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Abstract

Existing deep learning-based approaches for monocular
3D object detection in autonomous driving often model the
object as a rotated 3D cuboid while the object’s geomet-
ric shape has been ignored. In this work, we propose an
approach for incorporating the shape-aware 2D/3D con-
straints into the 3D detection framework. Specifically, we
employ the deep neural network to learn distinguished 2D
keypoints in the 2D image domain and regress their cor-
responding 3D coordinates in the local 3D object coordi-
nate first. Then the 2D/3D geometric constraints are built
by these correspondences for each object to boost the de-
tection performance. For generating the ground truth of
2D/3D keypoints, an automatic model-fitting approach has
been proposed by fitting the deformed 3D object model and
the object mask in the 2D image. The proposed frame-
work has been verified on the public KITTI dataset and
the experimental results demonstrate that by using addi-
tional geometrical constraints the detection performance
has been significantly improved as compared to the base-
line method. More importantly, the proposed framework
achieves state-of-the-art performance with real time. Data
and code will be available at https://github.com/
zongdai/AutoShape

1. Introduction

Perceiving 3D shapes and poses of surrounding obsta-
cles is an essential task in autonomous driving (AD) per-
ception systems. The accuracy and speed performance of
3D objection detection is important for the following mo-
tion planning and control modules in AD. Many 3D ob-
ject detectors [50, 14] have been proposed, mainly for depth
sensors such as LiDAR [35, 45] or stereo cameras [46, 18],
which can provide the distance information of the environ-
ments directly. However, LiDAR sensors are expensive and
stereo rigs suffer from on-line calibration issues. There-
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Figure 1: (a): 3D Bbox corners and center are commonly used
for monocular 3D object detection. However, the rich structure
information from 3D vehicle shapes and their projection on 2D
images are not employed. (b) shows our shape-aware constraints
constructed from an aligned 3D model. Such 2D-3D keypoints
carry more semantic and geometric information and enable to con-
struct stronger geometric constraints for monocular 3D detection.

fore, monocular camera based 3D object detection becomes
a promising direction.

The main challenge for monocular-based approaches is
to obtain accurate depth information. In general, depth es-
timation from a single image without any prior information
is a challenging problem and recent many deep learning-
based approaches achieve good results [7]. With the esti-
mated depth map, pseudo LiDAR point cloud can be re-
constructed via pre-calibrated intrinsic camera parameters
and 3D detectors designed for LiDAR point cloud can be
applied directly on pseudo LiDAR point cloud [33] [37].
Furthermore, [33] integrates the depth estimation and 3D
object detection network together following an end-to-end
manner. However, heavy computation burden is one main
bottleneck of such two-stage approaches.

To improve the efficiency, many direct regression-
based approaches have been proposed (e.g., SMOKE [24],
RTM3D [19]) and achieved promising results. By repre-
senting the object as one center point, the object detec-
tion task is formulated as keypoints detection and its cor-
responding attributes (e.g., size, offsets, orientation, depth,
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etc.) regression. With this compact representation, the com-
putation speed of this kind of approach can reach 20∼30
fps (frame per second). However, the drawback is also ob-
vious. One center point [48, 24] representation ignores the
detailed shape of the object and results in location ambi-
guity if its projected center point is on another object’s sur-
face due to occlusion [47]. To alleviate this ambiguity, other
geometrical constraints have been used to improve the per-
formance. RTM3D [19] adds 8 more keypoints as addi-
tional constraints which are defined as the projected 2d lo-
cation of the 3D bounding box’s corners. However, these
keypoints have non-real context meanings and their 2D lo-
cations vary differently with the changing of the camera
view-point, even the object’s orientation. As shown in the
left of Fig. 1, some keypoints are on the ground and some
are on the sky or trees. This makes the keypoints detection
network extremely difficult to distinguish the keypoints or
other image pixels.

In this paper, we propose a novel approach to learn the
meaningful keypoints on the object surface and then use
them as additional geometrical constraints for 3D object de-
tection. Specifically, we design an automatic deformable
model-fitting pipeline first to generate the 2D/3D corre-
spondences for each object. Then, the center point plus sev-
eral distinguished keypoints are learned from the deep neu-
ral network. Based on these keypoints and other regressed
objects’ attributes (e.g., orientation angle, object dimension
etc.), the object’s 3D bounding box can be solved with lin-
ear equations. The proposed framework can be trained in
an end-to-end manner. Our contributions include:

1. We propose a shape-aware 3d object detection frame-
work, which employs keypoints geometry constraints for
2D/3D regression to boost the detection performance.

2. We present a method for automatically fitting the 3D
shape to the visual observations and then generating
ground-truth annotations of 2D/3D keypoints pairs for
the training network. Our source code and dataset will
be made public for the community.

3. The effectiveness of our approach has been verified
on the public KITTI dataset and achieved SOTA per-
formance. More importantly, the proposed framework
achieves real-time (25 fps), which can be integrated into
the AD perception module.

2. Related Work
2.1. Monocular-based 3D Detection

Image-based 3D object detection becomes popular due
to the cheap price of the camera sensors. Stereo-based
approaches usually suffer from calibration issues between
two camera rigs. Therefore, many 3D object detection

approaches have proposed to use a single image frame.
Generally, these approaches can be categorized into three
types: depth-map-based, direct regression-based, and CAD
model-based methods.

Depth-map-based methods [39] usually need to estimate
the depth map first. In [40] and [37], the estimated depth
map is transformed into point clouds, and then point-cloud-
based 3D object detectors are employed for achieving the
detection results. Rather than transforming the depth map
into point clouds, many approaches propose using the depth
estimation map directly in the framework to enhance the
3D object detection. In M3D-RPN [1] and [5], the pre-
estimated depth map has been used to guide the 2D con-
volution, which is called as “Depth-Aware Convolution”.
Direct regression-based methods are proposed to estimate
the objects’ 3D information via image domain directly, such
as [16, 24, 48, 47]. Direct-based methods are much more
efficient than depth-map-based methods because the depth-
map computation procedure is not necessary.

In order to well benefit the prior knowledge, the shape
information has been integrated into the CAD-based ap-
proaches. Deep MANTA [2] and ApolloCar3D [36] are
two keypoints based methods, in which the 3D keypoints
are pre-defined on the CAD model and their correspond-
ing 2D points on the image plane are computed by the deep
neural network. Then the 3D pose can be solved with a
standard 2D/3D pose solver [15] with these 2D/3D cor-
respondences. Besides keypoints-based methods, dense-
matching-based approaches are proposed in [12, 10, 29]. In
[12], Rendering-and-Compare loss is designed for optimiz-
ing the 3d pose estimation. While in [10] and [29], the 3D
pose estimation and reconstruction of each object are gen-
erated simultaneously with the deep neural network.

2.2. Data Labeling for 3D Object Detection

For easy representation, objects are usually described as
3D cuboids in deep learning frameworks while the shape in-
formation has been totally ignored. Manually label the ob-
ject shape via only the image observation is extremely dif-
ficult and the annotation quality also can not be guaranteed.
Many CAD model guided annotation approaches have been
proposed to obtain the dense shape annotations. In [30],
both the stereo image and the sparse LiDAR point cloud
has been employed for generating the dense scene flow for
both foreground and background pixels. For dynamic ob-
jects, 16 vehicle models are chosen as basic templates and
then the dense annotation is achieved by finding an optimal
3D similarity transformation (e.g., the pose and scale of the
3D model) with three types of observations such as LiDAR
points, dense disparity computed by SGM [8] and labeled
2D/3D correspondences.

In [36], 66 keypoints are defined on the 3D CAD mod-
els and annotators label their corresponding 2D keypoints
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on the image. Based on the 2D/3D correspondences, the
object poses can be obtained via a PnP solver. In [42],
the authors apply a differentiable shape renderer to signed
distance fields (SDF), leveraged together with normalized
object coordinate spaces (NOCS) to automatically generate
the dense 3D shape without the 3D bounding boxes anno-
tation. Although the whole process is labor-free, the anno-
tation quality is far-from the ground truth. Different from
[42], we use the ground truth 3D bounding boxes as strong
guidance for our 3D shape annotation generation process.

3. Problem Definition
Before the introduction of our proposed approach, a gen-

eral description of image-based 3D object detection prob-
lem is introduced first.

3.1. Pose Estimation

Given an image, the task of pose estimation is to esti-
mate the orientation and translation of objects in 3D. Specif-
ically, 6D pose is represented by a rigid transformation
(R,T) from the object coordinate system to the camera co-
ordinate system, where R represents the 3D rotation and T
represents the 3D translation.

Assuming a 3D object point Po (xo, yo, zo) in the object
coordinate system, transformed 3d point Pc (xc, yc, zc) in
camera coordinate can be obtained as

[xc, yc, zc]
T = R[xo, yo, zo]

T +T, (1)

where R is rotation matrix, T is translation vector. Given

the camera intrinsic matrix K =

fx 0 cx
0 fy cy
0 0 1

 , the projected

image point p (u, v) can be obtained as

s[u, v, 1]T = K[xc, yc, zc]
T . (2)

Based on Eq. 1 and Eq. 2, the object pose R and T can
be theoretically recovered with the geometric constraints
between 3D points Po on the object and the projected 2D
image points p.

3.2. Learning-based 3D Object Detection

In the era of deep learning, many approaches have been
proposed to detect objects and directly regress their poses
using neural networks, while geometric 2D/3D constraints
have been ignored in the formulation. Image-based 3D ob-
ject detection is a typical task, which aims at estimating the
location, orientation of an object in the camera coordinate.
Usually, an object is represented as a rotated 3D BBox as

r = (rx, ry, rz); t = (tx, ty, tz);d = (l, w, h), (3)

in which r, t represent the object’s orientation, location in
the camera coordinate and d is the dimension of the ob-
ject. With the super expression ability of neural networks,

all these parameters are regressed directly without impos-
ing addition constraints. Indeed, both 3D object detection
and pose estimation are essentially the same problem and
(r, t) can be easily transformed from (R, T). Therefore, we
explicitly employ geometric constraints in pose estimation
formulation to improve the learning-based 3D object detec-
tion.

4. Proposed Method
In this section, we propose a general deep learning-

based 3D object detection framework, which can employ
the 2D/3D geometric constraints. To well explore the prior
knowledge, CAD models are employed here. First, we pre-
define several distinguished 3D keypoints on CAD models.
Then, we propose to build the correlation between these 3D
keypoints and their 2D projections on the image resorting to
the deep learning network. Finally, the object pose can be
easily solved with these geometrical constraints. More im-
portantly, all the processes are implemented into the neural
network, which can be trained in an end-to-end manner.

4.1. Point-wise 2D-3D Constraints

Assuming a 3D point Pi
o (xio, y

i
o, z

i
o) in object local co-

ordinate, then its projection location (ui, vi) on the image
plane can be obtained based on Eq. 1 and Eq. 2 as

s

 ui

vi

1

 = K
[
R T

] 
xio
yio
zio
1

 . (4)

In autonomous driving scenario, the road surface that the
object lies on is almost flat locally, therefore the orientation
parameters are reduced from three to one by keeping only
the yaw angle ry around the Y-axis. Therefore the rotation

matrix R becomes as

 cos(ry) 0 sin(ry)
0 1 0

−sin(ry) 0 cos(ry)

 and Eq. 4 can

be simplified as[
−1 0 ũi

0 −1 ṽi

]Tx

Tz

Tz

 =

 xi
ocos(ry) + ziosin(ry)+

ũi[xi
osin(ry)− ziocos(ry)]

yi
o + ṽi[xi

osin(ry)− ziocos(ry)]

 ,

(5)
where ũi = (ui − cx)/fx, ṽi = (vi − cy)/fy and T =
[Tx, Ty, Tz]

T . As described in Eq. 5, for each object point,
two constraints are given. If n points are provided, n × 2
constraints can be obtained as

AT = B, (6)

where

A =


−1 0 ũ1

0 −1 ṽ1
...

−1 0 ũn

0 −1 ṽn


2n×3

,
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Figure 2: Overview of the proposed keypoints-based 3D detection framework. By passing the backbone network, 8 branch heads
are followed for center point classification, center point offset, 2D keypoints, 3D coordinates, keypoints confidence, object orientation,
dimension, and 3D detection score regression purpose. Finally, all the regressed information has been employed for recovering the object’s
3D Bbox in the camera coordinate.

and

B =


x1
o cos(ry) + z1o sin(ry) + ũ1(x1

o sin(ry)− z1o cos(ry))
y1o + ṽ1(x1

o sin(ry)− z1o cos(ry))
...

xn
o cos(ry) + zno sin(ry) + ũn(xn

o sin(ry)− zno cos(ry))
yno + ṽn(xn

o sin(ry)− zno cos(ry))


2n×1

.

However, in the real AD scenario, not all the key-
points can be seen from a certain camera viewpoint. For
these keypoints which have been seriously occluded, the
2D/3D keypoints regression can not be well guaranteed. To
well handle this kind of uncertainty, we propose to output
an additional score to measure the confidence of each key-
point. And this score can be used as a weight during the
pose calculation process. Specifically, for the 2n constrains
in Eq. 6, an additional weights c = {c1, c2, ..., c2n} have
been added to determine their importance during the pose
calculation procedure. Therefore, Eq. 6 can be reformu-
lated as

diag(c)AT = diag(c)B (7)

In this linear system, T represents the object location in
the camera coordinate system, which can be solved by pro-
viding 2D/3D correspondences and the rotation angle ry .
Here, the 3D keypoints are defined in the local object’s co-
ordinate varying in a relatively small range and the 2D key-
points are defined in the image domain. Both of them are
easy for networks to learn. However, manual labeling of the
ground truth for 2D and 3D keypoints is very costly and te-
dious. Therefore, we develop an auto-labeling pipeline by
optimizing the 2D and 3D reprojection errors. The detailed
annotation pipeline will be introduced in Section 5.

4.2. Network

An overview of our proposed framework is illustrated in
Fig. 2. Here, we follow one-stage-based 3D object detec-
tion framework such as CenterNet [48] for its inference ef-
ficiency. Our proposed framework is backbone independent
and here we employ DLA-34 [41] in our implementation.
Given an image I with width W and height H , the out-
put feature map will be 4 times smaller than I after passing
through the backbone network. To well utilize the geomet-
ric constraints, the following information is required to be
learned from the deep neural network.

Object Center: in anchor-free based object detec-
tion frameworks, the object center is essential information,
which serves two functions: one is whether there is an ob-
ject and the other is that if there exists an object, where
is the center. Usually, these two functions are realized by
a classification branch by distinguishing a pixel whether is
an object center or not. The output of this branch will be
W
4 ×

W
4 × C, where C is the number of classes.

Besides the classification, an additional “offset” regres-
sion branch is required to compensate for the quantization
error during the down-sampling process. The output of this
branch is W

4 ×
H
4 × 2 to represent the offset in x and y

direction respectively.
Object Dimension: a separate branch is used to regress

the object dimension h, w, l with the output size of W
4 ×

H
4 × 3. Similar to other approaches, we don’t regress the

absolute object’s size directly and regress a relative scale
compared to the mean object size of each class. Details
operation can be found in [48].

2D Keypoints: rather than directly detect these key-
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points from the image, we regress n ordered 2D offset coor-
dinates for each object center. The benefit is that the number
and order of keypoints for each object can be well guaran-
teed. In addition, the regression for the offset is easier by
removing the object center. The output size of this branch
is W

4 ×
H
4 × 2n.

3D Keypoints: similar to the 2D keypoints, we regress
the 3d keypoints in the local object coordinate. In addition,
all 3D keypoints values are normalized by object dimension
(l, w, h) in x, y, z-direction respectively. By using this for-
mat, the 3D keypoints values are in a relatively small range,
which will benefit the whole regression process. The output
size of this branch is W

4 ×
H
4 × 3n.

Object Orientation: similarly, we regress local orien-
tation angle with respect to the ray through the perspective
point of 3D center following Multi-Bin based method [31].
Here, 8 bins are used with the output size of W

4 ×
W
4 × 8.

Keypoints Confidence Scores: for each keypoint, a
couple of additional confidence scores have been regressed
for measuring its contribution in the linear system for solv-
ing the object pose. For 2n constrains in Eq . 6, a feature
map with size of W

4 ×
W
4 × 2n will be outputted.

3D IoU Confidence Score: rather using the classifica-
tion score directly as the object detection confidence, we
add one branch to regress the 3D IoU score in purpose. This
score is supervised by the IoU between estimated Bbox and
ground truth Bbox. Finally, the product of this score and
the output classification score is assigned as the final 3D
detection confidence score.

4.3. Loss Function

The overall loss contains the following items: a center
point classification loss lm and center point offset regres-
sion loss loff , a 2D keypoints regression loss l2D, a 3D
keypoints points regression loss l3D, an orientation multi-
bin loss lr, a dimension regression loss lD, a 3D IoU confi-
dence loss lc and a 3D bounding box IoU loss lIoU . Specif-
ically, the multi-task loss is defined as

L = wmlm + woff loff + w2Dl2D + w3Dl3D+

wrlr + wDlD + wclc + wIoU lIoU
(8)

where lm is the focal loss as used in [48], l2D is a depth-
guided l−1 loss as used in [17], lD and l3D are L1 loss with
respect to the ground truth. Orientation loss lr is the Multi-
Bin loss. 3D IoU confidence lc is a binary cross-entropy
loss supervised by the IoU between the predicted 3D BBox
and ground truth. lIoU is the IoU loss between the predicted
3D BBox and ground truth [44].

5. 3D Shape Auto-Labeling
In this section, we will introduce how to automatically fit

the 3D shape to the visual observations and then automati-
cally generate ground-truth annotations of 2D keypoints and

3D locations in the local object coordinate for training the
network. The main process is illustrated in 3. Different
from existing methods which use only a few CAD models
for 3D labeling (e.g., 11 in [42] and 16 in [30]), we adopt a
3D deformable vehicle template [36, 25] that can represent
arbitrary vehicle shape by adjusting the parameters. There-
fore, the 3D shape labeling process can be formulated as
an optimization problem that aims at computing the optimal
parameter combination to fit the visual observations (i.e. 2D
instance mask, 3D bounding box, and 3D LiDAR points).

5.1. Deformable Vehicle Template

In the real-world traffic scenarios, there are many differ-
ent vehicle types (e.g., coupe, hatchback, notchback, SUV,
MPV, etc.) and their geometric shapes vary significantly. To
perform 3D shape fitting, a straight-forward solution is to
build a 3D shape dataset and the fitting process can be re-
garded as model retrieval. However, dataset construction is
labor-intensive, inefficient, and costly. Instead, we use a de-
formable 3D model for vehicle representation [25]. Specif-
ically, this template is composed of a set of PCA (Principal
Components Analysis) basis r. Any new 3D vehicleM(s)
can be represented as a mean shape modelM0 plus a lin-
ear combination of r principal components with coefficient
s = [s1, s2, ..., sr] as

M(s) =M0 +

r∑
k=1

skδkpk, (9)

where pk and δk are the principal component direction and
corresponding standard deviation and sk is the coefficient of
the kth principal component. Based on the vehicle template,
we can automatically fit an optimal 3D shape to the visual
observations (details in Subsec. 5.2).

5.2. 3D Shape Optimization

For each vehicle, our goal is to assign a proper 3D shape
to fit the visual observations, including the 2D instance
mask, the 3D bounding box, and the 3D LiDAR points.
Specifically, the annotations of 2D instance mask Iins and
the 3D bounding box Bbox are provided by the KINS
dataset [32] and the KITTI dataset [6], respectively. The an-
notation of 3D LiDAR points for each vehicle is much more
complex. According to the labeled 3D bounding boxes, we
first segment out the individual 3D points from the entire
raw point cloud. Then we remove the ground points using
the ground-plane estimation method (i.e. RANSAC-based
plane fitting). Finally, we obtain the “clean” 3D points for
each vehicle, which is represented as p = {p0, ..., pk}.

The 3D shape annotation is to compute the best PCA
coefficient ŝ and the object 6-DoF pose (R̂, t̂). Existing
3D object detection benchmarks (e.g., KITTI, Waymo) only
label the yaw angle because they assume vehicles are on the
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Figure 3: The pipeline of the proposed 3D shape-aware auto-labeling framework. By providing different kinds of vehicle CAD
models, a mean shape template and r principal basic can be obtained. By giving a 3D object sample in the KITTI dataset, the optimal
principal components with coefficient s and 6-DoF pose can be iteratively optimized by minimizing the 2D and 3D losses which are defined
on the scanned sparse point cloud and the instance mask.

Figure 4: Illustration of the 3D shape optimization process
from step 0 to step 200. From the top to bottom, the rendered
mask gradually covers the target mask and 3D model vertices align
with the point cloud gradually and the 3D deformed shape changes
from a mean shape to a ‘notchback’.

road plane. However, we experimentally (an example has
been given in Fig. 5) find that the other two angles (i.e. pitch
and roll) can significantly improve the 3D shape annotation
results. Therefore, the loss function is formulated as

ŝ, R̂, t̂ = argmin
s,R,t

{αL2D (Pr (M (s) ,R, t) , Iins)

+βL3D (v (s) ,R, t,p)},
(10)

which consists of 3D points loss L3D and 2D instance loss
L2D. α, β are two hype-parameters to balance these two
constraints.

The operation Pr (·) is a differentiable rendering func-
tion to produce the binary mask Ĩins ofM (s) with trans-
lation {R, t}. Specifically, the L2D is defined as the sum
distance over each pixel (i, j) in image I

L2D =
∑

(i,j)∈I

∥∥∥Ĩins(i, j)− Iins(i, j)∥∥∥ . (11)

Figure 5: An example of CAD model-fitting results with one
angle (yaw) only or three angles (yaw, roll, and pitch). When
the road is not flat, serious misalignment will happen if only yaw
angle is applied for optimization.

For each 3D point pi ∈ p, we find its nearest neighbor
vi in v(s̃) and compute the distance between them. L3D is
defined as the sum distance over all correspondences pairs

L3D =
∑
pi∈p
‖pi − v(s̃)i‖ . (12)

The function of Eq. 10 can be optimized by the gradient
descent strategy. The vehicle’s center position and orienta-
tion are used for t and yaw angle initialization, while the
pitch, roll angles, and PCA coefficients are initialized as ze-
ros. Then we forward the pipeline and compute L2D and
L3D and finally back-propagate gradients to update s, R,
t. In Fig. 4, we depict the intermediate result during the
optimization process.

6. Experimental Results
We implement the approach and evaluate it on the public

KITTI [6] 3D object detection benchmark.
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Methods Modality AP3D70 (%) APBEV70 (%) Time (s)Moderate Easy Hard Moderate Easy Hard
M3D-RPN [1] Mono 9.71 14.76 7.42 13.67 21.02 10.23 0.16
SMOKE [24] Mono 9.76 14.03 7.84 14.49 20.83 12.75 0.03
MonoPair [4] Mono 9.99 13.04 8.65 14.83 19.28 12.89 0.06
RTM3D [19] Mono 10.34 14.41 8.77 14.20 19.17 11.99 0.05
AM3D [27] Mono∗ 10.74 16.50 9.52 17.32 25.03 14.91 0.4

PatchNet [26] Mono∗ 11.12 15.68 10.17 16.86 22.97 14.97 0.4
RefinedMPL [37] Mono∗ 11.14 18.09 8.94 17.60 28.08 13.95 0.15

KM3D [17] Mono 11.45 16.73 9.92 16.20 23.44 14.47 0.03
D4LCN [5] Mono∗ 11.72 16.65 9.51 16.02 22.51 12.55 0.20
IAFA [47] Mono 12.01 17.81 10.61 17.88 25.88 15.35 0.03

YOLOMono3D[22] Mono 12.06 18.28 8.42 17.15 26.79 12.56 0.05
Monodle[28] Mono 12.26 17.23 10.29 18.89 24.79 16.00 0.04
MonoRUn[3] Mono 12.30 19.65 10.58 17.34 27.94 15.24 0.07

GrooMeD-NMS[11] Mono 12.32 18.10 9.65 18.27 26.19 14.05 0.12
DDMP-3D[38] Mono 12.78 19.71 9.80 17.89 28.08 13.44 0.18

Ground-Aware[23] Mono 13.25 21.65 9.91 17.98 29.81 13.08 0.05
CaDDN[34] Mono∗ 13.41 19.17 11.46 18.91 27.94 17.19 0.63

MonoEF[49] Mono 13.87 21.29 11.71 19.70 29.03 17.26 0.03
MonoFlex[43] Mono 13.89 19.94 12.07 19.75 28.23 16.89 0.03

Baseline Method[17] Mono 11.45 16.73 9.92 16.20 23.44 14.47 0.03
AutoShape-16kps Mono† 13.72 21.75 10.96 19.00 30.43 15.57 0.04
AutoShape-48kps Mono† 14.17 22.47 11.36 20.08 30.66 15.59 0.05

Improvements - +2.72 +5.74 +1.44 +3.88 +7.22 +1.12 -

Table 1: Comparison with other public methods on the KITTI
testing server for 3D “Car” detection. For the “direct” meth-
ods, we represent the “ Modality” with “Mono” only. We use ∗ to
indicate that the “depth” has been used by these methods during
training and inference procedure. † indicates that ’CAD models’
have been used in data labeling stage. For easy understanding, we
have highlighted the top numbers in red for each column and the
second best is shown in blue.

6.1. Dataset and Implementation Details

Dataset: the KITTI dataset is collected from the real
traffic environment from the Europe streets. The whole
dataset has been divided into training and test two sub-
sets, which consist of 7, 481 and 7, 518 frames, respectively.
Since the ground truth for the test set is not available, we di-
vide the training data into a train set and a val set as in [50],
and obtain 3, 712 data samples for training and 3, 769 data
samples for validation to refine our model. On the KITTI
benchmark, the objects have been categorized into “Easy”,
“Moderate”, and “Hard” based on their height in the image
and occlusion ratio, etc.

Evaluation Metric: we focus on the evaluation on “Car”
category because it has been considered most in the previ-
ous approaches. For evaluation, the average precision (AP)
with Intersection over Union (IoU) is used as the metric for
evaluation. Our AutoShape approach is compared with ex-
isting methods on the test set using APR40

by training our
model on the whole 7, 481 images. We evaluate on the val
set for ablation by training our model on the train set using
APR40 .

Implementation Details: We implement our auto-
labeling approach (Sec. 5) using differentiable renderer
[9, 20, 21] which is optimized by using the Adam optimizer
with a learning rate of 0.002. To speed the optimization and
save memory, we downsample the PCA model to 666 ver-
tices and 998 faces. We set α and β to 1.0 and 5.0, respec-
tively. Our shape-aware 3D detection network uses DLA-
34 [41] as backbone. We pad the image size to 1280× 384.
3D IoU confidence loss weight wc and 3D IoU loss weight

wiou are increased from 0 to 1 with exponential RAMP-UP
strategy [13]. We use Adam optimizer with a base learning
rate of 0.0001 for 200 epochs and reduce by 10× at 100 and
160 epochs. We project the ground truth to corresponding
right image and use random scaling (between 0.6 to 1.4),
random shifting in the image range, and color jittering for
data augmentation. The network is trained on 2 NVIDIA
Tesla V100 (16G) GPU cards and the batch size is set to
16. For the KITTI test set evaluation, we sample 16/48 key-
points from the 3D shape, 8 corner points, and 1 center to
train network.

6.2. Data Auto-Labeling Evaluation

Our approach can automatically generate the 2D key-
points and their corresponding 3D locations in the local
object coordinate which are employed as the supervision
signal during the training process. To verify the quality
of the labeling results, the 2d instance segmentation mean
AP and 3D bounding box mean AP is used here for ver-
ification. Specifically, the 2D instance segmentation IoU
is calculated using the projected mask by 3D models and
the ground truth mask (from KINS [32]). We obtain the
labeled 3D bounding box using the dimension of the 3D
model with the optimized 6-DoF pose, which is compared
to the ground-truth 3D bounding box provided by [6] with
the mean IoU score. Tab. 2 shows the detailed comparison
results. The proposed method can achieve 0.86 for 2D mean
AP and 0.76 for 3D mean AP, which justifies the effective-
ness of our auto-labeling approach.

6.3. Evaluation for 3D Object Detection

The evaluation of the proposed approach with other
SOTA methods for 3D detection detection on KITTI [6] test
set are given in Tab. 1. From the table, we can obviously
find that the proposed method with 48 keypoints achieves
4 first places in 6 tasks with the AP |R40 metric. We also
report our method with 16 keypoints, which has faster in-
ference time and keeps promising accuracy. In addition,
most of the existing methods such as [27, 26, 37, 5, 34],
need to estimate the depth map, resulting in a heavy com-
putation burden in inference. In contrast, our method ob-
tains the depth information by 3D shape-aware geomet-
ric constraints, which is more accurate with faster run-
ning speed. We achieve 25 FPS with an NVIDIA V100
GPU card with 16 keypoints configuration. Compared
with baseline geometric constraint methods [17, 19] using
8 corners and 1 center point as keypoints for training, our
method with 48 keypoints utilizes more shape-aware key-
points to construct stronger geometric constraints, getting
+5.74%, +2.72%, 1.44%, +7.22%, +3.88%, +1.12% im-
provements forAP3D andAPBEV on “Easy”, “Moderate”,
and “Hard” categories.
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6.4. Qualitative Results

Qualitative results of 3D shape auto-labeling are shown
in Fig 6. Each vehicle in the image is overlaid with a ren-
dered 3D model optimized by our method. We can see
the consistency of our labeled shape and the real object.
We also visualize some representative results of our shape-
aware model in Fig 7. Our model can predict object location
accurately even for distant and truncated objects.

Figure 6: Qualitative results of our 3D shape auto-labeling.

Figure 7: Qualitative 3d detection results on KITTI validation set.
Red boxes represent our predictions, and green boxes come from
ground truth. LiDAR signals are only used for visualization.

6.5. Ablation Studies

The Number of Keypoints: our shape-aware 3D detec-
tion network benefits from the geometric constraint of 2D-
3D keypoints from the 3D shape. To better understand the
effect of different numbers of the keypoints, we set it from
0 to 48 with an interval of 8. Note that the 8 corners and 1
center point are always maintained in this experiment and
we vary the extra keypoints. As shown in Fig. 8, from 0
to 16, the network performance is significantly improved.
From 16 to 48, however, we observe that the network per-
formance is not sensitive to the number of the keypoints.
The main reason is that more dense 2D shape points can be
overlapped in the W

4 ×
H
4 heatmap during the regression

process. Furthermore, with more keypoints, the network
consumes more GPU memory for storage and computation,
resulting in longer training and inference time. In practice,
we set the number of extra keypoints to 16, which is a good
compromise of accuracy and efficiency.

2D/3D Loss for Auto-Labeling: our auto-labeling ap-
proach (Sec. 5) can generate precise posed 3D shape for
each 2D vehicle instance. The key technique is simulta-
neously optimizing the 2D/3D constraints (loss) for better
matching. Here, we conduct an ablation study to justify

Figure 8: 3D object detection performance with different number
of keypoints on KITTI val set using AP |R40 .

the effectiveness of the 2D/3D loss. We first only use 3D
point loss L3D in the objective function. Then we only use
the 2D mask loss L2D for optimization. Finally, we take
both 2D/3D loss into computation. Tab. 2 shows that us-
ing both 2D/3D loss get the best performance in the auto-
labeling process. We further observe that the impact of 2D
mask loss L2D is more important than 3D point loss. By
using both L2D and L3D, the labeling accuracy is improved
to 86.35 and 76.92, resulting in better 3D detection perfor-
mance. This correlation indicates that 3D detection perfor-
mance can be significantly improved by using high-quality
labeling data of 3D shapes.

L2D L3D
Label Acc. Car 3D Det.
I2D I3D Easy Mod. Hard

X 0.61 0.71 15.49 11.35 9.34
X 0.82 0.74 18.36 13.88 11.23
X X 0.86 0.76 20.09 14.65 12.07

Table 2: Shape Autolabeling Ablation Experiments on KITTI val
set using AP |R40 .

7. Conclusion
In this paper, we present a framework for real-time

monocular 3D object detection by explicitly employing
shape-aware geometric constraints between 3D keypoints
and their 2D projections on images. Both the 3D keypoints
and 2D project points are learned from deep neural net-
works. We further design an automatic annotation pipeline
for labeling object 3D shape, which can automatically gen-
erate the shape-aware 2D/3D keypoints correspondences for
each object. Experimental results show our approach can
achieve state-of-the-art detection accuracy with real-time
performance. Our approach is general for other types of
vehicles, and in the future, we are interested in validating
the performances of our approach on other objects.

15648



References
[1] Garrick Brazil and Xiaoming Liu. M3d-rpn: Monocular 3d

region proposal network for object detection. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 9287–9296, 2019. 2, 7

[2] Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa,
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stage monocular 3d object detection via keypoint estimation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 996–997,
2020. 1, 2, 7

[25] Feixiang Lu, Zongdai Liu, Xibin Song, Dingfu Zhou, Wei Li,
Hui Miao, Miao Liao, Liangjun Zhang, Bin Zhou, Ruigang
Yang, et al. Permo: Perceiving more at once from a single
image for autonomous driving. arXiv e-prints, pages arXiv–
2007, 2020. 5

[26] Xinzhu Ma, Shinan Liu, Zhiyi Xia, Hongwen Zhang, Xingyu
Zeng, and Wanli Ouyang. Rethinking pseudo-lidar represen-
tation. In European Conference on Computer Vision, pages
311–327. Springer, 2020. 7

15649



[27] Xinzhu Ma, Zhihui Wang, Haojie Li, Pengbo Zhang, Wanli
Ouyang, and Xin Fan. Accurate monocular 3d object detec-
tion via color-embedded 3d reconstruction for autonomous
driving. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 6851–6860, 2019. 7

[28] Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai
Yi, Haojie Li, and Wanli Ouyang. Delving into localization
errors for monocular 3d object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4721–4730, 2021. 7

[29] Fabian Manhardt, Wadim Kehl, and Adrien Gaidon. Roi-
10d: Monocular lifting of 2d detection to 6d pose and metric
shape. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2069–2078, 2019. 2

[30] Moritz Menze and Andreas Geiger. Object scene flow for au-
tonomous vehicles. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3061–
3070, 2015. 2, 5

[31] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and
Jana Kosecka. 3d bounding box estimation using deep learn-
ing and geometry. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7074–
7082, 2017. 5

[32] Lu Qi, Li Jiang, Shu Liu, Xiaoyong Shen, and Jiaya Jia.
Amodal instance segmentation with kins dataset. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3014–3023, 2019. 5, 7

[33] Rui Qian, Divyansh Garg, Yan Wang, Yurong You, Serge
Belongie, Bharath Hariharan, Mark Campbell, Kilian Q
Weinberger, and Wei-Lun Chao. End-to-end pseudo-
lidar for image-based 3d object detection. arXiv preprint
arXiv:2004.03080, 2020. 1

[34] Cody Reading, Ali Harakeh, Julia Chae, and Steven L
Waslander. Categorical depth distribution network for
monocular 3d object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8555–8564, 2021. 7

[35] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 770–779, 2019. 1

[36] Xibin Song, Peng Wang, Dingfu Zhou, Rui Zhu, Chenye
Guan, Yuchao Dai, Hao Su, Hongdong Li, and Ruigang
Yang. Apollocar3d: A large 3d car instance understand-
ing benchmark for autonomous driving. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5452–5462, 2019. 2, 5

[37] Jean Marie Uwabeza Vianney, Shubhra Aich, and Bing-
bing Liu. Refinedmpl: Refined monocular pseudolidar for
3d object detection in autonomous driving. arXiv preprint
arXiv:1911.09712, 2019. 1, 2, 7

[38] Li Wang, Liang Du, Xiaoqing Ye, Yanwei Fu, Guodong
Guo, Xiangyang Xue, Jianfeng Feng, and Li Zhang. Depth-
conditioned dynamic message propagation for monocular 3d
object detection. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
454–463, 2021. 7

[39] Xinlong Wang, Wei Yin, Tao Kong, Yuning Jiang, Lei Li,
and Chunhua Shen. Task-aware monocular depth estimation
for 3d object detection. arXiv preprint arXiv:1909.07701,
2019. 2

[40] Xinshuo Weng and Kris Kitani. Monocular 3d object de-
tection with pseudo-lidar point cloud. In Proceedings of the
IEEE International Conference on Computer Vision Work-
shops, pages 0–0, 2019. 2

[41] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor
Darrell. Deep layer aggregation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2403–2412, 2018. 4, 7

[42] Sergey Zakharov, Wadim Kehl, Arjun Bhargava, and Adrien
Gaidon. Autolabeling 3d objects with differentiable render-
ing of sdf shape priors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 12224–12233, 2020. 3, 5

[43] Yunpeng Zhang, Jiwen Lu, and Jie Zhou. Objects are differ-
ent: Flexible monocular 3d object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 3289–3298, 2021. 7

[44] Dingfu Zhou, Jin Fang, Xibin Song, Chenye Guan, Junbo
Yin, Yuchao Dai, and Ruigang Yang. Iou loss for 2d/3d ob-
ject detection. In 2019 International Conference on 3D Vi-
sion (3DV), pages 85–94. IEEE, 2019. 5

[45] Dingfu Zhou, Jin Fang, Xibin Song, Liu Liu, Junbo Yin,
Yuchao Dai, Hongdong Li, and Ruigang Yang. Joint 3d
instance segmentation and object detection for autonomous
driving. In the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1839–1849, 2020. 1

[46] Dingfu Zhou, Vincent Frémont, Benjamin Quost, and Bihao
Wang. On modeling ego-motion uncertainty for moving ob-
ject detection from a mobile platform. In IEEE Intelligent
Vehicles Symposium Proceedings, pages 1332–1338, 2014.
1

[47] Dingfu Zhou, Xibin Song, Yuchao Dai, Junbo Yin, Feixi-
ang Lu, Miao Liao, Jin Fang, and Liangjun Zhang. Iafa:
Instance-aware feature aggregation for 3d object detection
from a single image. In Proceedings of the Asian Confer-
ence on Computer Vision, 2020. 2, 7

[48] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
jects as points. arXiv preprint arXiv:1904.07850, 2019. 2, 4,
5

[49] Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang,
Hongyang Li, and Qinhong Jiang. Monocular 3d object de-
tection: An extrinsic parameter free approach. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7556–7566, 2021. 7

[50] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4490–4499, 2018. 1, 7

15650


