
Deep 3D Mask Volume for View Synthesis of Dynamic Scenes

Kai-En Lin1 Lei Xiao2 Feng Liu2 Guowei Yang1 Ravi Ramamoorthi1

1 University of California, San Diego 2 Facebook Reality Labs

Abstract

Image view synthesis has seen great success in recon-
structing photorealistic visuals, thanks to deep learning and
various novel representations. The next key step in immer-
sive virtual experiences is view synthesis of dynamic scenes.
However, several challenges exist due to the lack of high-
quality training datasets, and the additional time dimen-
sion for videos of dynamic scenes. To address this issue,
we introduce a multi-view video dataset, captured with a
custom 10-camera rig in 120FPS. The dataset contains 96
high-quality scenes showing various visual effects and hu-
man interactions in outdoor scenes. We develop a new al-
gorithm, Deep 3D Mask Volume, which enables temporally-
stable view extrapolation from binocular videos of dynamic
scenes, captured by static cameras. Our algorithm ad-
dresses the temporal inconsistency of disocclusions by iden-
tifying the error-prone areas with a 3D mask volume, and
replaces them with static background observed throughout
the video. Our method enables manipulation in 3D space as
opposed to simple 2D masks, We demonstrate better tempo-
ral stability than frame-by-frame static view synthesis meth-
ods, or those that use 2D masks. The resulting view synthe-
sis videos show minimal flickering artifacts and allow for
larger translational movements.

1. Introduction

Recent advances in view synthesis have shown promis-
ing results in creating immersive virtual experiences from
images. Nonetheless, in order to reconstruct compelling
and intimate interaction with the virtual scene, the ability
to incorporate temporal information is much needed. In this
paper, we study a specific setup where the input videos are
from static, binocular cameras and novel views are mostly
extrapolated from the input videos, similar to the case in
StereoMag[48]. We believe that this case is useful as dual-
and multi-camera smartphones are gaining traction and it
could also prove to be interesting for 3D teleconferencing,
surveillance or playback on virtual reality headsets. More-
over, we can acquire the dataset from a static camera rig
as shown in Fig.1. Although we can apply state-of-the-art
image view synthesis algorithms [48, 41, 28, 37] on each in-
dividual video frame, the results lack temporal consistency
and often show flickering artifacts. The issues mostly come

from the unseen occluded regions as the algorithm predicts
them on a per-frame basis. The resulting estimations are
not consistent across the time dimension and it causes some
regions to become unstable when shown in a video.

In this paper, we address the temporal inconsistency
when extrapolating views by exploiting the static back-
ground information across time. To this end, we employ
a 3D mask volume, which allows manipulation in 3D space
as opposed to a 2D mask, to reason about moving objects in
the scene and reuse static background observations across
the video. As shown in Fig.4, we first promote the instan-
taneous and background inputs into two sets of multiplane
images (MPI)[48] via an MPI network. Then, we warp the
same set of input images to create a temporal plane sweep
volume, providing information about the 3D structure of
the scene. The mask network converts this volume to a 3D
mask volume which allows us to blend between the two sets
of MPIs. Finally, the blended MPI volume can render novel
views with minimal flickering artifacts.

To train this network, we also introduce a new multi-
view video dataset to address the lack of publicly available
data. We build a custom camera rig comprised of 10 ac-
tion cameras and capture high-quality 120FPS videos with
the static rig (see Fig.1). Our dataset contains 96 dynamic
scenes of various outdoor environments and human interac-
tions. We show that the proposed method generates tem-
porally stable results against previous state-of-the-art meth-
ods, while only using two input views.

Our contributions can be summarized as:

• a multi-view video dataset composed of 96 dynamic
scenes (Sec. 3);

• a novel 3D volumetric mask able to segment dy-
namic objects from static background in 3D, produc-
ing higher-quality and temporally stable results than
state-of-the-art methods (Sec. 4.2).

2. Related Work
Our goal is to achieve temporally stable view synthesis

on dynamic scenes. We are inspired by several previous
methods in view synthesis and space-time synthesis.

2.1. View synthesis
View synthesis is a complicated problem which has be-

come a popular field of research in computer vision and
graphics. Earlier lines of work utilize dense sampling from

1749

0 1 2

7 8 9

3 4 5 6

Input View Evalua

Camera 4

Camera 5

Novel View at Camera 0

Baseline

Ours

Gr und Truth

Figure 1. Our custom camera rig. Top left figure shows the configuration we use for evaluation in Sec. 5. We show the input stereo image
sequences from camera 4 and camera 5 in the middle. Rightmost column shows the crops of rendered novel view at camera 0. Artifacts
appear when the novel view is translated by a larger distance. We use conventional MPI method [28] as our baseline algorithm. Note how
the area on top of the person’s head is distorted and shows “stack of cards” artifacts. This type of artifact flickers in a dynamic video as the
network hallucinates the disocclusion per-frame.

the scene to create light fields [14, 20]. Image-based render-
ing techniques [7, 10] exploit proxy geometry of the scene
to produce novel view renderings. Later extensions on this
topic introduce better modeling of the scene structure [36]
and hand-crafted heuristics [9, 33]. As deep learning be-
came dominant, learning-based methods [17, 12, 19, 45, 30]
have shown promising results. Recently, a class of re-
search works focuses on combining novel representations
[48, 29, 28, 41, 11, 18, 25, 39, 31, 23] with a differen-
tiable rendering pipeline to produce high-quality results.
Another exciting advance is neural radiance fields (NeRF)
[29], which encodes the 3D scene structure in a compact
continuous 5D volumetric function. Although NeRF has
shown promising view synthesis results, it has to overfit
to the given scene with enough samples (10 or more), re-
quiring time-consuming per-scene training. Rendering time
could take up to 30s for one image, whereas our pipeline
allows inference and rendering in less than 2s without ded-
icated optimization, using only binocular input views.

Instead, in this paper we focus on a specific layered rep-
resentation, multiplane images (MPI) [42, 48, 41, 28, 6],
as it provides good generalizability across various scenes
and efficiency capable of real-time rendering. Our proposed
method directly tackles the temporal instability introduced
in MPIs when the disoccluded areas lead to different esti-
mations across time.

2.2. Space-time synthesis

Space-time synthesis is a more complicated problem
since it not only involves movement of the novel viewpoint
in space, but also incorporates differences of time. A body
of work covers appearance changes such as relighting while
changing views [46, 45, 4, 3, 27]. However, these methods
focus on the lighting change with respect to a static scene,
treating dynamic objects in the scene as outliers. On the
other hand, some methods directly target dynamic scenes
[6, 1, 2, 47, 49]. While our method utilizes MPIs simi-

lar to Broxton et al.[6], they employ dense sampling of 46
cameras to reconstruct light fields of the viewing volume,
essentially interpolating between cameras. Our method fo-
cuses on the stereo case similar to StereoMag[48], target-
ing extrapolation from stereo inputs like dual-camera smart-
phones. In addition, unlike depth-based methods [1, 47], we
do not require any explicit depth maps to render novel view-
points. As depth-based methods often yield flickering and
require hole-filling, we instead use a representation more
suitable for rendering. Another issue that these methods
do not address is the lack of generalizability. Bansal et al.
[1] is trained on limited data which could make the learned
network overfit to a small number of scenes. Moreover,
while Yoon et al. [47] uses a pretrained network to ensure
generalizability on unseen scenes, it still requires human-
generated masks for foreground and background separation.
We capture various dynamic scenes with human interac-
tions to train our network and ensure that it is generalizable
across different unseen scenes. Also, our network utilizes
the background information extracted from video and uses
it to directly segment the foreground and background in 3D
space without any human input.

3. Dataset
High-quality video datasets are crucial for learning-

based novel-view video synthesis algorithms. The ideal
datasets would contain a diversity of scenes, captured at
multiple synchronized views. In this work we introduce
a novel multi-view video datasets. We discuss the limita-
tions of existing datasets compared to our dataset in Sec.
3.1. We describe our data capture and generation process
in Sec. 3.2. Finally, we discuss the statistics and advanced
properties of our dataset in Sec. 3.3.

3.1. Multi-view video dataset
As shown in Table 1, we evaluate several properties

which are important to train a generalized view synthesis

1750

Dataset Scene count Rigid rig Large disparity Views Dynamic Public Remarks

Real Forward-Facing [28] 65 � � 25 � � Loosely gridlike formation
Spaces [11] 100 � � 16 � � Strictly gridlike formation
Immersive LF Video [6] 130 � � 46 � � Spherical formation
Dynamic Scene [47] 8 � � 12 � � Few temporal frames
Single Image LF [21] ∼2000 � � 196 � � Small baseline light fields
RealEstate10K [48] ∼10000 � � 1 � � Static scenes
Open4D [1] 6 � � 15 � � Free-viewpoint capture
MannequinChallenge [22] ∼2000 � � 1 � � Mostly static scenes
X-Fields [2] 8 � � 5 � � Few temporal frames
KITTI [26] 400 � � 2 � � Binocular setup on cars

Ours 96 � � 10 � � Publicly released

Table 1. Comparison of different multi-view datasets.

Figure 2. Digital clock and the
randomly moving QR code pat-
tern used to perform synchro-
nization. We have two ways to
do synchronization: (1) match-
ing the timestamp; (2) align-
ing the QR code location in all
views. We use these methods
to ensure the synchronization is
accurate enough.

network. Specifically, a rigid camera rig is preferred as it
can provide good pose priors and ensure the accuracy of
the estimated camera poses. On the contrary, unstructured
captures like Real Forward-Facing [28] and Open4D [1] do
not use pose priors and utilize structure from motion, which
could produce varying accuracy depending on scene geom-
etry and the texture presented. In addition, rigid camera rigs
allow for capture of dynamic scenes with multiple simulta-
neous camera views. On account of the above reasons, our
dataset is captured with a custom camera rig that is rigid
and robust enough to offer good pose priors.

Number of views is also an important factor for a multi-
view dataset since different combinations of input and target
camera pairs provide diversity in baselines and camera mo-
tions. X-Fields [2] and KITTI [26] provide limited views
and camera motions and thus are not as useful for video
view synthesis tasks. Our dataset offers 10 different camera
views in a gridlike formation (see Fig. 1). For our binocular
view synthesis task, we choose 2 views out of 10 and 1 from
the rest to construct a training pair.

The most important feature is to have enough temporal
frames and dynamic movements for training. Most datasets
fail at this part as they target the image view synthesis task
instead of a video one. Although Dynamic Scene Dataset
presented by Yoon et al.[47] targets dynamic scenes, it uses
frame skips to keep salient movements. Thus, the move-
ments shown in the dataset are not smooth and fail to pro-
vide enough training samples. To address this issue, our
dataset is captured in 120 FPS and synchronized as a post-
process (see Sec. 3.2), making it easy to perform and eval-
uate view synthesis at different framerates.

One dataset that targets the purpose of video view syn-

Occlusion Types (a) (b) (c) (d) Total videos
Count 90 96 42 19 96

Table 2. Number of videos that contain each occlusion type as de-
scribed in Sec. 3.3. Note that most scenes typically contain multi-
ple types of occlusion.

thesis is the Immersive Light Field Video dataset pro-
posed by Broxton et al.[6], which contains 46 camera
views and 130 different dynamic scenes. However, the full
dataset is not publicly available to the community. Our full
dataset can be found at http://cseweb.ucsd.edu/
%7eviscomp/projects/ICCV21Deep/

3.2. Dataset generation
Our video dataset is captured with a custom camera rig

that consists of 10 GoPro Hero 7 Black action cameras as
shown in Fig. 1. The horizontal baseline between neigh-
bor cameras is approximately 10 cm and the vertical dis-
tance between rows is around 14 cm. We captured 96 out-
door videos in 120 FPS, with the camera rig being static
for each video. As GoPros only allow fisheye mode for
high FPS captures, we calibrate the cameras with a 17x14
checkerboard pattern (squares have side lengths of 40mm)
and undistort the videos using a pinhole camera model [13]
implemented in OpenCV [5]. For camera extrinsics, we
choose the first frame from all views as inputs to COLMAP
[35, 34], which then does feature extraction, feature match-
ing, and sparse reconstruction. The reconstructed camera
poses are assumed to be fixed for the duration of each video.
In addition, to achieve synchronization, we display a digital
clock with randomly appearing QR code patterns (see Fig.
2) on a high refresh rate screen that can be seen by all cam-
eras at the same time. Then, we manually edit and align
the multi-view videos according to the digital clock and QR
code pattern.

3.3. Dataset statistics
Our videos are mostly around 1 to 2 minutes long and all

videos are shot in 120 FPS. We cover different scenes to en-
sure that the surface reflectance variety is high enough. For
example, in Fig.3 we show that in our dataset we cover dif-
ferent buildings, furniture, foliage and specularity effects.

1751

Walking Jumping Sitting

Dynamic Occlusion Static Occlusion Two Dynamic Subjects

Thin Structures

Specularity

Figure 3. A selection of still frames from our dataset. We captured
various dynamic scenes with human motions, including walking,
running, jumping and sitting down. Note that cameras remain
static for the whole duration of the capture.

Another important aspect of our dataset is the inclusion
of different human motions, including slower motions like
walking, sitting down and faster motions, such as running,
jumping and arms waving. We now discuss four possible
types of occlusion interactions and show the numbers of
their occurrences in Table 2.

(a) Static occluder and static background. Most view
synthesis methods target this case as this is one of the most
common cases. We desribe it as a static occluder in the
scene blocking the line-of-sight from the cameras to the
background scene. For instance, the table in the sitting
scene shown in Fig. 3 occludes the areas behind. Back-
ground information can only be acquired from the views
with direct line-of-sight. As such, it is difficult to re-
cover the unseen regions without prior knowledge of the
scene. However, temporal consistency in these areas is eas-
ily achievable because inputs remain relatively unchanged
throughout the video. Hallucination of the disoccluded ar-
eas can also remain the same for this case.

(b) Dynamic occluder and static background. Another
type of event happens when a dynamic object is moving
across the scene. For example, when a person is walking
through the scene, the camera has line-of-sight on the back-
ground behind the person at some point in the video. In
this case, it is relatively easy to acquire static background
information as the occluder does not block the line-of-sight
in all video frames. Combining information from multi-
ple frames throughout the video provides an accurate ren-
dering of what is behind the dynamic occluder. Temporal
consistency in this case can also be maintained by substi-
tuting the static background for the dynamically-occluded
regions. In other words, we can perform hole-filling based
on the observations from other video frames. Our proposed
method takes advantage of this prior knowledge to gener-
ate temporally-stable view synthesis results, as opposed to
previous methods.

(c) Static occluder and dynamic background. This case
happens when an object moves behind a static occluder and
thus the camera does not have full visuals on it. For in-
stance, a person walks behind a traffic sign or a wall. In
the traffic sign case, as it is only a short-term occlusion, the
person’s appearance can be interpolated between different
frames. However, in the case of a larger wall, this becomes

difficult to solve as extrapolating the movement is compli-
cated and the ambiguity could lead to different outcomes.
In general, it is difficult to accurately predict the trajectory
of the occluded object without assuming it is moving at con-
stant velocity. For temporal consistency, the movement of
dynamic objects can lead to instability of the novel view
prediction. Our method learns to detect the dynamic move-
ments and treat the static part of the scene as (a) such that
flickering artifacts are kept at a minimal level.

(d) Dynamic occluder and dynamic background. The
last case happens when the occluder and the background
object are both moving or the background appearance is
changing. For instance, this can happen when two people
are walking in the opposite direction parallel to the cam-
era’s image plane. Similar to (c), how the occluded object
is moving remains ambiguous and hard to resolve deter-
ministically. Although we do not have a clear idea of the
occluded parts, we can still ensure it is temporally stable
when shown. We can reduce this case to (b) with the ambi-
guity that the occluded object can move anywhere. And as
a result, the occluded regions look more or less similar to
the static background.

Our dataset contains diverse occlusion interactions and
we show results in Sec.5.2 and provide an analysis in Fig.6.

4. Deep 3D Mask Volume
Our goal is to synthesize temporally consistent novel

view videos given stereo video inputs. Consequently, we
build our algorithm upon prior work on multiplane images
[48, 28] and propose a novel mask volume structure to fully
utilize the temporal background information and the layered
representation. In this section, we start with a brief review
of the multiplane images in Sec. 4.1. Then we describe our
3D mask volume in Sec. 4.2. Finally we discuss our loss
function design in Sec. 4.3. Please refer to Fig.4 for an
overview of our algorithm pipeline.

4.1. Multiplane images
Our approach takes inspiration from recent advance-

ments in multiplane image representation [43, 48]. Mul-
tiplane images (MPI) are a layered representation of the 3D
scene. They consist of D layers of RGBα images, repre-
senting the viewing frustum from the perspective of a virtual
reference camera. The planes partition the viewing frustum
according to equally-spaced disparity (inverse depth) values
d0, d1, ..., dD−1. Each layer of the MPI encodes color C
and transparency information α at a specified plane depth
d. We denote the MPI layer at disparity d as a tuple of
(Cd, αd). To construct such a volume, we warp input views
to the reference camera position to construct a plane sweep
volume (PSV). The PSV is then used as the input to a 3D
CNN similar to the one used by Mildenhall et al.[28] and it
generates the corresponding MPI volume. To render a novel
viewpoint j from camera i, the MPI layers are warped using
planar homography as follows:

Wd
i→j(Cd, αd), (1)

1752

Left View Right View

Background

Background MPI

Instantaneous MPI

Mask Network 3D Mask Volume

×MPI Network

Dynamic MPI

Static MPI

Blended MPI

M
M

V

×1 VP
P

P
Figure 4. Overview of our pipeline. Given binocular input videos, our MPI network promotes the 2D multiview images to two 3D MPI
representations; one encodes the instantaneous information and the other encodes the background information. The mask network produces
a 3D mask volume V to modulate the MPIs and blend them together, producing the final output. Please see Sec. 4.2 for more details.

where W is the warping operator. The warped MPIs are
then composited with the over operation. To be more spe-
cific, we calculate the per-pixel transmittance t from the al-
pha value at location (x, y) on plane d by

t(x, y, d) = α(x, y, d)
∏
d′>d

[1− α(x, y, d′)]. (2)

The final rendering at each pixel Cfinal is computed as

Cfinal(x, y) =
∑
d

C(x, y, d)α(x, y, d)
∏
d′>d

[1− α(x, y, d′)].

(3)
These computations are parallelizable and their efficiency
during rendering makes the MPI a good representation for
fast view synthesis.

One observation of MPIs is that the unseen parts in the
volume are often merely repeated texture of the foreground
objects [41]. This happens when the input camera base-
line is not large enough and the resulting PSV cannot pro-
vide further information about the background. In addition,
these areas typically present different estimations between
frames. Therefore, the unseen areas produce visible arti-
facts, especially in video view synthesis (see Fig. 1). On
the other hand, visible parts usually provide temporally sta-
ble results as can be seen in Broxton et al. [6]

4.2. 3D mask volume generation
From Sec. 4.1, we observe that most artifacts are intro-

duced by the disocclusion of moving objects. In order to
address this issue, we seek to find a 3D mask volume that
identifies the dynamic components and removes the flick-
ering artifacts behind them accordingly. To be more spe-
cific, given a pair of stereo image sequences of length n,
{IL0 , IL1 , ..., ILn−1} and {IR0 , IR1 , ..., IRn−1}, we wish to derive
a 3D mask V(x, y, d), such that

V(x, y, d) =

{
1, if I(x, y) �= Î(x, y), d > D(x, y)

0, otherwise
, (4)

where I is the instantaneous frame, Î denotes the back-
ground image, and D is the scene disparity observed by the
camera. We drop the frame subscript as a shorthand for
instantaneous frame in the following discussion. In addi-
tion, we represent the instantaneous MPI of the scene as

M(x, y, d), and the background MPI as M̂(x, y, d).
The main purpose of the 3D mask volume V(x, y, d)

is to partition the scene M(x, y, d) into two parts: static
and dynamic. The static portion of the MPI does not
change for the whole video duration, and thus M(x, y, d) =

M̂(x, y, d),when V(x, y, d) = 0. The synthesized novel
view of these parts is temporally stable and requires no fur-
ther modification to the algorithm. On the contrary, the dy-
namic objects (V(x, y, d) = 1) could move in different di-
rections. The disoccluded areas, given mathematically by

M(x, y, d) if I(x, y) �= Î(x, y), d > D(x, y), often change
with them, producing “stack of card” artifacts and flicker-
ing when viewed from another angle (see Fig. 1). However

these areas in fact usually resemble the background Î. With
this knowledge, a clear separation between the static and
dynamic scene components allows us to identify the disoc-
clusion and minimize the temporal inconsistency by

M(x, y, d)←− M̂(x, y, d) if I(x, y) �= Î(x, y), d < D(x, y).
(5)

Essentially, we are using the temporally-stable static back-
ground to replace the unknown disoccluded areas. An illus-
tration of the mask is given in Fig. 4.

In order to perform the operation in Eq.5, our network
is composed of two networks: MPI network generates 2
layered representations of the 3D scene, namely M(x, y, d)

and M̂(x, y, d); Mask network produces the 3D mask vol-
ume V(x, y, d) satisfying Eq.4. We show each network in
Fig.4 and discuss them in details as follows:

MPI network. It is necessary to acquire 3D informa-
tion from both the instantaneous frame and throughout the
whole video, so we can then obtain the needed information
behind the dynamic occluder. To this end, we first apply a

1753

median filter A on the image sequences

Î = A({I0, I1, ..., In−1}). (6)

It is applied to both views to generate the corresponding
background images.

Then, we can inversely warp IR and Î
R

to the left camera
and construct a PSV. The PSV from the instantaneous frame
is generated as

P = {IL,Wd0

R→L(I
R),Wd1

R→L(I
R), ...,WdD−1

R→L(I
R)}. (7)

It is then used as an input to a 3D CNNFθ to produce the in-
stantaneous MPI, M = Fθ(P). Similarly, we construct the

background MPI, M̂, using another PSV, P̂, generated from

Î
L

and Î
R

. The two MPIs, M and M̂, now contain the infor-
mation of the dynamic occluder and the static background.

Mask network. We utilize another 3D CNN Gθ to rea-
son about the relationship between the MPIs and generate
a mask volume V to satisfy Eq.4. Inspired by background
matting [24] on 2D images, our mask network takes a simi-
lar approach but in 3D space. From Eq.6, we define a tem-
poral plane sweep volume (TPSV) as follows

P̃ = {IL,Wd0

R→L(I
R), ...,WdD−1

R→L(I
R),

ÎL,Wd0

R→L(Î
R
), ...,WdD−1

R→L(Î
R
)}. (8)

The TPSV helps the network to distinguish the
dynamically-occluded parts in the 3D scene. Then,
we acquire the 3D mask volume by V = Gθ(P̃).

Finally, we can calculate the final MPI Mo by:

Mo(x, y, d) = M(x, y, d)V(x, y, d)+M̂(x, y, d)(1−V(x, y, d)),
(9)

for all (x, y, d). We define a shorthand version as

Mo = M� V + M̂� (1− V), (10)

where � means element-wise multiplication. Mo achieves
Eq.5 as our learnable mask volume V satisfies Eq.4 and we
can then render the output image Io using planar homogra-
phy and the over composite operation described in Sec. 4.1.
Please refer to Fig.4 for illustrations.

One major difference between using a 3D mask volume
V(x, y, d) and a 2D mask V′(x, y) is that the former is able
to segment out the dynamic objects in the 3D space, namely
Eq.4 and subsequently do Eq.5. In Fig.4, notice that the
mask volume only contains the dynamic object (jumping
person in this case). In contrast, a 2D mask V′(x, y) does
not vary with respect to the disparity d, making it impossible
to manipulate the areas behind dynamic objects.

4.3. Loss function
We implement our loss function as a rendering loss, simi-

lar to previous work on MPIs [48, 41, 28]. For the rendering
loss, we use view synthesis as the supervision task and let

the algorithm render a held-out view from the final MPI Mo

(see Fig.4). The rendering loss is as follows:

L =
||FV GG(Io)−FV GG(Igt)||1

N
, (11)

where FV GG is the VGG-19 network [38], N is the number
of elements in the image Io, and Igt is the held-out ground
truth view. This perceptual loss is similar to the implemen-
tation of Chen et al. [8]. We also considered a mask super-
vision loss Lm and a mask sparsity constraint Ls. However,
we did not find them to be useful for temporal consistency.
Ablation studies on these two losses can be found later in
Table 4, and details are in the supplementary materials.

5. Results
In this section, we discuss implementation details for our

network in Sec. 5.1. Then we show comparisons to other
methods on our dataset in Sec. 5.2. Finally we discuss lim-
itations of our current setup and method in Sec. 5.3. Result
videos can be found in the supplementary materials.

5.1. Implementation details
Due to GPU memory constraints, we choose a two-step

training scheme to train our network. We first train the MPI
network on RealEstate10K dataset [48], and then train only
the mask network on our own video dataset. This train-
ing scheme can keep the memory usage within a reasonable
range and the speed fast enough.

The MPI generation network is trained by predicting a
held-out novel view and applying the rendering loss L as
supervision. This stage is trained for 800K steps. After
the previous pretraining stage, we freeze the weights of the
MPI network and train only the mask network using the
loss L. The network takes 2 random views from the 10
views as input and we randomly choose a target camera po-
sition from the rest of the views at each step. We select 86
out of the 96 scenes as our training dataset and images are
rescaled to 640×360. This second stage is trained for 100K
steps. The learning rate is set to 5e − 4 for both stages.
Our training pipeline is implemented in PyTorch[32] and
training takes around 5 days on a single RTX 2080Ti GPU.
With resolution in 640×360, inferencing Mo using our full
pipeline takes around 1.75s, while rendering takes another
0.28s. Note that the rendering pipeline is implemented in
PyTorch without further optimization. In practice, it could
be significantly faster with OpenGL or other rasterizer.

5.2. Comparisons
For comparison, we choose 7 unseen videos from the

dataset and subdivide them into 14 clips, focusing on salient
movements in the scene. We ran all methods on the clips
with camera 4 and 5 as input and others as the target output
(see Fig.1). Error metrics are calculated between the output
and the ground truth images. We compare with three base-
line approaches: (1) MPI/LLFF is our adaptation of Milden-
hall et al.[28] to work with only two input views and differ-
ent camera intrinsics. It processes the stereo input videos

1754

Our Novel View Rendering MPI/LLFF 2D Mask Ours Ground Truth

Figure 5. We show visual results on 4 different scenes. These scenes include both fast and slow movements, such as waving, jumping and
walking. The novel viewpoint is an extrapolation from the input camera views. Our proposed method produces results with fewer artifacts
and more temporal stability.

Methods Mask STRRED↓ PSNR↑ SSIM↑
MPI/LLFF [28] No Mask 0.2917 25.52 0.8227

2D Mask 2D 0.2892 25.50 0.8242
IBRNet (2-view) [44] No Mask 2.2606 21.49 0.6713

Ours 3D 0.1683 26.22 0.8390

Table 3. Comparison on our evaluation dataset. We compare with
different baseline methods and the results show that our 3D mask
offers much better temporal stability. 2D mask does not improve
much because it fails to resolve the ambiguity in disoccluded areas.

and renders the novel view frames on a per-frame basis. (2)
2D mask is our naive baseline method, which is similar to
our pipeline, except that it uses a foreground mask V′(x, y)
generated by the background matting method[24] with I and

Î as inputs. The blended MPI M′
o for (2) is obtained by

M′
o = V′(x, y)�M + (1− V′(x, y))� M̂,

where the 2D mask has been expanded into 3D by repeating
its values along the depth dimension. (3) IBRNet uses the
official implementation and takes 2 views as input on a per-
frame basis. Please refer to our supplementary materials for
the video results.

From Table 3, we see that our method is able to achieve

temporally-coherent rendering, while offering better visual
quality and fewer distortions. Specifically, we employ the
STRRED metric [40] to evaluate stability across time. Our
method significantly reduces the temporal artifacts across
most scenes while also keeping PSNR and SSIM better than
the baseline methods. For MPI/LLFF, since it does not uti-
lize the information across the whole video, it yields more
flickering and distorted areas as can be seen in Fig. 5.
For example, in the top scene, there is a ghosting artifact
around the person’s head and it changes frame-by-frame,
resulting in flickering video. The 2D mask method is a bi-
nary mask that naively selects the dynamic parts in M and

the background in M̂ to produce the final MPI. As a re-
sult, it amplifies the stack of cards artifacts (see Fig. 5) and
also slightly worsens the visual quality as shown in Table 3.
IBRNet [44], does not work well with 2-view input and it
produces poor results compared to ours. In the second row
of Fig. 5, MPI/LLFF is able to hallucinate reasonable disoc-
clusion similar to the background, whereas 2D mask repeats
the texture of the person for those areas. This is because 2D
mask incorrectly blends the dynamic and static parts of the
scene.

To further analyze how temporal consistency is affected,

1755

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1-1 1-2 2-1 2-2 2-3 3-1 3-2 4-1 4-2 5-1 5-2 6-1 6-2 7

MPI/LLFF 2D Mask Ours

Static occluder, static background

Static occluder, dynamic background

Dynamic occluder, static background

Dynamic occluder, dynamic background

Fast movements

Slow movements

Specularity

Thin structures

ST
R

R
ED

Figure 6. STRRED comparison on our dataset with baseline methods. We select 14 clips from 7 different scenes. 1-1, 1-2 denotes clip 1
and clip 2 from scene 1.

Methods STRRED↓ PSNR↑ SSIM↑
Ours 0.1683 26.22 0.8390

Ours w/ Ls 0.1745 26.18 0.8393
Ours w/ Ls,Lm 0.1900 26.09 0.8374

Table 4. Effect of different loss functions. Our rendering loss of-
fers better temporal consistency and slightly better visual quality.

we characterize the clips with different properties including
different types of occlusion discussed in Sec. 3.3 and show
the results in Fig. 6. As stated earlier, several clips are
selected from the 7 scenes to show salient motions. From
the results, we observe that faster movements could often
result in worse temporal consistency, like the differences
between clip 1-1 and 1-2. There is an interesting failure in
4-2 for the 2D mask method. 4-1 is the jumping scene in
Fig.5, and 4-2 shows a person walking in the same scene.
Although the movement is slower, the person walks past
several areas with large appearance changes in 4-2. As a
result, the artifacts in the 2D mask are much more obvious,
and the video flickers more than other methods, leading to
a worse STRRED score.

As shown in Table 4, our rendering loss still offers the
most temporally-stable results, whereas the other two losses
(mask supervision Lm and sparsity Ls) trade temporal con-
sistency for better interpretability. We provide more details
and mask visualizations in the supplementary materials.

5.3. Limitations
The proposed dataset and algorithm have a few limita-

tions: First, we limit our camera to stay static when captur-
ing. This is mainly due to the limitations of synchronization
and pose estimation. Although we can achieve good syn-
chronization with software-based methods, there are still a
few milliseconds of error. This error could be magnified
when the camera rig is in motion and lead to bad estimates
of the camera poses. The camera poses across time would
also require more calculations, possibly leading to accumu-
lating errors in the system. These issues could be solved
by calibrating the camera trajectory of one of the cameras

and utilizing the rigid assumption to infer the trajectories
of other cameras. Another limitation is that we require an
estimate of the static background. This is easily achievable
by applying a median filter. While it works for most of the
scenes, this method is sometimes not reliable. There are
more advanced approaches[16, 15] that can be used in the
future.

6. Conclusions and Future Work

In this paper, we discuss view synthesis of dynamic
scenes with stereo input videos. The main challenge is that
rendered results are prone to temporal artifacts like flick-
ering in the disoccluded regions. To tackle this issue, we
introduce a novel 3D mask volume extension to carefully
replace the disoccluded areas with background information
acquired from the temporal frames. Additionally, we intro-
duce a high-quality multi-view video dataset, which con-
tains 96 scenes of various human interactions and outdoor
environments shot in 120FPS.

In future work, we would like to extend our dataset and
method to consider dynamic camera motions, and to oper-
ate on even larger baselines. In summary, we believe video
view synthesis for dynamic scenes is the next frontier for
immersive applications, and this paper has taken a key step
in that direction.

7. Acknowledgement

This work was supported in part by ONR grant
N000142012529, ONR grant N000141912293, NSF grant
1730158, all awarded to the UCSD researchers, a Facebook
Distinguished Faculty Award, the Ronald L. Graham Chair,
and the UC San Diego Center for Visual Computing. Part
of the work was done when KEL was an intern at Facebook.
We also acknowledge a Qualcomm FMA Fellowship and an
Amazon Research Award. Lastly, we thank Yuzhe Qin, Do-
minique Meyer, Eric Lo, Thomas DeFanti, Jürgen Schulze
and Michael Broxton for comments on hardware setup.

1756

References
[1] Aayush Bansal, Minh Vo, Yaser Sheikh, Deva Ramanan, and

Srinivasa Narasimhan. 4d visualization of dynamic events
from unconstrained multi-view videos. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5366–5375, 2020. 2, 3

[2] Mojtaba Bemana, Karol Myszkowski, Hans-Peter Seidel,
and Tobias Ritschel. X-fields: Implicit neural view-, light-
and time-image interpolation. ACM Transactions on Graph-
ics (Proc. SIGGRAPH Asia 2020), 39(6), 2020. 2, 3

[3] Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall,
Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy,
David Kriegman, and Ravi Ramamoorthi. Neural re-
flectance fields for appearance acquisition. arXiv preprint
arXiv:2008.03824, 2020. 2

[4] Sai Bi, Zexiang Xu, Kalyan Sunkavalli, Miloš Hašan, Yan-
nick Hold-Geoffroy, David Kriegman, and Ravi Ramamoor-
thi. Deep reflectance volumes: Relightable reconstruc-
tions from multi-view photometric images. arXiv preprint
arXiv:2007.09892, 2020. 2

[5] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000. 3

[6] Michael Broxton, John Flynn, Ryan Overbeck, Daniel Er-
ickson, Peter Hedman, Matthew DuVall, Jason Dourgarian,
Jay Busch, Matt Whalen, and Paul Debevec. Immersive light
field video with a layered mesh representation. 39(4):86:1–
86:15, 2020. 2, 3, 5

[7] Chris Buehler, Michael Bosse, Leonard McMillan, Steven
Gortler, and Michael Cohen. Unstructured lumigraph ren-
dering. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 425–
432, 2001. 2

[8] Qifeng Chen and Vladlen Koltun. Photographic image syn-
thesis with cascaded refinement networks. In Proceedings of
the IEEE international conference on computer vision, pages
1511–1520, 2017. 6

[9] Abe Davis, Marc Levoy, and Fredo Durand. Unstructured
light fields. In Computer Graphics Forum, volume 31, pages
305–314. Wiley Online Library, 2012. 2

[10] Paul E Debevec, Camillo J Taylor, and Jitendra Malik. Mod-
eling and rendering architecture from photographs: A hybrid
geometry-and image-based approach. In Proceedings of the
23rd annual conference on Computer graphics and interac-
tive techniques, pages 11–20, 1996. 2

[11] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-
Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and
Richard Tucker. Deepview: View synthesis with learned gra-
dient descent. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2367–
2376, 2019. 2, 3

[12] John Flynn, Ivan Neulander, James Philbin, and Noah
Snavely. Deepstereo: Learning to predict new views from the
world’s imagery. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5515–5524,
2016. 2

[13] David A. Forsyth and Jean Ponce. Computer Vision: A Mod-
ern Approach. Prentice Hall Professional Technical Refer-
ence, 2002. 3

[14] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F Cohen. The lumigraph. In Proceedings of the
23rd annual conference on Computer graphics and interac-
tive techniques, pages 43–54, 1996. 2

[15] Soren Hauberg, Aasa Feragen, and Michael J Black. Grass-
mann averages for scalable robust pca. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3810–3817, 2014. 8

[16] Jun He, Laura Balzano, and Arthur Szlam. Incremental gra-
dient on the grassmannian for online foreground and back-
ground separation in subsampled video. In 2012 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1568–1575. IEEE, 2012. 8

[17] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions
on Graphics (TOG), 37(6):1–15, 2018. 2

[18] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei
Huang, Matthias Nießner, Thomas Funkhouser, et al. Local
implicit grid representations for 3d scenes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6001–6010, 2020. 2

[19] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ra-
mamoorthi. Learning-based view synthesis for light field
cameras. ACM Transactions on Graphics (TOG), 35(6):1–
10, 2016. 2

[20] Marc Levoy and Pat Hanrahan. Light field rendering. In Pro-
ceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques, pages 31–42, 1996. 2

[21] Qinbo Li and Nima Khademi Kalantari. Synthesizing light
field from a single image with variable mpi and two network
fusion. ACM Transactions on Graphics, 39(6), 12 2020. 3

[22] Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker,
Noah Snavely, Ce Liu, and William T Freeman. Learning
the depths of moving people by watching frozen people. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4521–4530, 2019. 3

[23] Kai-En Lin, Zexiang Xu, Ben Mildenhall, Pratul P Srini-
vasan, Yannick Hold-Geoffroy, Stephen DiVerdi, Qi Sun,
Kalyan Sunkavalli, and Ravi Ramamoorthi. Deep multi
depth panoramas for view synthesis. In ECCV, 2020. 2

[24] Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sen-
gupta, Brian Curless, Steve Seitz, and Ira Kemelmacher-
Shlizerman. Real-time high-resolution background matting.
arXiv, pages arXiv–2012, 2020. 6, 7

[25] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
arXiv preprint arXiv:1906.07751, 2019. 2

[26] Moritz Menze and Andreas Geiger. Object scene flow for
autonomous vehicles. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2015. 3

[27] Moustafa Meshry, Dan B Goldman, Sameh Khamis, Hugues
Hoppe, Rohit Pandey, Noah Snavely, and Ricardo Martin-
Brualla. Neural rerendering in the wild. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6878–6887, 2019. 2

[28] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (TOG), 2019. 1, 2, 3, 4, 6, 7

[29] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision, pages
405–421. Springer, 2020. 2

1757

[30] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3d
ken burns effect from a single image. ACM Transactions on
Graphics (TOG), 38(6):1–15, 2019. 2

[31] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 165–174, 2019. 2

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 6

[33] Eric Penner and Li Zhang. Soft 3d reconstruction for view
synthesis. ACM Transactions on Graphics (TOG), 36(6):1–
11, 2017. 2

[34] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 3

[35] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 3

[36] Jonathan Shade, Steven Gortler, Li-wei He, and Richard
Szeliski. Layered depth images. In Proceedings of the
25th annual conference on Computer graphics and interac-
tive techniques, pages 231–242, 1998. 2

[37] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3d photography using context-aware layered depth
inpainting. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 1

[38] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 6

[39] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhofer. Deep-
voxels: Learning persistent 3d feature embeddings. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2437–2446, 2019. 2

[40] Rajiv Soundararajan and Alan C Bovik. Video quality as-
sessment by reduced reference spatio-temporal entropic dif-
ferencing. IEEE Transactions on Circuits and Systems for
Video Technology, 23(4):684–694, 2012. 7

[41] Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron,
Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing
the boundaries of view extrapolation with multiplane images.
CVPR, 2019. 1, 2, 5, 6

[42] Richard Szeliski and Polina Golland. Stereo matching with
transparency and matting. In Sixth International Conference
on Computer Vision (IEEE Cat. No. 98CH36271), pages
517–524. IEEE, 1998. 2

[43] Richard Szeliski and Polina Golland. Stereo matching with
transparency and matting. International Journal of Com-
puter Vision, 32(1):45–61, 1999. 4

[44] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:

Learning multi-view image-based rendering. In CVPR, 2021.
7

[45] Zexiang Xu, Sai Bi, Kalyan Sunkavalli, Sunil Hadap, Hao
Su, and Ravi Ramamoorthi. Deep view synthesis from sparse
photometric images. ACM Trans. Graph., 38(4), July 2019.
2

[46] Zexiang Xu, Kalyan Sunkavalli, Sunil Hadap, and Ravi
Ramamoorthi. Deep image-based relighting from optimal
sparse samples. ACM Trans. Graph., 37(4), July 2018. 2

[47] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park,
and Jan Kautz. Novel view synthesis of dynamic scenes with
globally coherent depths from a monocular camera. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5336–5345, 2020. 2, 3

[48] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view syn-
thesis using multiplane images. In SIGGRAPH, 2018. 1, 2,
3, 4, 6

[49] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele,
Simon Winder, and Richard Szeliski. High-quality video
view interpolation using a layered representation. ACM
transactions on graphics (TOG), 23(3):600–608, 2004. 2

1758

