutional layers Ds
c in critic

network, to discriminate if the image is derived from gener-

ator G or not, using fully connected layers Ds
f :

min
G

max
Ds

Ladv2(G,Ds) = Ey∼data(y) logD
s
f (D

s
c(y) + I(y))

+ Ex∼data(x) log (1−Ds
f (D

s
c(G(x)) + I(G(x))),

(6)

Getting the well-represented reference feature from the pre-

trained model, our outpainting critic network achieves more

comprehensive discrimination, impelling the generator net-

work to hallucinate more realistic extrapolated results.

3.2.3 Curve-Aware Correlation Measurement

Previous outpainting methods reason the generation region

based on a spatially discounted reconstruction. In general,

the pixel far away from the boundary has less relation to

original content. Concretely, we can measure this spatial

correlation with a weighted mask as Mw:

Mw(i, j) = λdis(i,j,B), 0 < λ < 1, (7)

where dis(·) calculates the distance from pixel (i, j) to its

nearest boundary B. In contrast to the straight boundary

case, our outpainting needs to create the content from the

curve boundary, showing a more complicated spatial corre-

lation between the generated content and the original con-

tent. Thus, we design a curve-aware correlation strategy to

measure the spatially discounted reconstruction. As illus-

trated in Fig. 4, we show two examples of how to calculate

the distance between a filling pixel and its adjacent curve

boundary. Supposed that the curve boundary of rectified

image derives from an arc A of a circle O, and then we can

compute the center (xc, yc) and radius R using any three

points (x1, y1), (x2, y2), (x3, y3) on A:

⎧⎪⎨
⎪⎩

xc = (bf − ec)/(bd− ea);
yc = (dc− af)/(bd− ea);

R =

√
(xc − x1)

2
+ (yc − y1)

2
,

(8)

where the above coefficients can be obtained by:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a = 2(x2 − x1);
b = 2(y2 − y1);
c = x2

2 + y22 − x2
1 − y21 ;

d = 2(x3 − x2);
e = 2(y3 − y2);
f = x2

3 + y23 − x2
2 − y22 .

(9)

Subsequently, the distance from a filling pixel (xf , yf ) to

its nearest curve boundary Af can be given by:

dis(xf , yf ,Af ) = ||R−
√

(xf − xc)
2
+ (yf − yc)

2||1.
(10)

With the proposed curve-aware correlation measurement,

we enable the outpainting module to extrapolate the con-

sistent semantics from the curve boundary, achieving more

reasonable and coherent completed reconstruction.

3.3. Training Loss

The overall framework is separately optimized for the

distortion rectification module (DRM) and the outpainting

module (OM). First, DRM is designed based on a parameter

supervision Lps and a curvature supervision Lcs by:

LDRM = Lps + Lcs, (11)

where we use the smooth L1 [22] to calculate the value

of Lps and Lcs, which can alleviate the exploding gradient

problem during the training process.

Subsequently, OM extrapolates new contents with the

dual conditional expansion and curve-aware correlation

measurement, of which the parameters can be learned by

LOM = Ldc + Lca + λadv1Ladv1 + λadv2Ladv2, (12)

where Ladv1 and Ladv2 are introduced in Eq. 5 and 6. λadv1

and λadv1 are the balance factors. Ldc computes the differ-

ence between the outpainting image Îrop and ground truth

Irop on the feature maps φi,j , obtained from the j-th convo-

lution before the i-th maxpooling layer in the VGG19 [28]:

Ldc =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

||φi,j(Irop)x,y − φi,j(Îrop)x,y||2.

(13)
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Figure 5. Visual comparisons of the outpainting methods: Bound-

less [31] and SRN [33] and our curve-aware outpainting.

The Lca focuses on the optimization of extrapolated con-

tents. It contains a curve-aware correlation measurement to

weigh the spatially discounted reconstruction.

Lca = Ldc(Irop �M, Îrop �M)�Mw, (14)

where Mw can be calculated by Eq. 7 and Eq. 10.

4. Experiment
4.1. Implementation Details

To train our framework, we establish a standard dataset

using original images from MS-COCO [19]. To be spe-

cific, our dataset consists of the distorted image, rectified

image, filling mask, maximum curvature of mask boundary,

and extrapolated image. Considering the general polyno-

mial camera model [15] is widely used for the approxima-

tion of wide-angle lens, we construct our dataset based on

this model. The transformation of coordinates is described

in Eq. 1. Following previous distortion rectification meth-

ods [39, 18, 17], we leverage the fourth order polynomial

model to synthesize the distorted image, which is sufficient

for the approximation of most application scenarios.

For the outpainting module, we add the instance nor-

malization [32] after each convolutional layer, except for

the first layer of the generator network, because it can re-

duce the artifacts in generated results [31]. During training,

Adam optimizer with learning rates 5× 10−4 and 10−4 are

adopted for the distortion rectification module, the gener-

ator network and critic network in the outpainting module.

The batch size of training is set to be 4. The input image and

output results are linearly clipped within the range [−1, 1].
For the hyper-parameters of training loss, We empirically

set λadv1 = 0.04 and λadv2 = 0.02.

4.2. Image Outpainting Results

We found that previous outpainting methods are hard to

be applied in the case of rectified shapes. For example,

NSIO [37] does not support the mask-based outpainting.

Boundless [31] and SRN [33] require the filling region to be

a rectangle. These constraints limit the practical application

of the outpainting technique, leading to inferior and seamed

extrapolation results as shown in Fig. 5. By contrast, some

methods [13, 40, 41, 38, 12, 44] in the inpainting region can

complete the image with irregular masks flexibly. Thus, for

a fair comparison, we mainly compare our approach with

these inpainting methods.

Quantitative Evaluation: Following previous methods, we

use three metrics to evaluate the comparison methods: the

peak signal-to-noise ratio (PSNR), the structural similar-

ity index (SSIM), and Fréchet Inception Distance (FID)

that describes the perceptual quality of the generated re-

sults [11]. We compare our approach with the GL [13],

DeepFill v1 (DF v1) [40], DeepFill v2 (DF v2) [41], RK

[12], and HiFill [38]. All the methods are used to conduct

the outpainting on the test dataset including 1,000 images.

Then we compute three evaluation metrics using the dif-

ference between each extrapolated image and the ground

truth image. For a comprehensive evaluation, we split the

test dataset into three categories: easy, moderate, and hard,

based on the area of the blank region in the rectified image.

As listed in Table 1, our approach outperforms the compar-

ison methods in all evaluation metrics.

Qualitative Evaluation: In Fig. 6, we show the re-

sults derived from compared methods and our approach.

Concretely, the results generated by DeepFill v1 [40], and

DeepFill v2 [41] suffer from poor extrapolated contents

with unrelated objects and noises. Although more visu-

ally pleasing results are produced by RK [12], HiFill [38],

and ProFill [44], the fracture of semantics occurs especially

in the boundary, as the spatial discounted correlation in-

creases. Instead, our approach achieves the best extrapo-

lation performance regarding the visual appearance and se-

mantic consistency, demonstrating that the designed dual

conditional expansion and curve-aware correlation mea-

surement meet the special painting paradigm in ROP.

4.3. Distortion Rectification Results

Although our main aim is to extrapolate the rectified im-

age, we also evaluate our rectification algorithm with the

state-of-the-art methods. From the Fig. 7, we can ob-

serve that compared with Li [16] and DeepCalib [5], our

rectification results yield significant improvements on both

PSNR and SSIM, since our approach guides the learning

model to build a general geometry perception on the dis-

torted image. Instead, such prior knowledge is ignored in

most previous distortion rectification methods. In addition,

we achieve a competitive performance with Liao [18], while

this method is more complicated and it requires three types

of networks to conduct the rectification. In terms of the

visual appearance, our method performs more robust than
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Table 1. Quantitative evaluation of the extrapolation results obtained by different methods. Red text indicates the best and blue text

indicates the second-best performing method.

PSNR ↑ SSIM ↑ FID ↓ PSNR ↑ SSIM ↑ FID ↓ PSNR ↑ SSIM ↑ FID ↓
Comparison Methods Easy Moderate Hard
GL (ToG’17) [13] 13.52 0.37 62.15 13.06 0.35 88.41 11.63 0.26 100.78

DeepFill v1 (CVPR’18) [40] 16.93 0.59 49.33 16.21 0.52 80.92 14.03 0.35 90.29

DeepFill v2 (ICCV’19) [41] 18.39 0.64 41.93 17.32 0.62 71.41 15.02 0.41 82.16

RK (ECCV’20) [12] 20.43 0.68 37.85 17.51 0.64 62.22 16.13 0.45 67.31

HiFill (CVPR’20) [38] 20.82 0.68 32.59 18.52 0.58 64.78 17.50 0.47 65.92

Ours 23.40 0.74 21.48 22.08 0.71 51.88 19.41 0.61 53.19

Rectified ImageRectified Image DeepFill_v1 DeepFill_v2 RK HiFill OursDeepFill_v1 DeepFill_v2 RK HiFill OursProFill ProFill

Figure 6. Qualitative comparison on the test dataset. For each case, we show the rectified image, and the extrapolated results derived by

DeepFill v1 [40], DeepFill v2 [41], RK [12], HiFill [38], ProFill [44] and our approach, from left to right.

traditional feature-based method [1] in real-world setting,

in which the distorted images are captured by the popu-

lar wide-angle lens such as Opteka 6.5mm Lens, iZugar

MKX22 Lens, and GoPro.

4.4. Why Curvature Guidance Is Necessary

In our method, the curvature of the boundary in the rec-

tified image plays a vital role. For distortion rectification,

besides the detailed supervision provided by the distortion

parameters, the general supervision introduced by the cur-

vature teaches neural networks to learn the global structure

of the rectified image. In addition, the curvature of a bound-

ary in the rectified image also implies the area of the filling

region, which can guide the critic network to judge the dif-

ferent extrapolation results. For deep analysis, we explore

the importance of curvature guidance in ROP as follows.

In Fig. 8, we show the performance improvements sup-

ported by the curvature guidance in the distortion rectifica-

tion module (top) and outpainting module (bottom). Two

prevalent backbone networks, VGG16 and ResNet50 are

employed respectively in the distortion rectification mod-

ule, to eliminate the impact of network architecture on per-

formance. Obviously, the error of distortion estimation

gains significant decreases with the curvature guidance in

both two backbone cases, while the module performs poorly

and tends to the model overfitting without the curvature
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Figure 7. Distortion rectification results. We show the quantitative

evaluation with learning-based methods (top) and visual compari-

son with traditional feature-based methods (bottom).

guidance. For the outpainting module, the learning process

is boosted by the curvature guidance and achieves smaller

content extrapolation errors. We can conclude that the cur-
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Figure 8. Improvements provided by the curvature guidance (CG)

in distortion rectification module (top) and outpainting module

(bottom). For visual comparisons, we show the input, ground

truth, generated results, and generated results with curvature guid-

ance. The arrows highlight the unsatisfactory parts.

Rectified Image Baseline + DRC + DC + CA

Figure 9. Visual ablation comparison on our outpainting approach.

The arrows highlight the artifacts.

vature guidance bridges the gap between the implicit learn-

ing target and explicit visual representation in ROP.

4.5. Ablation Study

To validate the effectiveness of different components in

our approach, we conduct an ablation study as follows.

First, we implement the learning model as a baseline with-

out the dilated residual connection (DRC), dual conditional

expansion mechanism (DC), and curve-aware outpainting

strategy (CA). Then, we gradually add these components

to show different extrapolation performance. The complete

approach with the above components achieves the best vi-

sual appearance as depicted in Fig. 9. Using the dilated

residual connection, the burdens of the decoder network

can be relieved since the introduced feature maps from the

encoder network are pre-painted under multiple receptive

fields. With the dual conditional expansion, the model can

generate smoother contents and details. Furthermore, the

curve-aware correlation measurement enables our model to

harmonize color and semantics consistency, constructing a

realistic and seamless scene.

Figure 10. Object detection and semantic segmentation results of

the rectified images (top) and the extrapolated images (bottom).

The arrows highlight the missing or wrong detection parts.

4.6. Benefits for Scene Reasoning

The proposed ROP method constructs a nearly perfect

representation for rectification results and extrapolates the

original scene with wider FoV. Thus, our method can help

downstream vision tasks such as object detection and se-

mantic segmentation, which is crucial to scene analysis and

motion prediction. As shown in Fig. 10, the detection and

segmentation results are derived from Mask R-CNN [10].

We can notice some missing and wrong detection parts in

the rectified image (top), especially in the boundary, since

the outer objects cannot be captured completely within a

fixed FoV. Moreover, the curve boundary of the rectified

image would mislead the scene understanding. For exam-

ple, the blank region surrounded by the curve boundary is

recognized as a bed at the third and fourth columns. By con-

trast, our approach can exhibit the complete scene in a reg-

ular construction and create semantically coherent objects

beyond the original FoV. Consequently, the ROP boosts the

more accurate performance of scene perception, improving

the integrity of the object in image boundary.

5. Conclusion

In this paper, we rethink the traditional representation of

distortion rectification and present a rectification outpaint-

ing (ROP) method. Given a distorted image, ROP aims

to recover the geometric distribution of the realistic scene

and construct the results with complete content and regu-

lar shape. Moreover, we can obtain a wider field-of-view

scene beyond the original wide-angle lens, which extends

an appealing and promising application for video surveil-

lance and autonomous driving. To address the specific chal-

lenges, we propose a parametric framework with a gen-

eral geometry supervision and a dual conditional expansion

strategy. Considering the spatially discounted correlation,

a curve-aware correlation measurement is designed to en-

force the local consistency of extrapolated details. In future

work, we plan to explore the outpainting scheme based on

the rectangle rectification construction.
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