This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

A Multi-Mode Modulator for Multi-Domain Few-Shot Classification

Yanbin Liu'2, Juho Lee®*, Linchao Zhu?, Ling Chen?, Humphrey Shi®, Yi Yang?*
'Baidu Research, 2AAII, University of Technology Sydney, *3KAIST, *AITRICS
®University of Oregon & Picsart Al Research (PAIR)

{csyanbin, shihonghui3}@gmail.com, juholee@kaist.ac.kr

{linchao .zhu, ling.chen, vi. yang}@uts .edu.au

Abstract

Most existing few-shot classification methods only con-
sider generalization on one dataset (i.e., single-domain),
failing to transfer across various seen and unseen domains.
In this paper, we consider the more realistic multi-domain
few-shot classification problem to investigate the cross-
domain generalization. Two challenges exist in this new
setting: (1) how to efficiently generate multi-domain fea-
ture representation, and (2) how to explore domain correla-
tions for better cross-domain generalization. We propose a
parameter-efficient multi-mode modulator to address both
challenges. First, the modulator is designed to maintain
multiple modulation parameters (one for each domain) in a
single network, thus achieving single-network multi-domain
representation. Given a particular domain, domain-aware
features can be efficiently generated with the well-devised
separative selection module and cooperative query module.
Second, we further divide the modulation parameters into
the domain-specific set and the domain-cooperative set to
explore the intra-domain information and inter-domain cor-
relations, respectively. The intra-domain information de-
scribes each domain independently to prevent negative in-
terference. The inter-domain correlations guide informa-
tion sharing among relevant domains to enrich their own
representation. Moreover, unseen domains can utilize the
correlations to obtain an adaptive combination of seen do-
mains for extrapolation. We demonstrate that the proposed
multi-mode modulator achieves state-of-the-art results on
the challenging META-DATASET benchmark, especially for
unseen test domains.

1. Introduction

Few-shot classification aims to train a model that can
generalize on unseen novel classes with only few labeled

*Part of this work was done when Yanbin Liu was an intern at Baidu
Research. Yi Yang is the corresponding author.
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Figure 1. Multi-domain few-shot classification differs from single-
domain few-shot classification in two aspects: (1) it contains mul-
tiple diverse datasets for training and extra unseen domains for
test; (2) there exists potential correlations across multiple domains,
e.g., both Omniglot and QuickDraw contain simple shapes.

examples in each novel class. Recent progress has been
made by the meta-learning paradigm: instead of learning
about any training class in particular, few-shot algorithms
exploit the training classes to learn to recognize new classes
with few examples. Excellent results are achieved on com-
mon benchmarks (e.g., Omniglot [21], minilmageNet [33])
by a series of methods [28, 50, 53, 51, 52, 4,43, 7, 18]. De-
spite their success, most of them train and evaluate on only
one dataset (i.e., single-domain), failing to learn generalized
model across different visual domains (i.e., multi-domain).
In fact, the need for cross-domain generalization is preva-
lent in practical applications [44, 13, 24, 23, 14, 11, 26]. For
example, we would expect a model trained on ImageNet [6]
to be applied on TrafficSigns [17] without collecting extra
target training examples (Figure 1).

To break the limitations of existing few-shot classifica-
tion methods and benchmarks, [44] have proposed a new

8453



benchmark, META-DATASET, consisting of multiple di-
verse datasets and raised the new problem of multi-domain
few-shot classification. It differs from conventional single-
domain few-shot classification in two aspects (as shown in
Figure 1): (1) It contains multiple diverse datasets for train-
ing and extra unseen domains for test; (2) potential corre-
lations exist across multiple domains, e.g., both Omniglot
and QuickDraw contain simple shapes.

These differences pose two challenges for multi-domain
few-shot classification: (1) how to efficiently generate
multi-domain representation, and (2) how to explore do-
main correlations for better cross-domain generalization.
Current multi-domain methods can not address these chal-
lenges well. For example, CNAPs [34] trains a general
adaptation network using all training datasets, leading to
the single-mode and general-purpose adaptation. For sub-
stantially different domains (e.g., ImageNet and Omniglot
in Figure 1), this single-mode adaptation network may be
insufficient to handle all domains and potential interference
may occur. In contrast, SUR [10] pre-trains multiple in-
dependent feature extraction networks to obtain the multi-
domain feature representation. However, it is inefficient to
maintain multiple replications of the feature extraction net-
works and domain-level information sharing is prohibited.

To address the drawbacks of the above methods, we pro-
pose a Multi-Mode Modulator (tri-M) to simultaneously
model the multi-domain feature representation and cross-
domain correlations in a single network. First, the modu-
lator is devised to achieve multi-domain representation by
incorporating multiple modulation parameters in a single
network, where each parameter describes a particular do-
main (called a mode). Given a dataset, the domain-aware
features are efficiently generated by the well-designed sep-
arative selection and cooperative query mechanism.

Second, to explore the domain correlations, the mod-
ulation parameters are further divided into two sets: the
domain-specific set and the domain-cooperative set, which
work complementarily to explore both the intra-domain and
inter-domain information. Concretely, the domain-specific
set describes each domain independently to prevent neg-
ative interference among distant domains, e.g., ImageNet
and Omniglot. The domain-cooperative set captures the
inter-domain relations to guide beneficial information shar-
ing among relevant domains to enrich their own domain-
specific representation. Moreover, with the learned domain
relations, the unseen domains can be described by an adap-
tive combination of the relevant seen domains, showing the
extrapolation ability of our model.

Moreover, by design, our modulator is flexible to change
the number of modes to deal with varying numbers of
datasets and the number of modulation layers to satisfy de-
sired model capacity. In experiments, we show the effec-
tiveness of each component in our model and visually in-

terpret how the selection and query mechanism work on the
domain-specific and domain-cooperative sets of parameters.
In summary, our main contributions are three-fold:

* We propose a multi-mode modulator to deal with the
multi-domain few-shot classification problem. The
domain-aware features can be efficiently generated
with our single-network multi-domain model.

e We explicitly model the domain correlations by the
domain-specific and domain-cooperative parameter
sets. They work complementarily to extract both the
intra-domain and inter-domain information.

* We achieve state-of-the-art performance on the chal-
lenging META-DATASET benchmark, especially for
unseen test domains.

2. Related Work

Meta-learning. Recent few-shot learning methods rely
on the meta-learning [42, 38, 37] paradigm. Most of
them are divided into two types: metric-based methods and
optimization-based methods. Metric-based methods [47,
40, 51, 41, 31] utilize a feature encoder to extract features
from both the labeled and unlabeled images and employ a
metric function (e.g., euclidean distance [40]) to calculate
the similarity scores for predicting the category of unlabeled
images. Optimization-based methods [12, 33, 35, 48] learn
an update rule for the parameters of a base-learner model
with the few examples from a sequence of episodes.

Multi-domain and cross-domain few-shot classifica-
tion. Chen et al. [4] recently found that current meta-
learning approaches do not generalize well to the unseen
domains. To mitigate this, [44] proposed a more realistic,
large-scale and diverse benchmark: META-DATASET and
raised the new problem of multi-domain few-shot classifi-
cation (see Figure 1). META-DATASET provides a well-
defined evaluation test-bed and inspired a series of new few-
shot learning methods [34, 10, 2, 27, 3, 8, 1, 45, 36].

Similarly, [13] proposed the cross-domain few-shot
learning (CD-DSL) benchmark, in which ImageNet [6] is
used for source training, and domains of varying dissimi-
larity from ImageNet (ranging from crop disease, satellite,
and medical images) are used for target evaluation. Cross-
domain few-shot learning differs from multi-domain few-
shot learning in that it focuses on the domain-shift from the
source training domain to different target evaluation ones
while multi-domain few-shot learning tries to learn a well-
performing model for both seen and unseen domains.

Multimodal feature representations for few-shot
learning. A straightforward way to use multiple represen-
tations is simply training NN individual models and apply a
feature-level or prediction-level fusion. [9] designs an en-
semble of deep networks to leverage the variance of classi-
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Figure 2. The proposed tri-M framework. We first input the support images into to the task network to obtain a domain descriptor Vs. The
domain descriptor is followed by three heads to generate a hard-gating, a fusion parameter o, and a query vector. The hard-gating is used
to guide the Separative Parameter Selection module to select from the domain-specific parameters. The query vector is used as a probe
for the Cooperative Parameter Query module to query from the domain-cooperative parameters, which are generated by applying domain
collaboration on individual parameters. Then, the selected and queried parameters are fused channel-wisely with weights o and 1 — « to
get the /-th layer parameters ¢, (3¢. Finally, the layer-wise feature modulation is applied on any support or query images.

fiers for few-shot classification. [10] obtains a multi-domain
representation by pre-training multiple neural networks and
re-weights the multiple features at inference time. [48]
proposes a multimodal MAML (MMAML) framework to
modulate its meta-learned priors with parameters generated
from the modulation network. The multimodal tasks share
the same modulation network to learn a general adaptation
mechanism.

3. Problem Definition

Conventional few-shot classification is usually formu-
lated as a meta-learning problem: instead of sampling a
mini-batch of examples from the training classes, we cre-
ate a series of learning tasks (i.e., episodes) with each task
composed of few labeled examples called a support set and
several unlabeled examples called a query set. Specifically,
in each episode, a small subset of N classes are sampled
from all training classes to construct a support set and a
query set. The support set contains K examples for each
of the IV classes (i.e., N-way K-shot setting) denoted as
S = {(x1,¥1),-.., (XNxK,YNxK)}, while the query set
Q = {(x1,47),---,(x5,9;)} includes different samples
from the same N classes. The performance is evaluated
on the (S, Q) tasks sampled from the unseen test classes.

The multi-domain few-shot classification shares the ba-
sic structure with conventional few-shot classification, but
has some crucial differences. In conventional few-shot clas-

sification, (S, Q) are sampled from only one dataset D for
both training and test. In the multi-domain few-shot classi-
fication, during training, (S, Q) are sampled from multiple
datasets Dy = {D1, Da, ..., D,}, and during test, (S, Q)
are sampled from D, = {D1, Ds,...,D,, D", ..., D"}
including both the training datasets Dy and unseen datasets
{Dj"}¥_,. This means that a model to solve this task must
generalize to multiple datasets including unseen datasets.
Another difference is that unlike the typical N-way K-shot
setting, the sampled tasks in multi-domain few-shot clas-
sification can have diverse number of classes and imbal-
anced number of images per class. For instance, in META-
DATASET [44], N is sampled from the range [5, 50], and K
and Q are sampled with a complex procedure. These two
differences make it non-trivial to directly apply the existing
few-shot learning methods for the multi-domain few-shot
classification problem.

4. Our Framework

We visualize the proposed #ri-M framework in Figure 2.
In our framework, we fix the backbone network and utilize
the multi-mode modulator to generate the scale and trans-
lation parameters ~yy, 3, for layer-wise feature modulation.
Specifically, we first feed a support set into the task net-
work to obtain a domain descriptor V g, which is followed
by three heads to generate a hard-gating, a fusion parameter
«, and a query vector. The hard-gating selects parameters
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from the domain-specific parameter set and the query vector
queries parameters from the domain-cooperative parameter
set. Then, they are fused with o and 1 — « to get the layer-
wise parameters -, 3¢ for feature modulation. Overall, our
framework achieves the single-network multi-domain fea-
ture representation in a parameter-efficient way. In the fol-
lowing, we first describe the layer-wise feature modulation,
and then explain how the modulation parameters are gener-
ated and fused. Finally, we describe the classifier.

4.1. Layer-wise Feature Modulation

Feature adaptation is a critical issue in few-shot learn-
ing since the model has to quickly generalize after seeing
very few examples. Existing methods [12, 33] address this
issue by adapting all the network parameters using few sup-
port examples, which are usually slow and prone to over-
fitting [44].

To adapt the network parameters in a parameter-efficient
manner, we utilize a Feature-wise Linear Modulation
(FiLM) layer [32]. The main idea is to freeze the parameters
of a pre-trained backbone network and apply a channel-wise
linear transformation for feature modulation. Specifically,
for an input image x, FiLM scales and shifts its [-th layer
feature map Fy(x) € RIXWxC a5

Fy(z) = F)(z) 0+ B, (1)

where v € RY, 3 € R are the learnable parameters,
H,W and C indicates the height, width and channel num-
ber of feature maps.

In our implementation, the FiLM layer is applied to ev-
ery convolution block between batch normalization (BN)
and ReLU. Intuitively, since the linear transformation is ap-
plied after BN layer, the pre-trained BN statistics (i.e., mean
and variance) can be adapted to match the target dataset.
Therefore, the distribution of the output feature maps can
be well-aligned to the target dataset. Moreover, for multi-
ple datasets, it is parameter-efficient to achieve multi-mode
feature adaptations with different (v, 3).

Formally, if we denote f as the neural network func-
tion, # as the pre-trained network parameters. The fea-
ture representation for an image « can be denoted as z =
fo(x; {~ve, Be}_ ), where ~,, B, are the modulation pa-
rameters of layer /.

4.2. The Multi-Mode Modulator

Given M datasets, a straightforward way to implement
multi-domain representation is to pre-train M individual
networks [10]. Although being simple to implement, it is
inefficient to train M/ models and inference M times. More-
over, the domain relations are ignored for potential knowl-
edge transfer across datasets. Another way is to train a
general feature adaptation network for all datasets [34, 48].
This single-mode adaptation can not be equally effective for

substantially different datasets and may cause interference,
e.g., ImageNet and Omniglot.

In contrast, we apply a single-network multi-mode
feature modulation. Each mode represent a particu-
lar dataset/domain, and has its own learnable parame-
ters that are further divided into two sets: the domain-
specific set {(v7,B7)}M, and the domain-cooperative set
{(~¢,B%)}M . The specific set provides separated adapta-
tion for each domain to prevent interference while the co-
operative set explores useful correlations to encourage in-
formation sharing. These two sets work complementarily
to achieve effective intra-domain and inter-domain adapta-
tion.

4.2.1 Task Network

To generate domain-aware features, we utilize a task net-
work to obtain domain-level description V g for each learn-
ing task. Specifically, we first feed the support set images
S = {x,}, to a lightweight network with 5 sequential
blocks (each block contain a 3 x 3 convolution with 64 chan-
nels followed by BN, ReL.U, and 2 x 2 max pooling). Then
the outputs are average-pooled in both spatial and batch di-
mension to get a single descriptor Vs € R1*%? of the sup-
port set S. The descriptor is invariant to the permutation of
the support set due to the average pooling. More details are
in the supplementary material.

4.2.2 Domain-specific Parameter Generation

Separative parameter selection. The domain descriptor
Vs encodes the necessary information to infer the domain
identity of the support set S. Therefore, we can employ
a hard-gating mechanism to choose the proper domain-
specific parameters from M existing modes. Specifically,
let W9 € R64*M and b9 € R*M be learnable parame-
ters. Then we can construct the selection gates as

g = softmax(VsW9 + b%) € R1*M @)

where g; indicates the probability that the support set S be-
longs to the i-th mode. We choose the mode index k& with
highest probability, i.e., K = argmax; g; and select the
domain-specific parameters as (v7,39) = (v7,87). To
ensure each member in the domain-specific parameter set
exclusively describe the corresponding domain, we intro-
duce a domain classification loss. During training, the do-
main identity of the the support set S is known in advance.
Using this as the ground truth y4omain, We define the domain
classification loss as

Ldomain = )\ECE (97 ydomain) 5 3)

where £°F denotes cross-entropy 10ss, Yaomain € R M de-
notes the one-hot ground-truth vector of domain, and A > 0
is a hyperparameter controlling the effect of the loss.
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4.2.3 Domain-cooperative Parameter Generation

Domain collaboration. Although the hard-gating and do-
main loss prevent interference among various modes of the
domain-specific parameter set, they also block effective in-
formation sharing across domains. To resolve this issue,
we explore the mode correlations through another set of
parameters: domain-cooperative set {(%C , ﬁf )}M . These
parameters are originally uncorrelated with random initial-
ization, so we use Transformer [46] to explicitly learn the
potential correlations among domains. An attention func-
tion generates the correlated transformation of the inputs as

Attn(Q, K, V) = softmax(QK " /\/d})V,

where dy, is the feature dimension of @@, K. To increase the
expressive power, multi-head attention is usually applied as

MHAttn(Q, K, V) = Concat(heady, . . ., head;, )W © ,
where head; = Atn(QWS KWK VWVY) WS ¢
]Rdxdk7 WiK c RdXd’”‘,WiV c Rdxdv, and WO c
Rhdvxd  To apply the multihead attention, we first pack
{(7$3M | into a matrix v¢ € RM*C and {B8¢}M, into
B¢ € RMXC Then, the correlated parameters are com-
puted as 4" = MHdAttn(v¢,~7¢,~7¢) and BT =
MHAttn(3¢, 3¢, 3%). Now, (7", 3°™) are the correlated
parameters taking domain collaboration into account. For
example, relevant domains such as Omniglot and Quick-
Draw may have similar parameters.

Cooperative parameter query. We employ a quey strat-
egy to obtain the domain-cooperative parameter. At first,
the query vector is obtained Qs = VsW? + b% € RI*C,
Then, the query scores of v*" is computed as s? =
softmax(Q~<" " /+/C) € R™M  Finally, the queried pa-
rameter is v* = s74°". Similarly, 3 can be obtained. For
a seen domain, the query of domain-cooperative parame-
ters can activate all its related modes by properly setting the
query scores. Thus, the parameters of all activated modes
can be jointly learned, which potentially increases the train-
ing data of all related domains. For an unseen domain, al-
though it is not shown at training time, it can still utilize the
learned query mechanism to find a weighted combination
of the relevant existing domain-cooperative parameters for
appropriate feature modulation. Therefore, our model pro-
vides an effective way of extrapolating to unseen domains.

4.2.4 Parameter Fusion

Having selected the domain-specific parameters (9, 39)
and computed the domain-cooperative parameters (v%, 3%),
we combine them into the final modulation parameters. Due
to the diverse nature of the training tasks and datasets,

a naive average fusion may not be optimal. Instead,
we use the adaptive fusion scheme for channel-wise fu-
sion. We first compute the adaptive fusion ratio as a =
sigmoid(VsW7 + b/) € R, and then combine the pa-
rameters as y = ay/ + (1 —a)vy*, B = afB9+ (1 — a)3°.
Doing so, the model can choose proper fusion ratio accord-
ing to the characteristic of the support set.

4.3. Classifier

Metric-based classifier has been widely-used in few-shot
learning [47, 40, 41, 2] and reported to improve perfor-
mance. Following [2], we use the structured Mahalanobis
distance to formulate our classifier since it shows promis-
ing performance. We first compute the adapted features
for the support set, {1y = fo({@} o {ve B y).
Then for each class, we compute the class mean g and
regularized covariance matrix Q. Given a query feature
zq = fo(zg; {ve,Be}t,), the class probability is con-
structed as

p(yq = klwq) X exp(—(zq - Nk)Tlel(zq - Hk)) .
5. Experiments

We present the experiments to analyze the performance
of our multi-mode modulator. We first describe the datasets
being used and implementation details, and present a com-
parison of ours to the recent state-of-the-art methods.
Next, we show the effectiveness of the domain-specific and
domain-cooperative parameter sets, accuracy under various
choice of the number of modes and number of modulation
layer groups. Finally, we present interpretable visualiza-
tions of the selection gates (domain-specific parameter set)
and query scores (domain-cooperative parameter set).

5.1. Datasets and Implementation Details

Benchmark. We test our method on the large-scale
multi-domain few-shot learning benchmark META-
DATASET [44]. It consists of 10 widely used datasets with
various data distributions from different visual domains,
including natural images (ImageNet [6], Birds [49], VGG
Flower [30], Fungi [39]), common objects (MSCOCO [25],
Traffic Signs [17], Aircraft [29]), hand-written characters
(Omniglot [21], Quick Draw [15]) and textures (De-
scribable Textures [5]). To be consistent with previous
work [34, 10], we train our model on the official training
splits of the 8 datasets (according to [44]) and use the test
splits of each dataset to evaluate the in-domain accuracy.
In addition, we use the remaining two (Traffic Signs
and MSCOCO) as well as 3 external datasets, namely
MNIST [22], CIFAR10 [20] and CIFAR100 as the unseen
domains to evaluate the out-of-domain accuracy. All 13
datasets are used to report the overall accuracy. Few-shot
tasks are generated following [44]. The generated tasks
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Table 1. Comparison to the state-of-the-art methods on META-DATASET. Error intervals show the 95% confidence interval, and the
numbers in bold have intersecting confidence intervals with the most accurate method. Average rank is obtained by ranking methods on
each dataset and averaging the ranks. Due to the shuffling issue’, Meta-Dataset updated the evaluation on TrafficSigns. Therefore, We
report the updated accuracy of all methods on TrafficSigns (i.e. 63.0 &= 1.0 for #i-M) in the Supplementary.

Dataset ‘ ProtoMAML [44] BOHB-E [36] AR-CNAPS [34] TaskNorm [3] SimpleCNAPS [2] SUR-pf[10] SUR[10] #ri-M (Ours)
ImageNet 479+1.1 55.4+1.1 52.3+1.0 50.6+1.1 58.6+1.1 56.4+1.2 56.3+1.1 58.6+1.0
Omniglot 82.94+0.9 77.5+1.1 88.440.7 90.7+0.6 91.7+0.6 88.54+0.8 93.1+0.5 92.0+0.6

Aircraft 74.2+0.8 60.9+0.9 80.54+0.6 83.84+0.6 82.440.7 79.5+0.8 85.4+0.7 82.84+0.7

Birds 70.0£1.0 73.6£0.8 72.240.9 74.6+0.8 74.9+0.8 76.4+0.9 71.4+£1.0 75.3£0.8

Textures 67.9+0.8 72.8+0.7 58.3+0.7 62.1+0.7 67.8+0.8 73.1+0.7 71.5+0.8 71.2+0.8

QuickDraw 66.6+0.9 61.2+0.9 72.5+0.8 74.8+0.7 77.7+0.7 75.7+0.7 81.3+0.6 77.3+0.7
Fungi 42.0+1.1 44.5+1.1 47.4+1.0 48.7£1.0 46.9£1.0 48.2+£0.9 63.1+1.0 48.5+£1.0
VGGFlower 88.54+0.7 90.6+0.6 86.0+0.5 89.6+0.6 90.7+0.5 90.6+0.5 82.8 £0.7 90.5+0.5

© 7 TrafficSigns < | ¢ 523411 575410 602409 67.04£07 735407 651+£08  70.4+08  78.0+0.6
MSCOCO 41.3£1.0 51.9+1.0 42.6£1.1 43.4+£1.0 46.2£1.1 52.1+1.0 52.4+1.1 52.8+1.1

MNIST NA NA 92.740.4 92.3+0.4 93.9+0.4 93.2+0.4 94.3+0.4 96.2+0.3
CIFARIO NA NA 61.5+0.7 69.3+0.8 74.3+0.7 66.41+0.8 66.8+0.9 75.4+0.8
CIFAR100 NA NA 50.1£1.0 54.6+1.1 60.5+1.0 57.1+£1.0 56.6+£1.0 62.0+1.0

" In-Domain Avg | 675 611 ¢ 69.7 7 719 138 T U736 756 745
Out-of-Domain Avg 46.8 54.7 61.5 65.3 69.7 66.8 68.1 72.9
Overall Avg 63.4 64.6 66.5 69.3 72.2 70.9 72.7 73.9
Average Rank 7.2 5.7 6.1 4.6 3.1 3.6 32 2.1
Learnable Parameters 10.49M NA 13.4M 9.39M 8.60M 1.67"M 79.45M 7.78M
Forward Pass 1 1 1 1 1 8 8 1

can be of varying number of classes, varying number of
shots and class imbalance. For evaluation, 600 tasks on
each dataset are sampled and the average accuracy of each
dataset, in-domain, out-of-domain and overall are reported.

Implementation Details. For a fair comparison, we fol-
low [34, 2] to employ ResNet18 [16] as the backbone which
is pre-trained on the training split of the META-DATASET
version of ImageNet. The proposed multi-mode modulator
is applied on all except for the first convolutional layers. For
multihead attention, h = 3,d,, = d, = 32. Ain Eq. 3 is
set to 0.001 according to the validation set. Images of all
datasets are resized to 84 x 84 pixels and no data augmen-
tation is applied during training. We train in an end-to-end
fashion for 150,000 episodes with the Adam [19] optimizer,
using a batch size of 16 episodes, and a fixed learning rate
of 0.002.

5.2. Comparison to state-of-the-art methods

We compare our #i-M method with recent state-of-the-
art few-shot methods and report the results in Table 1. Be-
sides the accuracy metric, we also report the widely-used
average rank which is obtained by ranking methods on each
dataset and averaging them. In Table 1, the proposed multi-
mode modulator achieves the best average rank (+1.0) and
overall accuracy (+1.2%), setting a new state of the art on
META-DATASET. Specifically, our method is among the
most accurate methods on 9 out of 13 datasets, achieves the
best out-of-domain accuracy (+3.2%) and second-best in-
domain accuracy. The excellent out-of-domain accuracy in-
dicates that our method can effectively generalize to unseen

test domains.

Considering the number of learnable parameters, our
method is the best one among all models which need to for-
ward only one network. SUR-pf [10] has a smaller number
of learnable parameters at the cost of forwarding eight net-
works, which is inefficient. Note that SUR [10] has more
than 10x learnable parameters® and 8x forward compared
with our method to achieve a slightly better in-domain ac-
curacy.

5.3. Ablation Study

Effect of the domain-specific and domain-cooperative
parameter sets. Table 2 shows the results comparison
of only using domain-specific (Spec), only using domain-
cooperative (Coop), and using all (Spec+Coop) parame-
ter sets. The domain-cooperative parameter set generally
performs better than the domain-specific ones. We at-
tribute this to the information exchange across different do-
mains, which potentially leads to increased number of rel-
evant training examples for correlated domains. For exam-
ple, compared with Spec, Coop on Omniglot and Quick-
Draw (both contains simple while-and-black shapes) ben-
efits from each other, with an improvements of 2.3% and
1.1%, relatively.

The fusion model, Spec+Coop achieves the best perfor-
mance over 12 out of 13 datasets and obtains the highest
average accuracy, indicating that the two parameter sets are
mutually complementary and the fusion strategy is effec-
tive. Spec+Coop has 7.78M learnable parameters, which is
only 0.13M larger than the single-best model Coop.

Zhttps://github.com/google-research/meta-dataset/issues/54
3Note that we only count the trainable parameters for all methods, ex-
cluding the ImageNet pre-trained backbone.
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Table 2. Effect of the domain-specific (Spec) and domain-
cooperative (Coop) parameter sets.

Dataset ‘ Spec Coop ‘ Spec+Coop
ImageNet 55.6 57.5 58.6
Omniglot 88.2 90.5 92.0

Aircraft 82.1 81.5 82.8

Birds 73.3 75.2 75.3

Textures 68.2 69.4 71.2

QuickDraw 75.1 76.2 77.3
Fungi 48.4 48.0 48.5
VGGFlower 85.9 90.1 90.5

© TrafficSigns | 744 765 | 780
MSCOCO 532 53.3 52.8

MNIST 94.8 94.3 96.2
CIFAR10 73.0 74.3 754
CIFAR100 61.9 61.8 62.0

In-Domain Avg 72.1 73.6 74.5

Out-of-Domain Avg 71.5 72.0 72.9

Overall Avg 71.9 73.0 73.9
Learnable Parameters | 0.22M  7.65M 7.78M

Performance of varying number of modes. On META-
DATASET, there are 8 training datasets representing 8 dif-
ferent domains. By default, in the proposed multi-mode
modulator, we set the number of modes M = 8 for both
the domain-specific and domain-cooperative parameter sets,
aiming to link each mode to a specific dataset. In addi-
tion, it is flexible to change the number of modes for each
of the parameter sets to decrease or increase the model
capacity. To decrease the number of modes for domain-
specific set, we manually merge different datasets by their
visual similarity to form new domains and calculate a new
domain classification loss (Eq. 3). For example, we can
form 4 new domains: {ImageNet, Birds, DTD}, {Omniglot,
QuickDraw}, {Fungi, VGGFlower}, and {Aircraft}. To in-
crease the number of modes for domain-specific set, we as-
sign 2 modes for each dataset and average their parameters
before hard-gating. To change the number of modes for
domain-cooperative set, we directly modify the cooperative
mode number M.

We experimented with various mode combinations and
report the results in Table 3. The best performance is
achieved with the combination {8,8}, which contains 8
modes for both parameter sets. This is not surprising since
we have 8 training datasets in total. When we decrease the
modes to {4, 4}, the overall accuracy drops a little, but Om-
niglot increases slightly. This is due to the increased num-
ber of training examples by merging Omniglot and Quick-
Draw as a new domain. When we increase the modes to
{8,16} or {16, 16}, the overall accuracy drops. The redun-
dant modes may hinder the datasets to learn the inherent
relationships. Note that when we increase the number of
modes, the number of learnable parameters only increases
slightly. This shows that we can extend our model to much
larger number of datasets (e.g., more than 16) without sig-

Table 3. Accuracy with various number of modes. {4, 4} denotes
4 domain-specific modes and 4 domain-cooperative modes.

Datasets Number of Modes

{44} {88} {8,116} {l16,16}
ImageNet 57.9 58.6 57.7 58.0
Omniglot 92.4 92.0 91.6 91.4
Aircraft 82.2 82.8 83.2 81.1
Birds 75.2 75.3 74.7 74.0
Textures 66.5 71.2 67.0 68.4
QuickDraw 77.2 71.3 77.6 77.0
Fungi 48.3 48.5 475 48.0
VGGFlower 89.7 90.5 89.8 89.5

© TrafficSigns | 757 780 768 730

MSCOCO 50.2 52.8 52.7 48.3
MNIST 94.7 96.2 94.8 94.4
CIFAR10 73.6 754 74.7 74.4
CIFAR100 60.9 62.0 61.5 61.1
In-Domain Avg 73.7 74.5 73.6 73.4
Out-of-Domain Avg 71.0 72.9 72.1 70.2
Overall Avg 72.7 73.9 73.0 722

Learnable Parameters | 7.71M  7.78M 7.84M  7.90M

nificantly increasing the number of parameters.

Performance of varying number of modulation layer
groups. The ResNetl8 [16] backbone has 4 layer groups
with each group containing 2 building blocks and each
block containing 2 convolutional layers. By default, fea-
ture modulation is applied after the BN of each convolu-
tional layer (details in the supplementary). In order to study
the modulation property with respect to different layers,
we gradually add modulation from deep to shallow layer
groups. As a special variant, we only add modulation on the
second convolutional layer in each of the building blocks
across all layer groups, dubbed half in Table 4.

From Table 4, we can see that the accuracy increases
with the increased number of modulation layer groups from
1 to 4. The overall accuracy increase from 3 groups to 4
groups is 2.2%. This indicates that the modulations to shal-
lower layers are indispensable since these shallow layers ex-
tract low-level features, which is more generalizable across
datasets. Moreover, only modulating the second layers
(half) obtains approximate accuracy compared with mod-
ulation on all layers (4 groups). However, half has 4.04M
learnable parameters, only 52% of all 4 groups. This pro-
vides us a way to get a slim yet competitive model by ap-
plying modulation evenly on all candidate layers.

5.4. Visualization

We first visualize the selection gates of the domain-
specific parameter set in Figure 3. Each training dataset
focus on one mode, showing the effectiveness of the hard-
gating mechanism. For the unseen test datasets, they try
to select the modes according to their relevance to train-
ing datasets. TrafficSigns, MSCOCO, CIFAR10, and CI-
FAR100 contain common images, showing high relevance
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Table 4. Accuracy with various number of modulation layer
groups. half denotes that we only modulate the second covolu-
tional layer in each of the basic blocks across all layer groups.

Datasets Number of Modulation Layer Groups
1 2 3 half 4
ImageNet 54.2 574 57.5 57.7 58.6
Omniglot 83.2 88.8 91.1 91.3 92.0
Aircraft 74.0 80.7 82.7 82.2 82.8
Birds 65.4 71.7 73.8 75.0 75.3
Textures 70.5 68.3 68.0 69.9 71.2
QuickDraw 70.5 75.3 76.5 77.2 77.3
Fungi 422 45.6 47.0 48.5 48.5
VGGFlower 88.6 89.6 89.4 90.0 90.5
© 7 TrafficSigns | 721 732 718 750 780

MSCOCO 50.2 49.3 49.9 52.5 52.8
MNIST 91.7 94.4 94.2 94.4 96.2
CIFAR10 69.3 71.1 722 75.3 75.4
CIFAR100 56.1 57.5 58.4 61.5 62.0
In-Domain Avg 68.6 722 733 74.0 74.5
Out-of-Domain Avg 67.9 69.1 69.3 71.7 72.9
Overall Avg 68.3 71.0 71.7 73.1 73.9

Learnable Parameters | 4.81M  6.66M 7.49M 4.04M 7.78M

to ImageNet. MNIST contains black-white digit images,
showing high relevance to Omniglot. In addition, Traffic-
Signs and MNIST show relevance to QuickDraw as they all
contain simple shapes. Overall, the domain-specific infor-
mation can be successfully learned with the selection mech-
anism.

The query scores of the domain-cooperative parameter
set are shown in Figure 4. The scores visualization is quite
different from the gates visualization. ImageNet attends to
all modes with relatively even values, because the back-
bone is pre-trained on ImageNet. Datasets (CIFAR10, CI-
FAR100, and MSCOCO) that contain common images and
are visually similar to ImageNet ensemble the scores of Im-
ageNet. To the contrary, datasets (Omniglot, QuickDraw,
and MNIST) that share less overlaps with ImageNet show
a unimodal high value on mode 3. Some others (Aircraft,
VGGFlower) are fine-grained datsets, they show trimodal
scores. Other implicit correlations are also learned with dif-
ferent mode combinations. Overall, the domain-cooperative
information can be automatically learned and obtained with
the cooperative query mechanism.

6. Conclusion

In this paper, we deal with the multi-domain few-shot
classification problem. It differs from single-domain few-
shot classification in two aspects: 1) it contains multiple di-
verse datasets for training and extra unseen domains for test;
2) potential correlations exist across multiple domains. We
propose a single-network multi-mode modulator to apply
layer-wisely to generate multi-domain representation. In
the modulator, we further introduce the domain-specific and
domain-cooperative parameter sets that work complemen-
tarily to extract the intra-domain and inter-domain informa-
tion to model domain correlations. The state-of-the-art per-

’77oo,elzo%lgo%/zo%’ZO%'ZO%/ZO%/’;O% R
O S
ImageNet - 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Omniglot - 0.0 [y 0.0 0.0 0.0 0.0 0.0 0.0
Aircraft - 0.0 0.0 m 0.0 0.0 0.0 0.0 0.0 08
Birds -0.06 0.0 0.0 E 0.0 0.0 0.0 0.0
Textures - 0.0 0.0 0.0 0.0 ﬂ 0.0 0.0 0.0
QuickDraw - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6
Fungi - 0.0 0.0 0.0 0.0 0.0 0.0 M 0.0
VGGFlower - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o4
TrafficSigns E 0.0 0.0 0.0 0.0 0.100.030.03
MSCOCO E 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MNIST - 0.0 E 0.0 0.0 0.0 0.14 0.0 0.0 0.2
CIFAR10 -IR 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CIFAR100 -iMel¢ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

—-0.0
Figure 3. Selection gates of the domain-specific parameter set.
M0, Mo, 0., M0, Mo, M0, Mo, P
%% 1%'@ ;o'e 3%'@ qoo'e 5%'@ 6%'@ 0% o

ImageNet -0.21 0.32 0.09 0.05 0.05 0.12 0.07 0.09
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Lo.0

Figure 4. Query scores of the domain-cooperative parameter set.

formance is achieved on the challenging META-DATASET,
especially for the unseen test domains.
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