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Abstract

We address the problem of domain generalizable object
detection, which aims to learn a domain-invariant detec-
tor from multiple “seen” domains so that it can generalize
well to other “unseen” domains. The generalization abil-
ity is crucial in practical scenarios especially when it is
difficult to collect data. Compared to image classification,
domain generalization in object detection has seldom been
explored with more challenges brought by domain gaps on
both image and instance levels. In this paper, we pro-
pose a novel generalizable object detection model, termed
Domain-Invariant Disentangled Network (DIDN). In con-
trast to directly aligning multiple sources, we integrate a
disentangled network into Faster R-CNN. By disentangling
representations on both image and instance levels, DIDN
is able to learn domain-invariant representations that are
suitable for generalized object detection. Furthermore, we
design a cross-level representation reconstruction to com-
plement this two-level disentanglement so that informative
object representations could be preserved. Extensive exper-
iments are conducted on five benchmark datasets and the
results demonstrate that our model achieves state-of-the-
art performances on domain generalization for object de-
tection.

1. Introduction
Object detection is a fundamental yet challenging prob-

lem in computer vision. It aims to identify and localize all
object instances of certain categories in an image. In the
past few years, we have witnessed significant breakthroughs
of supervised object detection [9, 2, 30, 24, 10, 3] on various
benchmark datasets [17, 33, 8, 42]. Nonetheless, perform-
ing object detection in practice remains challenging due to
the complexity and diversity of natural scenes. Learning a
general object detector requires collecting a large amount
data, which is highly expensive in real word scenarios with
various domains. An alternative is to transfer the learned
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Figure 1. An illustration of our approach for domain generaliz-
able object detection. If directly extending prior domain adapta-
tion methods [12, 46, 40, 32, 47, 1] to the unseen domain, it will
fail to generalize to the unseen domain since there is no data avail-
able in training. Our method first extracts the domain-independent
object content to avoid fully matching all source domains. Fur-
ther, we learn a shared feature space for domain generalization
with preserved informative object representation.

knowledge from labeled source domains to another differ-
ent but related target domain. However, because of the pres-
ence of dataset bias or domain shift [35], i.e. the joint prob-
ability distributions of observed data and labels are different
in different domains, direct transfer may not perform well.

Unsupervised domain adaptation (UDA) is one of the
most popular attempts to remedy this problem and consid-
erable efforts have been made [12, 46, 40, 32, 47, 1, 15].
Given the well labeled source data and the known target
data without labels, the idea of UDA is to align the data
distribution between the source and target domains so that
the trained model on the source can well generalize to
the target [45]. However, these methods still require pre-
collecting target data and retraining the model for different
target domains. Therefore, it is difficult to extend domain
adaptation methods to the scenarios where target data is un-
available.

In this paper, we focus on domain generalizable object
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detection, a more general problem which does not rely on
target data and aims at learning a universal object detector
directly from multiple source domains. Hopefully, the de-
tector could perform well on any previously “unseen” target
domains. The main challenge of generalizable object detec-
tion still lies in the notorious domain shift across multiple
domains. On one hand, the domain shift is not only mani-
fested on the image level (e.g, weather, time, scene layouts,
etc.), but also on the instance level (e.g, object appearance,
size, etc.). The resulting model needs to learn invariant rep-
resentations on both levels. On the other hand, prior meth-
ods on domain adaptation align feature space by directly
matching the distributions between the source domains and
the known target domain, which is available during training.
However, when target data is not observable, only matching
multiple source domains would be insufficient for gener-
alized object detection, because it might not learn a well
aligned feature space for an unseen target domain, as illus-
trated in Figure 1.

To address the above challenges, in this paper we pro-
pose a novel framework for generalizable object detection.
Inspired by the recent disentangled works [28] for image
translation, we propose a Domain-Invariant Disentangled
Network (DIDN) to learn a universal object detector. The
network consists of three components: Image-level Dis-
entanglement, Instance-level Disentanglement and Cross-
level Reconstruction. Image-level and instance-level dis-
entanglements aim to explicitly disentangle representation
spaces to domain-independent and domain-exclusive parts.
By integrating them into Faster R-CNN framework, the
two-level disentanglement enables DIDN to extract gener-
alized features suitable for object detection. We believe the
consistent representation of objects in the two levels is more
helpful to preserve the informative features for object de-
tection. We further enforce a cross-level reconstruction to
complement the detection model, since the two-level disen-
tanglements are independent of each other.

In summary, the contributions of this paper are threefold:

1) We propose to generalize object detection from mul-
tiple sources to a previously unseen domain. To the best
of our knowledge, this is the first work to explore domain
generalization for object detection.

2) We develop a novel end-to-end learning framework
termed DIDN, to learn domain-invariant representation on
both image level and instance level for generalizable object
detection.

3) We conduct extensive experiments on multiple bench-
mark datasets. DIDN outperforms the best baseline in terms
of mAP by 2.2%, 2.1%, and 3.1% on Cityscapes, Foggy
Cityscapes and BDD100k, respectively.

2. Related Work

2.1. Domain Adaptive Object Detection

To eliminate the domain shift, many methods have been
proposed for unsupervised domain adaptive object detec-
tion [12, 46, 40, 37, 47, 1, 39, 15, 4, 20, 21, 18, 38, 19, 13].
They typically achieved feature space alignment by exploit-
ing the target data distribution. For example, Hsu et al.
fed source and target images to a shared feature extrac-
tor to generate center-aware features according to the cen-
terness map module [12]. Zheng et al. aligned sources
and target marginal distributions via multi-layer adversar-
ial learning in the common feature space in a coarse-to-fine
scheme [46]. A Graph-induced Prototype Alignment (GPA)
framework was introduced for category-level domain align-
ment via elaborate prototype representations [40]. Saito et
al. proposed a weak alignment model, which focused the
adversarial alignment loss on sources and target that were
globally similar and put less emphasis on globally dissimi-
lar parts [32]. All these methods need to pre-collect target
domain data, which may not fit the real-world situations. In
our work, we aim to develop a generalizable object detec-
tion model trained on only multiple sources and tested on
the unseen target.

2.2. Domain Generalization for Classification

As a practical task, domain generalization has been
widely studied for image classification, which can be di-
vided into two streams: learning domain invariance and
augmenting source domains, where the former aims to align
the feature space of multiple sources, while the latter broad-
ens the learning feature space. In particular, the methods to
learn domain invariance typically minimized the discrep-
ancy among multiple source domains with adversarial loss
or distance loss. Along this line, Muandet et al. learned
an invariant transformation by minimizing Maximum Mean
Discrepancy (MMD) across domains [26]. Li et al. ex-
tended adversarial autoencoders to align the distributions
and match the aligned distribution to an arbitrary prior dis-
tribution [23]. In addition, meta-learning has also been ap-
plied to learning domain invariant features by dividing the
training set into meta-train and meta-test setting. Qiao et
al. relaxed the widely used worst-case constraint in a meta-
learning scheme [29]. Li et al. developed a gradient-based
meta-learning algorithm, which requires that the steps to
improve the performance of the training domain should also
improve the performance of the test domain [22]. To im-
prove the possibility of covering the span of the target do-
main, the methods in the second stream source domains via
diversifying samples. For image-level augmentation, Yue
et al. transfered a source domain image to multiple styles,
each dubbed an auxiliary domain [43]. For feature-level
augmentation, Huang et al. iteratively challenged the dom-
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inant features activated, and forced the network to activate
remaining features that correlate with labels [14]. Different
from these works, we focus on the object detection problem,
which is more challenging as domain shift occurs on both
image level and instance level. To the best of our knowl-
edge, this is the first work from the domain generalizable
object detection perspective.

2.3. Domain Generalization beyond Classification

Recently, the outstanding performance of domain gen-
eralization works [43, 16, 44, 36, 34] even surpassed do-
main adaptation methods, which stimulates its applications
on other tasks, such as semantic segmentation [43, 44], per-
son ReID [34], face presentation [36, 16] and so on. Par-
ticularly, Song et al. proposed a deep ReID model to learn
a mapping between a person image and its identity classi-
fier, using a single shot [34]. Jia et al. developed a feature
generator to make the real faces from different domains in-
distinguishable, but excluding the fake ones, thus forming
a single-side adversarial learning [16]. Zhang et al. pro-
posed enhancing the generalization ability of the segmen-
tation model by exploiting the model-agnostic learning in
training and developing the target-specific normalization in
testing [44]. However, object detection is a technically dif-
ferent problem from the above tasks. Compared with clas-
sification task, we would pay more attention to the domain-
invariant of object of interest, denoted as region parts. In
this work, we build a generalizable model for object detec-
tion with considering region parts in an end-to-end fashion.

3. Problem Setup
Let X denote a nonempty input space, and Y denote an

arbitrary output space. We define BX×Y as a set of all prob-
ability distribution on X ×Y . Formally, a domain is a joint
distribution PXY sampled from BX×Y . Domains are ob-
served not directly but usually via datasets. We consider
the domain generalization scenario with multiple labeled
source domains S1, S2, · · · , SM , where M is the number of
sources. In the ith source domain, Si = (xj

i , y
j
i )

Ni

j=1 is sam-
pled from Pi

XY , where Ni denotes the number of samples in
Si, x

j
i denote the observed images and yji = (bji , c

j
i ) denote

the corresponding labels with the bounding-box coordinates
b and their associated categories c. Although xj

i (i ∈ M )
under different source domains are from the same input
space, their distributions are different, likely with complex
overlaps and interact relationships. Unless otherwise spec-
ified, we assume that the yji ∈ Y share the same set of
classes.
Objective Analysis. Using multiple seen domains
S1, S2, · · · , SM , our goal is to produce a detection model
that could perform well on target domain ST = {xj

t}
Nt
j=1

drawn from the unknown distribution PT
XY . Our motivation

can be illustrated through the following example. Consid-
ering A is the domain containing family cars in foggy Lon-
don, while B contains sports cars in German streets in rainy
days. Our idea is to find a shared domain representing a
car in the street regardless the domain specific information
such as weather, city scene, and car style. .In other words,
we want to disentangle the sources into a shared domain C:
g(Si) ∼ PC and specific domain D: f(Si) ∼ PD. In ad-
dition, to better regularize the disentanglement, we further
introduce a function d to reconstruct the original distribu-
tion:

d(g(Si), f(Si)) ∼ Pi
XY . (1)

The mapping g is expected to remove the domain-specific
information from the sources, preserving the shared object
information. In this way, the model trained on the shared
domain can be expected to perform well on any previously
“unseen” target domain.

4. Method

Figure 2 gives an overview of our proposed domain-
invariant disentangled network for generalizable object de-
tection. It consists of three major components: image-level
disentanglement, instance-level disentanglement and cross-
level reconstruction. The first two components aim to dis-
entangle the representation space into the shared represen-
tation space C and the specific representation space D at im-
age and instance levels, respectively, while the last compo-
nent is to connect the two disentanglements via cross-level
reconstruction. In the following, we describe each compo-
nent in detail.

4.1. Image-level Disentanglement

Since the target domain data is unavailable, learning
domain-independent representation from multiple sources
is crucial for model generalization. To generalize to unseen
target domain, it is necessary to learn domain-independent
image content from multiple sources. Image-level disentan-
glement aims to explicitly disentangle image representation
into domain-independent and domain-exclusive parts. In-
spired by [28], the disentanglement is realized by the image
reconstruction with domain adversarial training. Specifi-
cally, a set of encoders are learned to disentangle domain-
independent image content from multiple sources. For each
source domain Si, we introduce an encoder Ei to extract the
domain exclusive part, and another encoder Ec to extract
domain-independent image content. Ec is shared among
multiple sources and also serves as the detector backbone.
Since the exclusive part and the shared image content ought
to restore images, we employ a generator Gimg to ensure in-
formation integrity. The corresponding reconstruction loss

8773



Seen Domains

ℒ!"#$%&

RoIAlign

RoIAlign

ℒ'()
$%&

ℒ!"#*+,

ℒ'()$-.

ℒ!"#$-.

class
bbox ℒ("/

Domain-exclusive Encoder !!

Domain-independent
Encoder !"

Image-level
Generator Gimg

Domain Classifier	#!#$

Domain-exclusive Encoder

Domain Classifier #!%&

Instance-level 
Generator Gins

Cross-level Generator

Image-level Disentanglement

Cross-level Reconstruction

Gobj

!'((

Instance-level Disentanglement

Domain-independent
Encoder	!!%&

RPN

Figure 2. Overview of our proposed novel framework termed DIDN. The color solid lines with arrows indicate the operations in the training
stage, while the red arrows represent the inference pipeline.

is defined as:

Limg
rec = Exi∼Si(Gimg(Ei(xi), Ec(xi))− xi)

2. (2)

To encourage the image content from different do-
mains being similar, a set of pair-wise classifiers Di,j =
{Di,j

lth
}i̸=j are trained to distinguish source i and source j

in the l-th convolution block, while the encoder Ec aims
to fool them. The hierarchical domain classifiers are con-
structed to catch rich intermediate information from the
domain-independent encoder. We alternatively optimize the
encoders and the hierarchical domain classifiers to form a
min-max game for the domain-independent feature space.
The corresponding adversarial loss function can be written
as:

Limg
adv = Exi∼Si

L∑
l=1

log[1−Di,j
l (Ec(xi))]

+Exj∼Sj

L∑
l=1

logDi,j
l (Ec(xj)).

(3)

Eq. (3) essentially encourages Dij
l to classify the shared

content features of xi and xj into 0 and 1, while encourag-
ing Ec to fool Dij

l to generate the opposite results. By do-
ing this over all pair-wise domain classifiers, we ensure the
domain-specific feature is largely removed from the con-
tent representation Ec(xi), i.e. unable to recognize domain

i from Ec(xi). After that, the content features are fed to the
object detector.

4.2. Instance-level Disentanglement

In generalizable object detection, the domain shift is not
only manifested on the image level, but also on the instance
level, which includes object appearance, size, viewpoint,
etc.

For each possible region proposals ri,k, an RoIAlign
layer (RoI) [10] is utilized to extract a fixed-size feature
map pi,k = RoI(Ec(ri,k)). Similar to the image level,
instance-level disentanglement is realized by the instance
reconstruction with domain adversarial training. Addition-
ally, as the instance is related to the category information,
we employ conditional domain classifiers. Specifically, we
apply a pair of encoders Eapp and Eins to extract the ap-
pearance and the instance content information, respectively.
Eins also serves as the object encoder in RoI Head of Faster
R-CNN. A generator Gins is further used to reconstruct the
instance feature map p′i,k. The instance-level reconstruction
loss function is defined as:

Lins
rec =Exi∼Si(p

′
i,k − pi,k)

2. (4)

p′i,k = Gins(Eapp(pi,k), Eins(pi,k)). (5)

Specifically, we extend the origin domain classifiers
to conditional domain classifiers {Di,j

ins}i ̸=j with the pre-
dicted category information ci,k of proposal ri,k. Similar to
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Dataset Size Scene Weather Time #C
Cityscapes (C) 3475 City street Good/med. weather conditions Daytime 8
Fog Cityscapes (F) 3475 City street Fog Daytime 8
SIM 10k (S) 10000 Synthetic street Sun, Fog, Rain, Haze Night, Morning, Dusk 1
KITTI (K) 7481 City street, Highway, Rural Good/med. weather conditions Daytime 9
BDD100k (B) 100000 City street, Highway Rain, Snow, Cloud, Overcast Daytime, Night 11

Table 1. Comparison of datasets. ”#C” is the number of categories in the datasets. It is clear that the existing datasets suffer from the
domain shift problem, due to size, scene, weather, time and categories interacted and disjoint.

Eq. (3), the instance-level adversarial loss can be written as:

Lins
adv = log[1−Dij

ins(Eins(pi,k)|ci,k)]
+ logDij

ins(Eins(pj,k)|cj,k).
(6)

In this way, the disentanglements at the image-level and
the instance-level lead to the alignments of multiple sources
from image content to instance representation in a domain-
invariant way.

4.3. Cross-level Reconstruction

To further complement the two-level disentanglement,
we design a cross-level reconstruction to preserve the in-
formation. Since Faster R-CNN has to account for varying
sizes of proposals ri,k, some object information is lost in
RoIAlign. To circumvent this issue, a cross-level genera-
tor is trained to reconstruct objects at the pixel level for the
information integrity of the two-level disentanglement, for
which the domain-exclusive information at the image level
is also fed into the generator.

We reconstruct the pixel-level objects with the domain
clues in image level and the reconstructed feature map p′i,k
in instance level with the following cross-level reconstruc-
tion loss:

Lrec
obj =

∑
k∈O

(Gobj(p
′
i,k, RoI(Ei(ri,k)))− ri,k )2, (7)

where O denotes all possible region proposals.

4.4. DIDN Learning

The overall objective loss function of DIDN can be writ-
ten as:

LDIDN = Ldet + λa(Limg
adv + Lins

adv)

+ λr(Limg
rec + Lins

rec) + λcLrec
obj ,

(8)

where λa, λr and λc denote the weights to balance the ad-
versarial losses, the reconstruction losses and the cross-level
reconstruction loss at the image and instance levels, and
Ldet includes all the standard detection losses in Faster R-
CNN. The training process is essentially to solve the fol-
lowing optimization problem:

R∗ = argmin
E,G

max
D

LDIDN , (9)

where E, G, and D represent all the encoders, genera-
tors, domain classifiers in our model. The inference is of
light weight (see red arrows in Fig. 2), since many building
blocks are only needed for training. The inference speed is
the same as Faster R-CNN.

5. Experiments
5.1. Experimental Settings

Datasets. Consider that we aim to simulate a real-world
scenario where a detection model is likely to be trained
with many public datasets, in the hope that it can gener-
alize well to an unseen domain. To this end, we adopt
many existing large-scale object detection datasets includ-
ing Cityscapes [5], Foggy Cityscapes [5], SIM 10k [17],
KITTI [8] and BDD100k [41]. We summarize these five
datasets in Table 1.

Cityscapes [5] dataset is an urban scene dataset for driv-
ing scenarios. The images are captured by a car-mounted
video camera. Foggy Cityscapes [5] is a synthetic foggy
dataset in that it simulates fog on real scenes. The im-
ages are rendered using the images and depth maps from
Cityscapes. They both have 2,975 images in the training
set, and 500 images in the validation set. BDD100k [41]
is collected by a real driving platform and captured on the
streets. It is a satisfying large-scale, diversified dataset with
time information. We only use the validation set including
10,000 images in our experiments. KITTI [8] is constructed
by a standard station wagon with two high-resolution video
cameras, which thus has cross camera difference. KITTI [8]
is a autonomous driving database which contains 7,481 im-
ages. SIM 10k [17] includes 10,000 images which are ren-
dered by the gaming engine Grand Theft Auto.

Implementation Details. There are eight shared cate-
gories with instance labels in Cityscapes, Foggy Cityscape
and BDD100k. However, only Car is annotated in SIM 10k
and KITTI. Therefore, we conduct experiments in two set-
tings. The first one is using Cityscapes, Foggy Cityscapes
and BDD100k with eight shared categories, where two of
them serve as the source domains and the left one serves
as the target domain. Note that for BDD100k, since there
are few ”train” objects, we only evaluate seven common
categories of BDD100k. The second setting is using all
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DG Setting Methods person rider car truck bus train motor bike mAP

F & B to C

Single-best 36.0 39.8 53.6 15.8 31.4 11.5 26.9 35.0 31.2
Source-combined 43.0 48.9 62.7 42.7 55.9 39.4 34.8 37.9 45.3

Directly Align 41.6 49.2 61.5 40.3 57.7 42.2 35.0 38.5 45.7
DIDN (Ours) 43.6↑0.6 46.2↓3.0 63.2↑0.5 41.9↓0.8 60.9↑3.2 51.1↑8.9 36.0↑1.0 41.3↑2.8 47.9↑2.2

Oracle - Train on Target 44.7 51.6 63.5 42.0 58.6 45.8 42.0 44.4 49.1

C & B to F

Single-best 25.0 30.0 30.0 14.2 18.5 5.0 15.0 26.6 20.5
Source-combined 31.7 39.5 48.9 28.2 34.3 12.9 21.8 32.8 31.3

Directly Align 25.6 39.3 42.7 22.1 34.0 19.5 22.1 30.1 27.4
DIDN (Ours) 31.8↑0.1 38.4↓1.1 49.3↑0.4 27.7↓0.5 35.7↑1.4 26.5↑7.0 24.8↑2.7 33.1↑0.3 33.4↑2.1

Oracle - Train on Target 36.1 47.1 52.7 32.1 49.5 56.0 36.0 37.0 43.3

F & C to B

Single-best 27.9 27.5 43.1 16.6 15.1 - 5.6 21.0 19.6
Source-combined 30.0 22.6 44.6 16.5 11.6 - 6.2 20.1 18.9

Directly Align 31.3 21.4 44.8 18.6 13.3 - 5.8 20.9 19.1
DIDN (Ours) 34.5↑3.2 30.4↑7.8 44.2↓0.6 21.2↑2.6 19.0↑3.9 - 9.2↑3.0 22.8↑1.8 22.7↑3.1

Oracle - Train on Target 35.5 32.1 50.9 33.7 28.9 - 13.5 27.5 30.8

Table 2. Results (%) of the domain generalization on Cityscapes (C) [5], Foggy Cityscapes (F) [5], and BDD100k (B) [41]. The best
category AP and mAP are highlighted in bold. Single-best indicates choosing the best performance from Faster R-CNN trained on each
source, Source-combined indicates combining all source domain as a traditional single domain, and Directly Align indicates extending the
domain adaptation method which directly matches all source domains in feature space.

Methods C&B&S&F to K C&F&K&S to B
Single-best 74.3 38.6

Source-combined 75.2 48.2
Directly Align 75.6 45.1
DIDN (Ours) 76.8↑1.2 52.3↑4.1

Table 3. Results (%) of the domain generalization on Cityscapes
(C) [5], Foggy Cityscapes (F) [5], BDD100k (B) [41], Sim 10k
(S) [17], and KITTI (K) [8].

the five datasets but considering only the Car category for
multi-source domain generalization. In the experiments, we
choose four datasets as source domains, and the left one as
unseen target domain. Note that SIM 10k is only considered
as a source domain dataset but not a target dataset. This
is because it is a simulation dataset and the generalization
from simulation to real is meaningful, but not the reverse.

We adopt Faster R-CNN [31] with RoIAlign [10] and im-
plement our model with maskrcnn-benchmark [25] in Py-
torch [27]. Although single-stage detectors have emerged
as a popular paradigm, Faster R-CNN is considered as the
most representative of two-stage detectors and is still a top-
performing detector. We will consider other backbones in
future. ResNet-50 [11] pre-trained on ImageNet [6] is used
as the backbone of the detector, which is also the domain-
independent encoder in our model. In all experiments, un-
less specified, all training and testing images are resized
such that their shorter side has 600 pixels. We use SGD
optimizer, first trained with a learning rate of lr = 0.002
for 120K iterations, and then lr = 0.0002 for another 60K
iterations. The learning rate warm up strategy [31] is used
in the first 200 iterations of training. We follow [25] to set

DG Setting Img Ins Comp mAP

F & B to C

✓ 47.1
✓ 46.1

✓ ✓ 47.3
✓ ✓ ✓ 47.9

C & B to F

✓ 32.1
✓ 31.9

✓ ✓ 33.2
✓ ✓ ✓ 33.4

F & C to B

✓ 21.1
✓ 20.3

✓ ✓ 22.2
✓ ✓ ✓ 22.7

Table 4. Effectiveness of each component in DIDN for domain
generalization on Cityscapes (C), Foggy Cityscapes (F), and
BDD100k (B). Img: Faster R-CNN with image-level disentan-
glement; Ins: Faster R-CNN with instance-level disentanglement;
Comp: connecting the two-level disentanglements with cross-level
reconstruction.

the hyper-parameters.
In our experiments, two NVIDIA V100 GPUs are used

for training. Each batch is composed of two images from
each source domain, e.g. eight images per batch from four
sources to fit the two GPUs. We employ mean average pre-
cisions (mAP) with a threshold of 0.5 to evaluate the results
of all the classes.

Baselines. We include the original Faster R-CNN model
as a baseline, which is trained on the source domains, with-
out considering the domain gap. We consider two variants:
(1) single-best, i.e. trained on each single source, and we
choose the single best performanceof all the trained models
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Figure 3. Visualization of the image-level disentanglement results. (a),(b),(c) are respectively the source images, and disentangled content
and style images.

on the unseen target; (2) source-combined, i.e. all source
domains are combined into a traditional single source. In
addition, we extend the domain adaptation method [7] as
another baseline named Directly Align, where a domain
classifier was trained to directly align all sources in a shared
feature space. This baseline is constructed by adding a do-
main classifier connected to the Faster R-CNN backbone,
to ensure the feature distribution from different domains as
indistinguishable as possible. We also report the results of
an oracle setting in Table 2, where the model is both trained
and tested on the target domain.

5.2. Domain Generalization Results

Table 2 and Table 3 give the quantitative results of differ-
ent methods under the two different settings, respectively..
From the results, we have the following observations.

(1) The source-only methods including single-best and
source-combined obtain the worst performance. The
source-only method i.e. directly transferring the Faster R-
CNN trained on the sources to the target drops greatly in all
settings. This is due to domain shift or dataset bias. The
specific domain clues cause the low transferability of Faster
R-CNN to unseen target domain.

(2) Training with simply combing multiple sources does
not guarantee a better performance than the corresponding
single-best method. For example, in the setting of F&C to
B in Table 2, the performance of single-best is better than
the source-combined method. This suggests that although
combining multiple sources results in more training data,
they may interfere with each other.

(3) Directly aligning the distributions of all source do-
mains is insufficient for generalizable object detection. In
both settings of C&B to F and C&F&K&S to B, directly
aligning sources failed to increase generalization ability.
This indicates domain adaption methods would not work in
domain generalization, where there is no target data avail-
able during training.

(4) Table 2 shows that as compared to the baselines,
our method achieves 2.2%, 2.1% and 3.1% improvement
in Cityscapes, Foggy Cityscapes and BDD100k, respec-
tively. We can see that the proposed method is able to alle-
viate domain gap over most of the categories. Specifically,
even there are only a few “train” annotations in BDD100k,
the performance of “train” has been significantly improved.
Moreover, our method has a significant improvement in
“bike” and “motor” categories, which are highly similar
in object appearance. These results further reveal that the
instance-level disentanglement in our model is able to learn
the domain-invariant instance representation. We find that
the “bus” and “car” often appear concurrently in an image.
The improvement indicates the proposed method is able to
eliminate spatial interaction. Additionally, we find that the
proposed method is comparable to or even better than the
oracle model in several categories.

(5) As shown in Table 3, for the domain generaliza-
tion on Cityscapes, Foggy Cityscapes, BDD100k, Sim10k,
and KITTI, the proposed method achieves 1.2% and 4.1%
improvement, respectively. Compared with the results of
BDD100k, the improvement in KITTI is relatively small.
The reason is that the performance is already good for the
single source generalizing to target, due to the fact that
scenes are similar between Cityscape and KITTI. From
another perspective, all four sources have a clear gap to
BDD100k, which proves our model has the ability to gen-
eralize well on unseen target.

5.3. Ablation Study

Effectiveness of each component. To prove the ef-
fectiveness of the different components in the proposed
model, we provide the results of each component in Table
4. Both image-level and instance-level disentanglements
achieve better results than the baselines, which demon-
strates the domain gap exists in both image style and in-
stance appearance. Image-level and instance-level disentan-
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Methods person rider car truck bus train motor bike mAP
Source-only 26.9 38.2 35.6 18.3 32.4 9.6 25.8 28.6 26.9
SW-DA [32] CVPR’19 31.8 44.3 48.9 21.0 43.8 28.0 28.9 35.8 35.3
SC-DA [47] CVPR’19 33.8 42.1 52.1 26.8 42.5 26.5 29.2 34.5 35.9
MTOR [1] CVPR’19 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1
ICR-CCR [39] CVPR’20 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4
Coarse-to-Fine [46] CVPR’20 34.0 46.9 52.1 30.8 43.2 29.9 34.7 37.4 38.6
GPA [40] CVPR’20 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5
Center-Aware [12] ECCV’20 41.5 43.6 57.1 29.4 44.9 39.7 29.0 36.1 40.2
DIDN(Ours) 38.3 44.4 51.8 28.7 53.3 34.7 32.4 40.4 40.5
Oracle - Train on Target 36.1 47.1 52.7 32.1 49.5 56.0 36.0 37.0 43.3

Table 5. Results (%) of doamin adaptation from Cityscape (C) to Foggy Cityscape (F). The best category AP and mAP are emphasized in
bold.
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Figure 4. Sensitivity of λ in Eq. (8) of the proposed DIDN.

glements are complement to each other, so adding them to-
gether leads the performance improvement. Adding cross-
level object reconstruction could further improve the preci-
sion.

Parameter Sensitivity. We analyze the impact of
the hyper-parameter values in Eq. (8) to the object detec-
tion results by using λr and λa as examples. For different
weight values λr on the reconstruction loss, we compute the
achieved average precision over different weight values λa

on the adversarial loss for both C&B to F and C&F&K&S
to B. The results are reported in Figure 4. From the results,
we find it is a good choice to set λa = 0.5, λr = 0.1.

Visualization. We visualize the results of image-level
disentanglement to demonstrate the interpretability of the
proposed method in Figure 3. We can see that our model is
effective in disentangling the source image to the domain-
independent content and domain-specific style. For bad
weather cases in columns (1), the result of the content image
is a good elimination of fog or overcast information, leaving
the structure of objects preserved. For different scenes (city
and highway) in columns (2), the corresponding content im-
ages are uniformly changed to the shared style. For the
night cases in columns (3), compared with the sources, the
detected objects are clearer, which indicates that the struc-
tures are preserved, e.g. the black car in the dark can be
easily observed after the generalization.

5.4. Extension to Domain Adaptation

Now we conduct more experiments using the domain
adaptation setting and compare our results with previous
state-of-the-art works. In this section, we use the labeled
source data and unlabeled target data as domain adap-
tation setting. We view source-only, i.e. train on the
source domains and directly test on the target domain, as
a lower bound of DA. The compared previous state-of-the-
art methods include SW-DA [32], SC-DA [47], MTOR [1],
GPA [40] and so on. Due to the limitation of our method
that the cross-level reconstruction component need ground
truth bounding box, we just simplify our model and remove
it. Since most of the previous works conducted adaptation
on weather transfer task, we present the adaptation mAP
comparison on Cityscapes to Foggy Cityscapes. As seen in
Table 5, DIDN has also achieved the best results under un-
supervised domain adaptation setting. It is worth noting that
in some categories, our method even surpasses the results of
supervised methods that use labeled target domain.

6. Conclusion

In this paper, we have proposed a novel framework,
termed Domain-Invariant Disentangled Network (DIDN),
for generalizable object detection. To handle data from un-
seen domain, we integrate a two-level disentanglement into
Faster R-CNN. We have conducted extensive experiments
on five benchmark datasets which demonstrates the superior
performance of our proposed method. For further study, we
will explore the scenario where there are unseen object cat-
egories in target domain and investigate multi-modal DG,
e.g. consider both images and LiDAR data.
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