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Abstract

This paper proposes a method for representation learning
of multimodal data using contrastive losses. A traditional
approach is to contrast different modalities to learn the infor-
mation shared among them. However, that approach could
fail to learn the complementary synergies between modal-
ities that might be useful for downstream tasks. Another
approach is to concatenate all the modalities into a tuple and
then contrast positive and negative tuple correspondences.
However, that approach could consider only the stronger
modalities while ignoring the weaker ones. To address these
issues, we propose a novel contrastive learning objective,
TupleInfoNCE. It contrasts tuples based not only on posi-
tive and negative correspondences, but also by composing
new negative tuples using modalities describing different
scenes. Training with these additional negatives encourages
the learning model to examine the correspondences among
modalities in the same tuple, ensuring that weak modalities
are not ignored. We provide a theoretical justification based
on mutual-information for why this approach works, and we
propose a sample optimization algorithm to generate posi-
tive and negative samples to maximize training efficacy. We
find that TupleInfoNCE significantly outperforms previous
state of the arts on three different downstream tasks.

1. Introduction
Human perception of the world is naturally multimodal.

What we see, hear, and feel all contain different kinds of

information. Various modalities complement and disam-

biguate each other, forming a representation of the world.

Our goal is to train machines to fuse such multimodal inputs

to produce such representations in a self-supervised manner

without manual annotations.

An increasingly popular self-supervised representation

learning paradigm is contrastive learning, which learns fea-

ture representations via optimizing a contrastive loss and

solving an instance discrimination task [21, 10, 4]. Recently
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Figure 1. Overview of sample-optimized TupleInfoNCE.

several works have explored contrastive learning for mul-

timodal representation learning [28, 1, 18]. Among them,

the majority [28, 1] learn a crossmodal embedding space –

they contrast different modalities to capture the information

shared across modalities. However, they do not examine

the fused representation of multiple modalities directly, fail-

ing to fully leverage multimodal synergies. To cope with

this issue, [18] proposes an RGB-D representation learn-

ing framework to directly contrast pairs of point-pixel pairs.

However, it is restricted to two modalities only.

Instead of contrasting different data modalities, we pro-

pose to contrast multimodal input tuples, where each tuple

element corresponds to one modality. We learn representa-

tions so that tuples describing the same scene (set of multi-

modal observations) are brought together while tuples from

different scenes are pushed apart. This is more general than

crossmodal contrastive learning. It not only supports extract-

ing the shared information across modalities, but also allows

modalities to disambiguate each other and to keep their spe-

cific information, producing better-fused representations.

However, contrasting tuples is not as straightforward as

contrasting single elements, especially if we want the learned

representation to encode the information from each element

in the tuple and to fully explore the synergies among them.

The core challenge is: “which tuple samples to contrast?”

Previously researchers [34, 18] have observed that always

contrasting tuples containing corresponding elements from
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the same scene can converge to a lazy suboptimum where

the network relies only on the strongest modality for scene

discrimination. Therefore to avoid weak modalities being

ignored and to facilitate modality fusion, we need to contrast

from more challenging negative samples. Moreover, we

need to optimize the positive samples as well so that the

contrastive learning can keep the shared information between

positive and anchor samples while abstracting away nuisance

factors. Strong variations between the positive and anchor

samples usually result in smaller shared information but a

greater degree of invariance against nuisance variables. Thus

a proper tradeoff is needed.

To handle the above challenges, we propose a novel con-

trastive learning objective named TupleInfoNCE (Figure 1).

Unlike the popular InfoNCE loss [21], TupleInfoNCE is

designed explicitly to facilitate multimodal fusion. TupleIn-

foNCE leverages positive samples generated via augmenting

anchors and it exploits challenging negative samples whose

elements are not necessarily in correspondence. These neg-

ative samples encourage a learning model to examine the

correspondences among elements in an input tuple, ensuring

that weak modalities and the modality synergy are not ig-

nored. To generate such negative samples we present a tuple

disturbing strategy with a theoretical basis for why it helps.

TupleInfoNCE also introduces optimizable hyper-

parameters to control both the negative sample and the pos-

itive sample distributions. This allows optimizing samples

through a hyper-parameter optimization process. We define

reward functions regarding these hyper-parameters and mea-

sure the quality of learned representations via unsupervised

feature evaluation. We put unsupervised feature evaluation

in an optimization loop that updates these hyper-parameters

to find a sample-optimized TupleInfoNCE (Figure 1).

We evaluate TupleInfoNCE on a wide range of multi-

modal fusion tasks including multimodal semantic segmen-

tation on NYUv2 [26], multimodal object detection on SUN

RGB-D [27] and multimodal sentiment analysis on CMU-

MOSI [35] and CMU-MOSEI [36]. We demonstrate signifi-

cant improvements over previous state-of-the-art multimodal

self-supervised representation learning methods (+4.7 mIoU

on NYUv2, +1.2 mAP@0.25 on SUN RGB-D, +1.0% acc7

on MOSI, and +0.5% acc7 on MOSEI).

2. Related Work

2.1. Self-Supervised Multimodal Learning

Self-supervised learning (SSL) uses auxiliary tasks to

learn data representation from the raw data without using

additional labels [30, 12, 20, 8, 31], helping to improve the

performance of the downstream tasks. Recently, research

on SSL leverages multimodal properties of the data [6, 2,

28, 9, 1, 18]. The common strategy is to explore the natural

correspondences among different views and use contrastive

learning (CL) to learn representations by pushing views

describing the same scene closer, while pushing views of

different scenes apart [6, 2, 28, 9, 1]. We refer to this line

of methods as crossmodal embedding, which focuses on

extracting the information shared across modalities rather

than examining the fused representation directly, failing to

fully explore the modality synergy for multimodal fusion.

2.2. Contrastive Representation Learning

CL is a type of SSL that has received increasing attention

for it brings tremendous improvements on representation

learning. According to the modality of data, it can be catego-

rized into single-modality based [5, 11] and multimodality

based CL [1, 18, 28]. An underexplored challenge for CL

is how to select hard negative samples to build the negative

pair [13, 24, 11, 5]. Most existing methods either increase

batch size or keep large memory banks, leading to large

memory requirements [10]. Recently, several works study

CL from the perspective of mutual information (MI). [29]

argues MI between views should be reduced by data aug-

mentation while keeping task-relevant information intact.

[33] shows the family of CL algorithms maximizes a lower

bound on MI between multi-“views” where typical views

come from image augmentations, and finds the choice of neg-

ative samples and views are critical to these algorithms. We

build upon this observation with an optimization framework

for selecting contrastive samples.

2.3. AutoML

AutoML is proposed to automatically create models

that outperform the manual design. The progress of neu-

ral architectural search (NAS) [37, 17, 3], data augmenta-

tion strategy search [7, 15] and loss function search [14]

have greatly improved the performance of neural networks.

But most of these methods focus on a supervised learning

setting. Recently, developing AutoML techniques in an

unsupervised/self-supervised learning scenario has drawn

more attention [16, 29, 19]. UnNAS [16] shows the poten-

tial of searching for better neural architectures with self-

supervision. InfoMin [29] and SelfAugment [19] explore

how to search better data augmentation for CL on 2D images.

In our work, we focus on optimizing two key components of

a multimodal CL framework unsupervisedly - data augmen-

tation and negative sampling strategies, none of which has

been previously explored for generic multimodal inputs.

3. Revisiting InfoNCE
Before describing our method, we first review the In-

foNCE loss widely adopted for contrastive representation

learning [21], and then discuss its limitations for multimodal

inputs. Given an anchor random variable x1,i ∼ p(x1), the

popular contrastive learning framework aims to differentiate

a positive sample x2,i ∼ p(x2|x1,i) from negative samples
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Figure 2. Information diagram

x2,j ∼ p(x2). This is usually done by minimizing the In-

foNCE loss:

LNCE = −E

[
log

f(x2,i, x1,i)∑N
j=1 f(x2,j , x1,i)

]
(1)

where f(x2,j , x1,i) is a positive scoring function usually cho-

sen as a log-bilinear model. It has been shown that minimiz-

ing LNCE is equivalent to maximizing a lower bound of the

mutual information I(x2; x1). Many negative samples are

required to properly approximate the negative distribution

p(x2) and tighten the lower bound.

In the problem setting of multimodal inputs, an input

sample can be represented as a K-tuple t = (v1, v2, ..., vK)
where each element vk corresponds to one modality and

K denotes the total number of modalities being considered.

A straightforward way of learning multimodal representa-

tions is to draw anchor samples t1,i ∼ p(t1), their positive

samples t2,i ∼ p(t2|t1,i) and negative samples t2,j ∼ p(t2),
and then optimize the InfoNCE objective. However, previ-

ous works [34, 18] observe that even when K = 2 simply

drawing negative samples from the marginal distribution

p(t2) is insufficient for learning good representations. Weak

modalities tend to be largely ignored and synergies among

modalities are not fully exploited. The issue becomes more

severe when K > 2 when the informativeness of different

modalities varies a lot.

Figure 2 provides an intuitive explanation. When one

modality vk is particularly informative compared with the

rest modalities v̄k in the input tuple t, namely I(vk2 ; vk
1) �

I(v̄k2 ; v̄k
1), maximizing a lower bound of I(t2; t1) =

I(vk2 , v̄k
2 ; vk

1 , v̄k
1) will be largely dominated by the modal-

ity specific information I(vk2 ; vk1 |v̄k
2 , v̄k1), which is usually

not as important as the information shared across modalities

I(vk
2 ; v̄k

2 ; vk
1 ; v̄k

1). Overemphasizing the modality specific in-

formation from the strong modality might sacrifice the weak

modalities and the modality synergy during learning.

4. TupleInfoNCE
To alleviate the limitations of InfoNCE for overlooking

weak modalities and the modality synergy, we present a

novel TupleInfoNCE objective. We leverage a tuple disturb-
ing strategy to generate challenging negative samples, which

prevents the network from being lazy and only focusing on

strong modalities. In addition, we introduce optimizable data

augmentations which are applied to anchor samples for posi-

tive sample generation. We optimize both the positive and

negative samples to balance the information contributed by

each modality. All these are incorporated into the proposed

TupleInfoNCE objective, designed explicitly to facilitate

multimodal fusion.

4.1. Tuple disturbing and augmentation

Tuple disturbing Generating challenging negative samples

is fundamentally important to learning effective representa-

tion in contrastive learning, especially in the case of mul-

timodal fusion setting where the strong modalities tend to

dominate the learned representation [18, 34]. We present a

tuple disturbing strategy to generate negative samples where

not all modalities are in correspondence and certain modali-

ties exhibit different scenes.

Given an anchor sample (v1
1,i, ..., vk

1,i, ..., vK
1,i) and

its positive sample (v1
2,i, ..., vk

2,i, ..., vK
2,i), we pro-

pose a k-disturbed negative sample represented as

(v12,j , ..., vk
2,d(j), ..., vK

2,j), where d(·) is a disturbing function

producing a random index from the sample set. The negative

sample has K − 1 modalities v̄k2,j from one scene and

one modality vk2,d(j) from a different scene. Therefore, in

order to correctly discriminate the positive sample from

k-disturbed negative samples, the learned representation

has to encode the information of the k-th modality, since

the K-tuple could become negative only due to differences

in the k-th modality. k-disturbed negative samples become

especially challenging when they are only partially negative,

e.g. v̄k
2,j becomes very similar to v̄k2,i. Simply treating vk as

an independent modality without considering its correlation

with the rest modalities is not able to fully suppress the score

of such partially negative samples in a log-bilinear model.

Only when the network tells the disturbed modality vk
2,d(j)

is not in correspondence with the rest modalities v̄k
2,j , can

it fully suppress the partially negative samples. Therefore

k-disturbed negative samples encourage the correlation

between each modality and the rest to be explored.

We disturb each modality separately and generate K types

of negative samples to augment the vanilla InfoNCE ob-

jective. This enforces the representation learning of each

specific modality in the multimodal inputs. We use αk to

represent the ratio of k-disturbed negative samples. Intu-

itively, the larger αk we use, the more emphasis we put on

the k-th modality.

Tuple augmentation Given an anchor sample t1, we apply

the data augmentation to each modality separately to gener-

ate the positive sample t2. The data augmentation applied
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Figure 3. An example of the TupleInfoNCE objective for RGB,

depth and normal map fusion.

to modality vk will directly influence I(vk2 ; vk1) [29], which

roughly measures the information contribution of modality

vk in I(t2; t1). To further balance the contribution of each

modality in our fused representation, we parameterize these

data augmentations with a hyper-parameter β and make β
optimizable for different modalities.

4.2. Objective function

The TupleInfoNCE objective is designed for fusing the

multimodal input tuple t = (v1, v2, ..., vK). Given an an-

chor sample t1,i ∼ p(t1), we draw its positive sample

t2,i ∼ pβ(t2|t1,i), and negative sample t2,j|j �=i ∼ qα(t2)
following a “proposal” distribution where either all modali-

ties are in correspondence yet stem from a different scene,

or each modality is disturbed to encourage modality syn-

ergy. To be specific, with probability α0 we sample nega-

tive samples from p(t2), and with probability αk we sam-

ple k-disturbed negative samples from p(v̄k
2)p(vk2), where

{αk}Kk=0 is a set of prior probabilities balancing differ-

ent types of negative samples which sum to 1. This es-

sentially changes our negative sample distribution to be

qα(t2) = α0p(t2) +
∑K

k=1 αkp(v̄k2)p(vk2). Therefore, the

TupleInfoNCE objective is defined as below:

Lαβ
TNCE = − E

t2,i∼pβ(t2|t1,i)
t2,j|j �=i∼qα(t2)

[
log

f(t2,i, t1,i)∑
j f(t2,j , t1,i)

]
(2)

where f(t2,j , t1,i) = exp(g(t2,j) · g(t1,i)/τ) and g(·) repre-

sents a multimodal feature encoder and τ is a temperature

parameter. We provide an example for the TupleInfoNCE

objective in Figure 3. The hyper-parameters α and β can be

optimized to allow flexible control over the contribution of

different modalities as introduced in the next section.

Connection with Mutual Information estimation To bet-

ter understand why Lαβ
TNCE is more suited for multimodal

fusion than LNCE, we provide a theoretical analysis from

the information theory perspective. As we mentioned in

Section 3, minimizing LNCE is equivalent to maximizing a

lower bound of I(t2; t1), which could lead to weak modal-

ities and the modality synergy being ignored. Minimizing

Lαβ
TNCE, instead, is equivalent to maximizing a lower bound of

I(t2; t1|β) +
∑K

k=1 αkI(vk
2 ; v̄k

2) (please see supplementary

material for a proof). As is shown in Figure 2, I(vk2 ; v̄k2) puts

more emphasis on the information shared across modalities

to encourage modality synergy and to avoid weak modali-

ties being ignored. The ratio of k-disturbed negative sam-

ples αk plays the role of balancing I(vk2 ; v̄k2) and I(t2; t1|β).
And the data augmentation parameters β directly influence

I(t2; t1|β) and further balance the information contribution

of each modality.

4.3. Sample Optimization

The hyper-parameters α and β designed for tuple disturb-

ing and augmentation play a key role in the TupleInfoNCE

objective design. Each set of α and β will correspond to one

specific objective and fully optimizing Lαβ
TNCE will result in

a multimodal feature encoder gαβ. Manually setting these

hyper-parameters is not reliable, motivating us to explore

ways to optimize these hyper-parameters. There are mainly

two challenges to be addressed. The first is the evaluation

challenge: we need a way to evaluate the quality of the multi-

modal feature encoder gαβ in an unsupervised manner since

most existing works have demonstrated that InfoNCE loss

itself is not a good evaluator [29, 19]. The second is the

optimization challenge: we need an efficient optimization

strategy to avoid exhaustively examining different hyper-

parameters and training the whole network from scratch

repeatedly. We will explain how we handle these challenges

to optimize the ratio α of different types of negative samples

in Section 4.3.1, and the hyper-parameter β of augmented

positive samples in Section 4.3.2.

4.3.1 Optimizing negative samples

To evaluate the modality fusion quality in the learned rep-

resentations unsupervisedly, we propose to use crossmodal

discrimination as a surrogate task. To efficiently optimize α,

we adopt a bilevel optimization scheme alternating between

optimizing α and optimizing the main Lαβ
TNCE objective with

a fixed α. We elaborate on these designs below.

Crossmodal discrimination TupleInfoNCE differs from

the naive InfoNCE in that it emphasizes more on each

modality vk as well as its mutual information I(vk; v̄k)
with the rest modalities v̄k. In order to learn a good rep-

resentation that properly covers I(vk; v̄k), we propose a

novel surrogate task, crossmodal discrimination, which

looks for the corresponding v̄k only by examining vk in

a holdout validation set. Mathematically, we first gener-
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ate a validation set {tm}Mm=1 by drawing M random tuples

tm = (v1
m, v2

m, ..., vK
m) ∼ p(t). For each modality vkm,

its augmented version is represented as v′k
m ∼ pζk

(v′k|vk
m)

following a data augmentation strategy parameterized by

ζk. Then the crossmodal discrimination task is defined as,

given any v′kn sampled from the augmented validation set

{v′k
m}Mm=1, finding its corresponding rest modalities v̄kn in

the set {v̄km}Mm=1. To solve this surrogate task, for any v′kn
sampled from the augmented validation set {v′k

m}Mm=1, we

first compute its probability that corresponds to v̄kl as,

pknl(g
αβ) =

exp(gαβ(v′kn ) · gαβ(v̄k
l )/τ)∑M

m=1 exp(gαβ(v′k
n ) · gαβ(v̄km)/τ)

(3)

where gαβ(·) represents our optimal multimodal feature

encoder trained via optimizing Lαβ
TNCE and τ is a temperature

parameter. Then the crossmodal discrimination accuracy for

the k-th modality can be computed as

Ak(gαβ) =

M∑
n=1

�(n = argmax
l

pknl(g
αβ))/M (4)

where �(·) is an indicator function. Ak(gαβ) roughly mea-

sures how much I(vk; v̄k) the encoder gαβ has captured

and provides cues regarding how we should adjust αk in

the negative samples. We can then leverage the crossmodal

discrimination accuracy to optimize α through maximizing

the following reward:

R(α) =

K∑
k=1

Ak(gαβ) (5)

which properly balances the contribution of different modal-

ities and has a high correlation with downstream semantic

inference tasks as shown in Section 5.4. Notice to handle

missing modalities in the crossmodal discrimination task,

we adopt a dropout training strategy as introduced in the

supplemental material.

Bilevel optimization Now we describe how to efficiently

optimize R(α) with one-pass network training. We write

our optimization problem as below:

maximizeR(α) =

K∑
k=1

Ak(gαβ)

s.t. gαβ = argmin
g

Lαβ
TNCE(g)

(6)

This is a standard bilevel optimization problem. Inspired

by [14], we adopt a hyper-parameter optimization strategy

which alternatively optimizes α and g in a single training

pass. Specifically, we relax the constraint that
∑K

k=0 αk = 1
during the optimization and use an independent multivari-

ate Gaussian N (μ0, σI) to initialize the distribution of α.

At each training epoch t, we sample B hyper-parameters

{α1, ...αB} from distribution N (μt, σI) and train our cur-

rent feature encoder gt separately to generate B new encoders

Algorithm 1 :Sample Optimization

Input: Initialized multimodal feature encoder g0, initial-

ized distribution (μα
0 , σ

α) and (μβ
0 , σ

β), total training

epochs T , distribution learning rate η

Output: Final multimodal feature encoder gα∗β∗
T

for t = 1 to T do
if t is even then

Sample B sampling ratio hyper-parameters

{αi}Bi=1 via distribution N (μα
t , σ

αI);
Train gt for one epoch separately with each αi and

get {git+1}Bi=1;

Calculate rewards {R(αi)}Bi=1 using Equation 5;

Decide the best model i = argmaxj R(αj);
Update μα

t+1 using Equation 7;

Update gt+1 = gi
t+1;

else if t is odd then
Sample B data augmentation hyper-parameters

{βi}Bi=1 via distribution N (μβ
t , σ

βI);
Train gt for one epoch separately with each βi and

get {git+1}Bi=1

Calculate rewards {R(βi) =}Bi=1 using Equation 8;

Decide the best model i = argmaxj R(βj);

Update μβ
t+1 using Equation 7;

Update gt+1 = gi
t+1;

end if
end for
return gT

{g1
t+1, ..., gB

t+1}. We evaluate the reward for each of these

encoders on the validation set and update the distribution of

α using REINFORCE [32] as below:

μt+1 = μt + η
1

B

B∑
i=1

R(αi)∇αlog(p(αi;μ, σ)) (7)

where p(αi;μ, σ) represents the PDF of the Gaussian distri-

bution. We then pick up the encoder with the highest reward

as our gt+1 and continue with the next epoch. We repeat the

above process until convergence.

4.3.2 Optimizing positive samples

Similar to optimizing α, a reward function is required to

evaluate our feature encoder gαβ in an unsupervised manner

with respect to β. A straightforward approach is to adopt the

total crossmodal discrimination accuracy defined in Equa-

tion 5. Through experiments, we observe two phenomena

making this simple adaptation fail to optimize β effectively.

We use β and ζ to represent the data augmentation parame-

ters for training and validation respectively, and they do not

have to be the same. 1). If we manually set ζ to be fixed, the

optimal β maximizing the total accuracy highly correlates
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with ζ and fails to generate truly good positive samples. 2).

If we set ζ to be the same as β and optimize them together,

we usually achieve the best total accuracy when no data

augmentation is applied, though it has been shown a certain

level of data augmentation is important for contrastive learn-

ing [4, 29]. Therefore a better reward function is required

for β optimization.

We re-write our total crossmodal discrimination accuracy

as
∑K

k=1 Ak(gαβ, ζ) to reflect the influence from ζ. Instead

of manually setting ζ which produces a chicken-and-egg

problem for hyper-parameter optimization, we set ζ = β
and only optimize β. We follow the conclusion in [29] and

aim to use strong data augmentations, which reduces the

information contribution by each modality but make the con-

tributed information more robust to nuanced input noises.

We observe that the total accuracy will decrease as we use

stronger augmentations, and minimizing
∑K

k=1 Ak(gαβ,β)
with respect to β will effectively increase the augmentation

magnitude. However, as discussed in [29], we should not

increase the data augmentation without any constraints and

there is a sweet spot going beyond which a larger data aug-

mentation could harm the representation learning. We find

‖β − ζ∗(β)‖2 providing cues for identifying the sweet spot,

where ζ∗(β) = argmaxζ
∑K

k=1 Ak(gαβ, ζ) represents the

best ζ maximizing the total crossmodal discrimination accu-

racy
∑K

k=1 Ak for a feature encoder trained with β. When

β is weak, we empirically discover that ζ∗(β) is very close

to β; when β is too strong, smaller augmentation parame-

ters on the validation set will lead to higher total accuracy,

therefore leading to a large difference between β and ζ∗(β).
We provide empirical studies supporting these findings in

Section 5.4. Motivated by the above observations, we design

our reward function as:

R(β) = 1−
K∑

k=1

Ak(gαβ,β)

K
− λ

‖β − ζ∗(β)‖2
‖βmax‖2 (8)

where λ is a balancing parameter and βmax denotes a pre-

defined augmentation parameter upper bound used for the

normalization purpose.

R(β) can be optimized in the same way as how R(α) is

optimized, and we alternate between optimizing β and g in a

single training pass. We further combine the optimization of

R(α), R(β), and the multimodal encoder g in Algorithm 1,

where we update α when the epoch number is even and

update β otherwise.

5. Experiments
In this section, we evaluate our method by transfer learn-

ing, i.e., fine-tuning on downstream tasks and datasets.

Specifically, we first pretrain our backbone on each dataset

without any additional data using the proposed TupleIn-

foNCE. Then we use the pre-trained weights as initialization

and further refine them for target downstream tasks. In this

case, good features could directly lead to performance gains

in downstream tasks.

We present results for three popular multi-modality tasks:

semantic segmentation on NYUv2 [26], 3D object detection

on SUN RGB-D [27], and sentiment analysis on MOSEI [36]

and MOSI [35] in Section 5.1, 5.2 and 5.3 respectively. In

Section 5.4, extensive ablation studies, analysis and visual-

ization are provided to justify design choices of our system.

5.1. NYUv2 Semantic Segmentation

Setup. We first conduct experiments on NYUv2 [26]

to see whether our method can help multimodal semantic

scene understanding. NYUv2 contains 1,449 indoor RGB-D

images, of which 795 are used for training and 654 for test-

ing. We use three modalities in this task: RGB, depth, and

normal map. The data augmentation strategies we adopted

include random cropping, rotation, and color jittering. We

use ESANet [25], an efficient ResNet-based encoder, as our

backbone. We use the common 40-class label setting and

mean IoU(mIoU) as the evaluation metric.

We compare our method with the train-from-scratch base-

line as well as the latest self-supervised multimodal represen-

tation learning methods including CMC [28], MMV FAC [1]

and MISA [9], which are all based upon crossmodal em-

bedding. In addition, we include an InfoNCE [21] baseline

where we directly contrast multimodal input tuples without

tuple disturbing and sample optimization. We also include

supervised pretraining [25] methods for completeness.

Table 1. Semantic Segmentation results on NYUv2.

Methods mIoU

Train from scratch 40.1

Supervised pretrain on Imagenet 50.3

Supervised pretrain on Scenenet 51.6

CMC 41.9

MMV FAC 42.5

MISA 43.4

InfoNCE 42.1

Ours 48.1

Results. Table 1 shows that the previous best perform-

ing method MISA [9] improves the segmentation mIoU

by 3.3% over the train-from-scratch baseline. When us-

ing InfoNCE [21], the improvement drops to 2.0%. Our

method achieves 8.0% improvement over the train-from-

scratch baseline. The improvement from 40.1% to 48.1%
confirms that we can produce better-fused representations

to boost the segmentation performance on RGB-D scenes.

Notably, our proposed TupleNCE, though only pretrained on

NYUv2 self-supervisedly, is only ~3% lower than supervised

pretraining methods.
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5.2. SUN RGB-D 3D Object Detection

Setup. Our second experiment investigates how Tuple-

InfoNCE can be used for 3D object detection in the SUN

RGB-D dataset [27]. SUN RGB-D contains a training set

with ~5K single-view RGB-D scans and a test set with ~5K

scans. The scans are annotated with amodal 3D-oriented

bounding boxes for objects from 37 categories. We use

three modalities in this experiment: 3D point cloud, RGB

color and height. Data augmentation used here is rotation

for point cloud, jittering for RGB color, and random noise

for height. We use VoteNet [22] as our backbone, which

leverages PointNet++ [23] to process depth point cloud and

supports appending RGB or height information as additional

inputs. We compare our method with baseline methods in-

cluding InfoNCE [21], CMC [28], and MISA [9]. We use

mAP@0.25 as our evaluation metric.

Table 2. 3D Object Detection results on SUN RGB-D.

Methods mAP@0.25

Train from scratch 56.3

InfoNCE 56.8

CMC 56.5

MISA 56.7

Ours 58.0

Results. Table 2 shows the object detection results. We

find that previous self-supervised methods seem to strug-

gle with 3D tasks: CMC and MISA achieve very limited

improvement over the baseline trained from scratch. The

improvement of InfoNCE [21] is also very marginal (0.5%),

presumably because overemphasizing the modality-specific

information from strong modalities might sacrifice the weak

modalities as well as the modality synergy during learning.

In contrast, TupleInfoNCE achieves 1.7% mAP improve-

ment over the baseline trained from scratch, which more

than triples the improvement InfoNCE achieved. The com-

parison between our method and InfoNCE directly validates

the efficacy of the proposed TupleInfoNCE objective and

sample optimization mechanism.

5.3. Multimodal Sentiment Analysis

Setup. Our third experiment investigates multimodal

sentiment analysis with the MOSI [35] and MOSEI [36]

datasets, both providing word-aligned multimodal signals

(language, visual and acoustic) for each utterance. MOSI

contains 2198 subjective utterance-video segments. The ut-

terances are manually annotated with a continuous opinion

score between [-3,3], where -3/+3 represents strongly neg-

ative/positive sentiments. MOSEI is an improvement over

MOSI with a higher number of utterances, greater variety in

samples, speakers, and topics. Following the recent state-of-

the-art multimodal self-supervised representation learning

method MISA [9], we use features pre-extracted from the

original raw data, which does not permit an intuitive way

for data augmentation. Therefore we only optimize negative

samples in this experiment. We use the same backbone as

MISA [9] to make a fair comparison. We use binary accu-

racy (Acc-2), 7-class accuracy (Acc-7), and F-Score as our

evaluation metrics.

Results. As shown in Table 3 and 4, our method con-

sistently outperforms previous methods on these very chal-

lenging and competitive datasets – e.g., compared with the

previous best performing method MISA, the Acc-7 goes

up from 42.3 to 43.3 on MOSI, and from 52.2 to 52.7 on

MOSEI. As these two approaches share the same network

backbone and only differ in their strategy to learn the fused

representation, the improvement provides strong evidence

for the effectiveness of our method.

Table 3. Multimodal sentiment analysis results on MOSI.

Methods Acc-2 Acc-7 F-Score

Train from scratch 83.0 40.0 82.8

CMC 83.3 39.5 83.0

MMV FAC 83.5 41.5 83.4

MISA 83.4 42.3 83.6

InfoNCE 83.1 40.5 82.8

Ours 83.6 43.3 83.8

Table 4. Multimodal sentiment analysis results on MOSEI.

Methods Acc-2 Acc-7 F-Score

Train from scratch 82.5 51.8 82.3

CMC 83.3 50.8 84.1

MMV FAC 85.1 52.0 85.0

MISA 85.5 52.2 85.3

InfoNCE 83.5 52.0 83.4

Ours 86.1 52.7 86.0

5.4. Further Analysis and Discussions

Efficacy of sample optimization We run ablation studies

with and without sample optimization to quantify its efficacy.

We find that uniformly setting αk without optimizing neg-

ative samples results in a 1.7% mIoU drop on the NYUv2

semantic segmentation task, 0.5 mAP drop on the SUN RGB-

D 3D object detection task, 0.6 Acc-7 drop on MOSI, and 0.4

Acc-7 drop on MOSEI. Manually designing data augmenta-

tion strategies without optimizing positive samples as in [28]

results in a 1.1 mIoU drop on NYUv2 and 0.6 mAP drop

on SUN RGB-D. We also examine the optimized negative

sampling strategy as well as the data augmentation strategy.

On the NYUv2 dataset, we find the best performing negative

sampling ratio among RGB, depth and normal is roughly

2 : 1 : 1, showing that RGB is emphasized more in the

fused representations. As for the data augmentation strategy,

though we use the same types of data augmentations for all

the three modalities on NYUv2, the optimal augmentation
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Figure 4. Correlations between the total crossmodal discrimination

accuracy and the downstream task performance.

parameters vary from modality to modality. Considering

image rotation with the hyper-parameter representing the

rotation angle, we found that 40 degrees is the best hyper-

parameter for RGB images, while 10 degrees is the best for

depth and normal maps.

Reward design for negative sample optimization We in-

troduce crossmodal discrimination as a surrogate task for

negative sample optimization in Section 4.3.1 and argue that

the total crossmodal discrimination accuracy R(α) in Equa-

tion 5 is a good reward function. We provide our empirical

verification here. We vary the ratio αk of type-k negative

samples while keeping the relative ratio of the rest types un-

changed. We train the whole network through with the fixed

negative sampling ratio and evaluate both R(α) and the per-

formance of the downstream task. As is shown in Figure 4,

adjusting the proportion of different types of negative sam-

ples will influence the accuracy R(α) of the surrogate task,

which has a high correlation with downstream tasks. Too

low and too high proportion for one type of negative samples

both lead to low R(α). There is a sweet spot corresponding

to the best R(α). Experiments show this sweet spot also

corresponds to the best performance on downstream tasks.

Reward design for positive sample optimization Our re-

ward function in Equation 8 for positive sample optimization

is motivated by two observations: 1). minimizing total cross-

modal discrimination accuracy
∑K

k=1 Ak(gαβ,β) with re-

spect to β will increase the augmentation magnitude; 2).

‖β − ζ∗(β)‖2 provides cues for identifying the sweet spot

beyond which larger augmentation will harm representation

learning. We provide empirical studies to verify these obser-

vations in Figure 5. We train networks from beginning and

end with different β to evaluate how the total crossmodal

discrimination accuracy change while varying the data aug-

mentation parameters ζ on the validation set. We also evalu-

ate how the performance of downstream tasks varies while

changing the training time data augmentation parameters

β. We experiment with two types of data augmentation -

image rotation and image crop, and obtain consistent obser-

vations.
∑K

k=1 Ak(gαβ,β) indeed drops while increasing

β. Moreover, ζ∗(β) corresponds to the peak of each curve

in the first row and it is very close to β when β is small.

Once β goes beyond a sweet spot, which gives the best per-

formance on downstream tasks, ζ∗(β) no longer tracks the

Figure 5. Empirical study justifying the reward design for postive

sample optimization. In the first row we show the total crossmodal

discrimination accuracy on the validation set while varying the

augmentation parameter ζ and different curves are obtained with

different train time data augmentation parameters β. The second

row shows how the performance of downstream tasks vary while

changing β.

value of β and ‖β − ζ∗(β)‖2 will give a penalty for fur-

ther increasing β. In practice, we find our reward function

powerful enough for identifying the best training time data

augmentation parameters.

Robustness to uninformative modality TupleInfoNCE em-

phasizes the modality which is easy to be ignored. An

obvious question is whether it is robust to uninformative

modalities. We conduct experiments on MOSEI multimodal

sentiment analysis task and add an uninformative modal-

ity named timestamp which denotes the relative time in a

sequence. Results show using these four modalities, we

achieve 52.6 Acc-7, which is only 0.1% lower than before.

The final negative sample ratio among the four modalities is

roughly 3(text): 3(video): 4(audio): 1(timestamp), showing

our method successfully identifies that “timestamp” is not

something worthy of much emphasis.

6. Conclusion

This paper proposes a new objective for representation

learning of multimodal data using contrastive learning, Tu-

pleInfoNCE. The key idea is to contrast multimodal an-

chor tuples with challenging negative samples containing

disturbed modalities and better positive samples obtained

through an optimizable data augmentation process. We pro-

vide a theoretical basis for why TupleInfoNCE works, an al-

gorithm for optimizing TupleInfoNCE with a self-supervised

approach to select the contrastive samples, and results of

experiments showing ablations and state-of-the-art perfor-

mance on a wide range of multimodal fusion benchmarks.
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