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Abstract

Modern deep-learning-based lane detection methods are
successful in most scenarios but struggling for lane lines
with complex topologies. In this work, we propose Cond-
LaneNet, a novel top-to-down lane detection framework
that detects the lane instances first and then dynamically
predicts the line shape for each instance. Aiming to re-
solve lane instance-level discrimination problem, we intro-
duce a conditional lane detection strategy based on condi-
tional convolution and row-wise formulation. Further, we
design the Recurrent Instance Module(RIM) to overcome
the problem of detecting lane lines with complex topolo-
gies such as dense lines and fork lines. Benefit from the
end-to-end pipeline which requires little post-process, our
method has real-time efficiency. We extensively evaluate
our method on three benchmarks of lane detection. Re-
sults show that our method achieves state-of-the-art per-
formance on all three benchmark datasets. Moreover, our
method has the coexistence of accuracy and efficiency,
e.g. a 78.14 F1 score and 220 FPS on CULane. Our
code is available at https://github.com/aliyun/
conditional-lane-detection.

1. Introduction
Artificial intelligence technology is increasingly be-

ing used in the driving field, which is conducive to au-
tonomous driving and the Advanced Driver Assistance Sys-
tem(ADAS). As a basic problem in autonomous driving,
lane detection plays a vital role in applications such as ve-
hicle real-time positioning, driving route planning, lane-
keeping assist, and adaptive cruise control.

Traditional lane detection methods usually rely on hand-
crafted operators to extract features [24, 43, 13, 17, 15, 1,
16, 33], and then fit the line shape through post-processing
such as Hough transform [24, 43] and Random Sampling
Consensus (RANSAC) [17, 15]. However, traditional meth-
ods faile in maintaining robustness in real scene since
the hand-crafted models cannot cope with the diversity
of lane lines in different scenarios [27]. Recently, most

Figure 1. Scenes of lane lines with complex topologies. It is chal-
lenging to cope with the scenes such as the dense lines(the first
row) and the fork lines(the second row). Different instances are
represented by different colors in this figure.

studies about lane detection have focused on deep learn-
ing [34]. Early deep-learning-based methods detect lane
lines through segmentation [28, 27]. Recently, various
methods such as anchor-based methods [32, 2, 39], row-
wise detection methods [30, 29, 41], and parametric pre-
diction methods [31, 25] have been proposed and continue
to refresh the accuracy and efficiency. Although deep-
learning-based lane detection methods have made great
progress [42], there are still many challenges.

A common problem for lane detection is instance-level
discrimination. Most lane detection methods [27, 28, 19,
32, 12, 21, 29, 2, 30, 41, 39] predict lane points first and
then aggregate the points into lines. But assigning differ-
ent points to different lane instances [34] is still a common
challenge. A simple solution is to label the lane lines into
classes of a fixed number (e.g. labeled as 0, 1, 2, 3 if the
maximum lane number is 4) and make a multi-class clas-
sification [28, 30, 41, 3]. But the limitation is that only
a predefined, fixed number of lanes can be detected [27].
To overcome this limitation, the post-clustering strategy is
investigated [27, 19]. However, this strategy is struggling
for some cases such as dense lines. Another approach is
anchor-based methods [25, 22, 39]. But it is not flexible to
predict the line shape due to the fixed shape of the anchor.

Another challenge is the detection of lane lines with
complex topologies, such as fork lines which have the same
starting point, and dense lines which are parallel with close
starting points. Such cases are common in driving scenar-
ios, e.g. fork lines usually appear when the number of lanes
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changes. Homayounfar et al.[10] proposed an offline lane
detection method for HDMap (High Definition Map) which
can deal with the fork lines. However, there are few studies
on the perception of lane lines with complex topologies for
real-time driving scenarios.

The lane detection task is similar to instance segmen-
tation, which requires assigning different pixels to differ-
ent instances. Recently, some studies [35, 38] have investi-
gated the conditional instance segmentation strategy, which
is also promising for lane detection tasks. However, it is
inefficient to directly apply this strategy to lane detection,
since the constraint for the mask is not completely consis-
tent with specifying the line shape [3, 34, 30].

In this work, we propose a novel lane detection frame-
work called CondLaneNet. Aiming to resolve the lane
instance-level discrimination problem, we propose the con-
ditional lane detection strategy inspired by CondInst [35]
and SOLOv2 [38]. Different from the instance segmen-
tation tasks, we focus the optimization on specifying the
lane line shape based on the row-wise formulation [30, 41].
Moreover, we design the Recurrent Instance Module(RIM)
to deal with the detection of lane lines with complex topolo-
gies such as the dense lines and fork lines. Besides, ben-
efit from the end-to-end pipeline that requires little post-
process, our method achieves real-time efficiency. The con-
tributions of this work are summarised as follows:

• We have greatly improved the ability of lane instance-
level discrimination by the proposed conditional lane
detection strategy and row-wise formulation.

• We solve the problem of detecting lane lines with com-
plex topologies such as dense lines and fork lines by
the proposed RIM.

• Our CondLaneNet framework achieves state-of-the-art
performance on multiple datasets, e.g. an 86.10 F1
score (4.6% higher than SOTA) on CurveLanes and a
79.48 F1 score (3.2% higher than SOTA) on CULane.
Moreover, the small version of our CondLaneNet has
high efficiency while ensuring high accuracy, e.g. a
78.14 F1 score and 220 FPS on CULane.

2. Related Work
This section introduces the recent deep-learning-based

lane detection methods. According to the strategy of
line shape description, current methods can be divided
into four categories: segmentation-based methods, anchor-
based methods, row-wise detection methods, and paramet-
ric prediction methods.

2.1. Segmentation-based Methods

Segmentation-based methods [28, 12, 27, 19, 21, 6] are
most common and have achieved impressive performance.

Early methods [28, 6] used a multi-class classification strat-
egy for lane instance discrimination. As explained in the
previous section, this strategy is inflexible. For higher in-
stance accuracy, the post-clustering strategy [4] was widely
applied [27, 19]. Considering that the segmentation-based
methods generally predict a down-scaled mask, some meth-
ods [19] predict an offset map for refinement. Recently,
some studies [3, 30] indicated that it is inefficient to de-
scribe the lane line as a mask because the emphasis of
segmentation is obtaining accurate classification per pixel
rather than specifying the line shape. To overcome this
problem, anchor-based methods and row-wise detection
methods were proposed.

2.2. Anchor-based Methods

Anchor-based methods [32, 2, 39] take a top-to-down
pipeline and focus the optimization on the line shape by re-
gressing the relative coordinates. The predefined anchors
can reduce the impact of the no-visual-clue problem [32]
and improve the ability of instance discrimination. Due
to the slender shape of lane lines, the widely used box-
anchor in object detection [7] cannot be used directly. Point-
LaneNet [2] and CurveLane [39] used vertical lines as an-
chors. LaneATT [32] designed anchors with a slender
shape and achieves state-of-the-art performance on multi-
ple datasets. However, the fixed anchor shape results in a
low degree of freedom in describing the line shape [39].

2.3. Row-wise Detection Methods

Row-wise detection methods [30, 29, 41] make good use
of the shape prior and predict the line location for each
row. In the training phase, the constraint on the overall
line shape is realized through the location constraint of each
row. Based on the continuity and consistency of the pre-
dicted locations from row to row, shape constraints can be
added to the model [29, 30]. Besides, in terms of efficiency,
some recent row-wise detection methods[30, 41, 11] have
achieved advantages. However, instance-level discrimina-
tion is still the main problem for row-wise formulation. As
the widely used post-clustering module [4] in segmentation-
based methods [27, 19] cannot be directly integrated into
the row-wise formulation, row-wise detection methods still
take the multi-class classification strategy for lane instance
discrimination. Considering the impressive performance on
accuracy and efficiency, we also adopt the row-wise formu-
lation in our method.

2.4. Parametric Prediction Methods

Different from the above methods which predict points,
parametric prediction methods directly output parametric
lines expressed by curve equation. PolyLaneNet [31] firstly
proposed to use a deep network to regress the lane curve
equation. LSTR [25] introduced transformer [37] to lane
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Figure 2. The structure of our CondLaneNet framework. The backbone adopts standard ResNet [8] and FPN [23] for multi-scale feature
extraction. The transformer encoder module [37] is added for more efficient context feature extraction. The proposal head is responsible
for detecting the proposal points which are located at the start point of the line. Meanwhile, a parameter map that contains the dynamic
convolution kernels is predicted. The conditional shape head predicts the row-wise location, the vertical range, and the offset map to
describe the shape for each line. To address the cases of dense lines and fork lines, the RIM is designed.

detection task and get 420fps detection speed. However,
the parametric prediction methods have not surpassed other
methods in terms of accuracy.

3. Methods
Given an input image I ∈ RC×H×W , the goal of

our CondLaneNet is to predict a collection of lanes L =
{l1, l2, ..., lN}, where N is the total number of lanes. Gen-
erally, each lane lk is represented by an ordered set of coor-
dinates as follows.

lk = [(xk1, yk1), (xk2, yk2), ..., (xkNk
, ykNk

)] (1)

Where k is the index of lane and Nk is the max number of
sample points of the kth lane.

The overall structure of our CondLaneNet is shown in
Figure 2. This section will first present the conditional
lane detection strategy, then introduce the RIM(Recurrent
Instance Module), and finally detail the framework design.

3.1. Conditional Lane Detection

Focusing on the instance-level discrimination ability, we
propose the conditional lane detection strategy based on
conditional convolution – a convolution operation with dy-
namic kernel parameters [14, 40]. The conditional detec-
tion process [35, 38] has two steps: instance detection and
shape prediction, as is shown in Figure 3. The instance
detection step predicts the object instance and regresses a
set of dynamic kernel parameters for each instance. In the
shape prediction step, conditional convolutions are applied
to specify the instance shape. This process is conditioned
on the dynamic kernel parameters. Since each instance cor-
responds to a set of dynamic kernel parameters, the shapes
can be predicted instance-wisely.

This strategy has achieved impressive performance on
instance segmentation tasks [35, 38]. However, directly
applying the conditional instance segmentation strategy to

lane detection is blunt and inappropriate. On the one
hand, the segmentation-based shape description is ineffi-
cient for lane lines due to the excessively high degree of
freedom [30]. On the other hand, the instance detection
strategy for general objects is not suitable for slender and
curved objects due to the inconspicuous visual character-
istic of the border and the central. Our conditional lane
detection strategy improves shape prediction and instance
detection to address the above problems.

Instance 1
Instance 2 Instance 3

Step 2: Shape predictionStep 1: Instance detection

Instance 1

a. Conditional Instance Segmentation

b. Conditional Lane Detection

Instance 2

Instance 3

Instance 1 Instance 2 Instance 3&4

Instance 1 Instance 2

Instance 4Instance 3

Step 2: Shape predictionStep 1: Instance detection

Figure 3. The difference between conditional instance segmenta-
tion and the proposed conditional lane detection strategy. Our
CondLaneNet detects the start point of each line for instance detec-
tion and uses the row-wise formulation to describe the line shape
instead of the mask. The overlapping lines can be distinguished
based on the proposed RIM, which will be detailed in Section 3.2.

3.1.1 Shape Prediction

We improve the row-wise formulation [30] to predict the
line shape based on our conditional shape head, as is shown
in Figure 2. In the row-wise formulation, we predict the
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lane location on each row and then aggregate the locations
to get the lane line in the order from bottom to top, based
on the prior of the line shape. Our row-wise formulation has
three components: the row-wise location, the vertical range,
and the offset map. The first two outputs are basic elements
for most row-wise detection methods [30, 41]. Besides, we
predict an offset map as the third output for further refine-
ment.

Linear Positive
Negetive

Row-wise location
Vertical range

𝑌

𝑋

Figure 4. The process of parsing the row-wise location and the
vertical range from the location map.

Row-wise Location As is shown in Figure 4, we divide
the input image into grids of shape Y × X and predict a
corresponded location map, which is a feature map of shape
1× Y ×X output by the proposed conditional shape head.
On the location map, each row has an abscissa indicating
the location of the lane line.

To get the row-wise location, a basic approach is to pro-
cess the X-classes classification in each row. In inference
time, the row-wise location is determined by picking the
most responsive abscissa in each row. However, a common
situation is that the line location is between the two grids,
and both the two grids should have a high response. To
overcome this problem, we introduce the following formu-
lation.

For each row, we predict the probability that the lane line
appears in each grid.

pi = softmax(f iloc) (2)

Where i represents the ith row, f iloc is the feature vector of
the ith row of location map floc, pi is the probability vector
for the ith row.

The final row-wise location is defined as the expected
abscissa.

E(x̂i) =
∑
j

j · pij (3)

Where E(x̂i) is the expected abscissa, pij is the proba-
bility of the lane line passing through the coordinate (j, i).

In the training phase, L1-loss is applied.

`row =
1

Nv

∑
i∈V
|E(x̂i)− xi| (4)

Where V represents the vertical range of the labeled line,
Nv is the number of valid rows.

Vertical Range The vertical lane range is determined by
row-wisely predicting whether the lane line passes through
the current row, as is shown in Figure 4. We add a linear
layer and perform binary-classification row by row. We use
the feature vector of each row in the location map as the
input. The softmax-cross-entropy loss is adopted to guide
the training process.

`range =
∑
i

(−yigtlog(vi)− (1− yigt)log(1− vi)) (5)

Where vi represents the predicted positive probability for
ith row and yigt is the groundtruth of ith row.

Offset Map The row-wise location defined in Equation 3
points to the abscissa of the vertex on the left side of the
grid, rather than the precise location. Thus, we add the off-
set map to predict the offset in the horizontal direction near
the row-wise location for each row. We use L1-loss to con-
strain the offset map as follows.

`offset =
1

NΩ

∑
(j,i)∈Ω

∣∣∣δ̂ij − δij∣∣∣ (6)

where δ̂ij and δij are the predicted offset and the label offset
on coordinate (j, i). We define Ω as the area near the lane
line with a fixed width. NΩ is the number of pixels in Ω.

Shape Description Each output lane line is represented
as an ordered set of coordinates. For kth line, the coordinate
(xik, y

i
k) of the ith row is represented as follows.{

yik = H/Y · i
xik = W/X · (locik + δ(locik, i))

(7)

Where i ∈
[
vkmin, v

k
max

]
, vkmin and vkmax are respectively

the minimum and maximum values of the predicted vertical
range, locki is rounded down from Eki , δ(·) is the predicted
offset.

3.1.2 Instance Detection

We design the proposal head for instance detection, as is
shown in Figure 2. For general conditional instance seg-
mentation methods [35, 38], the instance is detected in an
end-to-end pipeline by predicting the central of each object.
However, it is hard to predict the central for the slender and
curved lines because the visual characteristic of the line cen-
tral is not obvious.
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We detect the lane instance by detecting the proposal
point located at the start point of the line. The start point has
a more clear definition and more obvious visual character-
istic than the central. We follow CenterNet [5] and predict
a proposal heatmap to detect the proposal points and adopt
focal loss following CornerNet [20] and CenterNet[5].

`point =
−1

Np

∑
xy

{
(1− P̂xy)αlog(P̂xy) Pxy = 1

(1− Pxy)β(P̂xy)αlog(1− P̂xy) otherwise

(8)
Where Pxy is the label at coordinate (x, y) and P̂xy

is the predicted value at coordinate (x, y) of the proposal
heatmap. Np is the number of proposal points in the input
image.

Besides, we regress the dynamic kernel parameters by
predicting a parameter map following CondInst [35] and
SOLOv2 [38]. The constraints of the parameter map are
constructed through the constraints on the line shape.

3.2. Recurrent Instance Module

In the proposal head described above, each proposal
point is bound to a lane instance. However, in practice, mul-
tiple lane lines can fall in the same proposal point such as
the fork lines. To deal with the above cases, we propose the
Recurrent Instance Module(RIM).
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module
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Figure 5. The Recurrent Instance Module. In this figure, h and c
are the short-term memory and long-term memory respectively, f
is the input feature vector, s is the output state logit, k is the output
kernel parameter vector.

The structure of the proposed RIM is shown in Figure
5. Based on LSTM(Long Short-term Memory) [9], the
RIM recurrently predicts a state vector si and a kernel pa-
rameter vector ki, where i is the index of the lines which
start from the same proposal point. We define si as two-
dimensional logits that indicate two states: “continue” or
“stop”. The vector ki contains the kernel parameters for
subsequent instance-wise dynamic convolution. In the in-
ference phase, the RIM recurrently predicts the lane-wise
kernel parameters bound to the same proposal point until
the state is “stop”. As is shown in Figure 2, RIM is added
for each proposal point. Therefore, each proposal point can
guide the shape prediction of multiple lane instances.

We adopt cross-entropy loss to constrain the state output
as follows.

`state =
1

Ns

∑
i

− [yi · log(si) + (1− yi) · log(1− si)]

(9)
Where si is the output of softmax operation for ith state,

result yi is the ground truth for the ith state and Ns is the
total number of the state outputs in a batch.

In the training phase, the total loss is defined as follows.

`total = `point+α`row+β`range+γ`offset+η`state (10)

The hyperparameters α, β, γ and η are set to 1.0, 1.0, 0.4
and 1.0 respectively.

3.3. Architecture

The overall architecture is shown in Figure 2. We adopt
ResNet [8] as the backbone and add a standard FPN [23]
module to provide integrated multi-scale features. The pro-
posal head detects the lane instances by predicting the pro-
posal heatmap of shape 1 × Hp ×Wp. Meanwhile, a pa-
rameter map of shape Cp × Hp × Wp that contains the
dynamic kernel parameters is predicted. For the instance
with the proposal point located at (xp, yp), the correspond-
ing dynamic kernel parameters are contained in the Cp di-
mensional kernel feature vector at (xp, yp) on the parameter
map. Further, given the kernel feature vector, the RIM re-
currently predicts the dynamic kernel parameters. Finally,
the conditional shape head predicts the line shape instance-
wisely conditioned on the dynamic kernel parameters.

Flatten

Self-attention

Conv3x3-bn-relu

Position 
encodings

×𝑁

Linear Linear Linear

Softmax
Reshape

Encoder Layer
Self-attention Module

K QV

Conv3x3-bn-relu

Figure 6. The structure of the transformer encoder. The ⊕, � and
⊗ respectively represent matrix addition, dot-product operation
and element-wise product operation.

Our framework requires a strong capability of context
feature fusion. For example, the prediction of the proposal
point is based on the features of the entire lane line which
generally has an elongated shape and long-range. There-
fore, we add a transformer encoder structure to the last layer
of the backbone for the fusion of contextual information.
The structure of the transformer encoder used in our frame-
work is shown in Figure 6.
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4. Experiments
4.1. Experimental Setting

Datasets To extensively evaluate the proposed method,
we conducte experiments on three benchmarks: Curve-
Lanes [39], CULane [28], and TuSimple [36]. CurveLanes
is a recently proposed benchmark with cases of complex
topologies such as fork lines and dense lines. CULane is a
widely used large lane detection dataset with 9 different sce-
narios. TuSimple is another widely used dataset of highway
driving scenes. The details of the three datasets are shown
in Tab. 1.

Dataset Train Val. Test Road type Fork
CurveLanes 100K 20K 30K Urban&Highway

√

CULane 88.9K 9.7K 34.7K Urban&Highway ×
TuSimple 3.3K 0.4K 2.8K Highway ×

Table 1. Details of three datasets.

Evaluation Metrics For CurveLanes and CULane, we
adopte the evaluation metrics of SCNN [28] which utilizes
the F1 measure as the metric. IoU between the predicted
lane line and GT label is taken for judging whether a sample
is true positive (TP) or false positive (FP) or false negative
(FN). IoU of two lines is defined as the IoU of their masks
with a fixed line width. Further, F1-measure is calculated as
follows:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 =
2× Precision×Recall
Precision+Recall

(13)

For TuSimple dataset [36], there are three official indi-
cators: false-positive rate (FPR), false-negative rate (FNR),
and accuracy.

accuracy =

∑
clip Cclip∑
clip Sclip

(14)

WhereCclip is the number of correctly predicted lane points
and Sclip is the total number of lane points of a clip. Lane
with accuracy greater than 85% is considered as a true-
positive otherwise false positive or false negative. Besides,
the F1 score is also reported.

Implementation details We fix the large, medium, and
small versions of our CondLaneNet for all three datasets.
The difference between the three models is shown in Ta-
ble 2. For all three datasets, input images are resized to
800×320 pixels during training and testing. Since there are
no cases of fork lines in CULane and TuSimple, RIM is

only applied for the CurveLanes dataset. In the optimiz-
ing process, we use Adam optimizer [18] and step learning
rate decay [26] with an initial learning rate of 3e-4. For
each dataset, we train on the training set without any extra
data. We respectively train 14, 16 and 70 epochs for Curve-
Lanes, CULane and TuSimple with a batchsize of 32. The
results are reported on the test set for CULane and TuSim-
ple. For CurveLanes, we report the results on the validation
set following CurveLane [39]. All the experiments were
computed on a machine with an RTX2080 GPU.

Model name Backbone Proposal head input Shape head input
Large Resnet-101 downscale 16 downscale 4
Medium Resnet-34 downscale 16 downscale 8
Small Resnet-18 downscale 16 downscale 8

Table 2. Difference of different versions of our CondLaneNet.

4.2. Results

The visualization results on the CurveLanes, CULane,
and TuSimple datasets are shown in the Figure 7. The
results show that our method can cope with complex line
topologies. Even for the cases of dense lines and fork lines,
our method can also successfully discriminate the instances.

Method F1 Precision Recall FPS GFlops(G)
SCNN [28] 65.02 76.13 56.74 328.4
Enet-SAD [12] 50.31 63.60 41.60 3.9
PointLaneNet [2] 78.47 86.33 72.91 14.8
CurveLane-S [39] 81.12 93.58 71.59 7.4
CurveLane-M [39] 81.80 93.49 72.71 11.6
CurveLane-L [39] 82.29 91.11 75.03 20.7
CondLaneNet-S 85.09 87.75 82.58 154 10.3
CondLaneNet-M 85.92 88.29 83.68 109 19.7
CondLaneNet-L 86.10 88.98 83.41 48 44.9

Table 3. Comparison of different methods on CurveLanes.

CurveLanes The comparison results on CurveLanes are
shown in Tabel 3. CurveLanes contains cases of lane
lines with complex topologies such as curve, fork, and
dense lanes. Our large version of CondLaneNet achieves
a new state-of-the-art F1 score of 86.10, 4.63% higher than
CurveLane-L. Our small version of CondLaneNet still has
a performance of an 85.09 F1 score (3.40% higher than
SOTA). Since our model can deal with cases of the fork and
dense lane lines, there is a significant improvement in the
recall indicator. Correspondingly, false-positive results will
increase, resulting in a decrease in the precision indicator.

CULane The results of our CondLaneNet and other state-
of-the-art methods on CULane are shown in Tabel 4. Our
method achieves a new state-of-the-art result of a 79.48
F1 score, which has increased by 3.19%. Moreover, our
method achieves the best performance in eight of nine sce-
narios, showing robustness to different scenarios. For some
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Figure 7. Visualization results on CurveLanes(the first row), CULane(the middle row) and TuSimple(the last row) datasets. Different lane
instances are represented by different colors.

hard cases such as curve and night, our methods have ob-
vious advantages. Besides, the small version of our Cond-
LaneNet gets a 78.14 F1 score with a speed of 220 FPS, 1.12
higher and 8.5× speed than LaneATT-L. Compared with
LaneATT-S, CondLaneNet-S achieves a 4.01 % F1 score
improvement with similar efficiency. In most scenarios of
CULane, the small version of our CondLaneNet exceeds all
previous methods in the F1 measure.

Tusimple The results on TuSimple are shown in Table
5. Relatively, the gap between different methods on this
dataset is smaller, due to the smaller amount of data and
more single scenes. Our method achieves a new state-of-
the-art F1 score of 97.24. Besides, the small version of our
method gets a 97.01 F1 score with 220 FPS.

4.3. Ablation Study of Improvement Strategies

We performed ablation experiments on the CurveLanes
dataset based on the small version of our CondLaneNet.
The results are shown in Tabel 6. We take the lane detec-
tion model based on the original conditional instance seg-
mentation strategy [35, 38] (as is shown in Figure 3.a) as
the baseline. The first row shows the results of the baseline.
In the second row, the proposed conditional lane detection
strategy is applied and the lane mask expression is replaced
by the row-wise formulation(as is shown in 3.b). In the
third row, the offset map for post-refinement is added. In
the fourth row, the transformer encoder is added and the
offset map is removed. The fifth row presents the result of
the model with the row-wise formulation, the offset map,
and the transformer encoder. In the last row, RIM is added.

Category Total Normal Crowded Dazzle Shadow No line Arrow Curve Cross Night FPS GFlops(G)
SCNN [28] 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10 7.5 328.4
ERFNet-E2E [41] 74.00 91.00 73.10 64.50 74.10 46.60 85.80 71.90 2022 67.90
FastDraw [29] 85.90 63.60 57.00 69.90 40.60 79.40 65.20 7013 57.80 90.3
ENet-SAD [12] 70.80 90.10 68.80 60.20 65.90 41.60 84.00 65.70 1998 66.00 75 3.9
UFAST-ResNet34 [30] 72.30 90.70 70.20 59.50 69.30 44.40 85.70 69.50 2037 66.70 175.0
UFAST-ResNet18 [30] 68.40 87.70 66.00 58.40 62.80 40.20 81.00 57.90 1743 62.10 322.5
ERFNet-IntRA-KD [11] 72.40 100.0
CurveLanes-NAS-S [39] 71.40 88.30 68.60 63.20 68.00 47.90 82.50 66.00 2817 66.20 9.0
CurveLanes-NAS-M [39] 73.50 90.20 70.50 65.90 69.30 48.80 85.70 67.50 2359 68.20 35.7
CurveLanes-NAS-L [39] 74.80 90.70 72.30 67.70 70.10 49.40 85.80 68.40 1746 68.90 86.5
LaneATT-Small [32] 75.13 91.17 72.71 65.82 68.03 49.13 87.82 63.75 1020 68.58 250 9.3
LaneATT-Medium [32] 76.68 92.14 75.03 66.47 78.15 49.39 88.38 67.72 1330 70.72 171 18.0
LaneATT-Large [32] 77.02 91.74 76.16 69.47 76.31 50.46 86.29 64.05 1264 70.81 26 70.5
CondLaneNet-Small 78.14 92.87 75.79 70.72 80.01 52.39 89.37 72.40 1364 73.23 220 10.2
CondLaneNet-Medium 78.74 93.38 77.14 71.17 79.93 51.85 89.89 73.88 1387 73.92 152 19.6
CondLaneNet-Large 79.48 93.47 77.44 70.93 80.91 54.13 90.16 75.21 1201 74.80 58 44.8

Table 4. Comparison of different methods on CULane.
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Method F1 Acc FP FN FPS GFLOPS
SCNN [28] 95.97 96.53 6.17 1.80 7.5
EL-GAN [6] 96.26 94.90 4.12 3.36 10.0
PINet [19] 97.21 96.70 2.94 2.63
LineCNN [22] 96.79 96.87 4.42 1.97 30.0
PointLaneNet [2] 95.07 96.34 4.67 5.18 71.0
ENet-SAD [12] 95.92 96.64 6.02 2.05 75.0
ERF-E2E [41] 96.25 96.02 3.21 4.28
FastDraw [29] 93.92 95.20 7.60 4.50 90.3
UFAST-ResNet34 [30] 88.02 95.86 18.91 3.75 169.5
UFAST-ResNet18 [30] 87.87 95.82 19.05 3.92 312.5
PolyLaneNet [31] 90.62 93.36 9.42 9.33 115.0 0.9
LSTR [25] 96.86 96.18 2.91 3.38 420 0.3
LaneATT-ResNet18 [32] 96.71 95.57 3.56 3.01 250 9.3
LaneATT-ResNet34 [32] 96.77 95.63 3.53 2.92 171 18.0
LaneATT-ResNet122 [32] 96.06 96.10 5.64 2.17 26 70.5
CondLaneNet-S 97.01 95.48 2.18 3.80 220 10.2
CondLaneNet-M 96.98 95.37 2.20 3.82 154 19.6
CondLaneNet-L 97.24 96.54 2.01 3.50 58 44.8

Table 5. Comparison of different methods on TuSimple.

Baseline Row-wise Offset Encoder RIM F1 score√
72.19√

80.09(+7.9)√ √
81.24(+9.05)√ √
81.85(+9.66)√ √ √

83.41(+11.22)√ √ √ √
85.09(+12.90)

Table 6. Ablation study of the improvement strategies on Curve-
Lanes base on the small version of our CondLaneNet.

Comparing the first two rows, we can see that the pro-
posed conditional lane detection strategy has significantly
improved the performance. Comparing the results of the
2nd and the 3rd row, the 4th and the 5th row, we can see the
positive effect of the offset map. Moreover, the transformer
encoder plays a vital role in our framework, which can be
indicated by comparing the 2nd and the 4th row, the 3rd and
the 5th row. Besides, the proposed RIM designed for the
fork lines and dense lines also improves the accuracy. As
is shown in Figure 8, the lanes lines with complex topolo-
gies including fork lines and dense lines can be detected by
CondLaneNet with RIM.

w/o RIM GTw/ RIM

Figure 8. Results of CondLaneNet with and without RIM.

4.4. Ablation Study of Transformer Encoder

This section further analyzes the function of the trans-
former encoder which indicates a vital role in the previous
experiments. Our method first detects instances by detect-
ing the proposal points and then predicts the shape for each
instance. The accuracy of the proposal points greatly af-
fects the final accuracy of the lane lines. We design dif-
ferent control groups to compare the accuracy of the pro-
posal points and lane lines on CurveLanes. We define the
proposal points which locate in the eight neighborhoods of
the groundtruth points as the true-positive samples. We re-
port the F1 score of the proposal points and lane lines, as is
shown in Table 7.

Model Small Medium Large
Target P. point Line P. point Line P. point Line
Standard 88.35 85.09 88.99 85.92 89.54 86.10
S. w/o encoder 85.51 82.97 88.68 85.91 89.33 85.98
Hacked 88.05 84.39 88.90 85.93 89.37 85.99

Table 7. Ablation study of the transformer encoder module.

The first row shows the results of the small, medium and
large versions of the standard CondLaneNet. In the sec-
ond row, the transformer encoder is removed. In the third
row, we hack the inference process of the second row by
replacing the proposal heatmap with the proposal heatmap
output by the standard model(the first row). For the small
version, removing the encoder leads to a significant drop
for both proposal points and lanes. However, using the pro-
posal heatmap of the standard model, the results on the third
row are close to the first row.

The above results prove that the function of the encoder
is mainly to improve the detection of the proposal points,
which rely on contextual features and global information.
Besides, the contextual features can be more fully refined
in deeper networks. Therefore, for the medium and large
versions, the improvement of the encoder is far less than
the small version.

5. Conclusion
In this work, We proposed CondLaneNet, a novel top-

to-down lane detection framework that detects the lane in-
stances first and then instance-wisely predict the shapes.
Aiming to resolve the instance-level discrimination prob-
lem, we proposed the conditional lane detection strategy
based on conditional convolution and row-wise formula-
tion. Moreover, we designed RIM to cope with complex
lane line topologies such as dense lines and fork lines. Our
CondLaneNet framework refreshed the state-of-the-art per-
formance on CULane, CurveLanes, and TuSimple. More-
over, on CULane and CurveLanes, the small version of our
CondLaneNet not only surpassed other methods in accu-
racy, but also presented real-time efficiency.

3780



References
[1] Amol Borkar, Monson Hayes, and Mark T Smith. Robust

lane detection and tracking with ransac and kalman filter. In
Proceedings of the IEEE International Conference on Image
Processing (ICIP), pages 3261–3264, 2009.

[2] Zhenpeng Chen, Qianfei Liu, and Chenfan Lian. Point-
lanenet: Efficient end-to-end cnns for accurate real-time lane
detection. In IEEE Intelligent Vehicles Symposium (IV),
pages 2563–2568, 2019.

[3] Shriyash Chougule, Nora Koznek, Asad Ismail, Ganesh
Adam, Vikram Narayan, and Matthias Schulze. Reliable
multilane detection and classification by utilizing cnn as a
regression network. In Proceedings of the European Confer-
ence on Computer Vision (ECCV) Workshops, 2018.

[4] Bert De Brabandere, Davy Neven, and Luc Van Gool.
Semantic instance segmentation with a discriminative loss
function. arXiv preprint arXiv:1708.02551, 2017.

[5] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. Centernet: Keypoint triplets for
object detection. In Proceedings of the IEEE International
Conference on Computer Vision, pages 6569–6578, 2019.

[6] Mohsen Ghafoorian, Cedric Nugteren, Nóra Baka, Olaf
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