
DAM: Discrepancy Alignment Metric for Face Recognition

Jiaheng Liu*1, Yudong Wu*2, Yichao Wu†2, Chuming Li2, Xiaolin Hu3, Ding Liang2, Mengyu Wang2

1Beihang University, 2SenseTime Group Limited, 3Tsinghua University
liujiaheng@buaa.edu.cn, {wuyudong, wuyichao, lichuming, liangding}@sensetime.com,

1600017843@pku.edu.cn, xlhu@mail.tsinghua.edu.cn

Abstract

The field of face recognition (FR) has witnessed remark-
able progress with the surge of deep learning. The effec-
tive loss functions play an important role for FR. In this pa-
per, we observe that a majority of loss functions, including
the widespread triplet loss and softmax-based cross-entropy
loss, embed inter-class (negative) similarity sn and intra-
class (positive) similarity sp into similarity pairs and opti-
mize to reduce (sn − sp) in the training process. However,
in the verification process, existing metrics directly take the
absolute similarity between two features as the confidence
of belonging to the same identity, which inevitably causes
a gap between the training and verification process. To
bridge the gap, we propose a new metric called Discrep-
ancy Alignment Metric (DAM) for verification, which in-
troduces the Local Inter-class Discrepancy (LID) for each
face image to normalize the absolute similarity score. To
estimate the LID of each face image in the verification pro-
cess, we propose two types of LID Estimation (LIDE) meth-
ods, which are reference-based and learning-based estima-
tion methods, respectively. The proposed DAM is plug-and-
play and can be easily applied to the most existing meth-
ods. Extensive experiments on multiple popular face recog-
nition benchmark datasets demonstrate the effectiveness of
our proposed method.

1. Introduction

Face recognition based on deep learning has been well
investigated for decades [31, 35, 42]. Most of the progress
depends on large-scale training data [9, 50, 16], deep neural
network architectures [37, 10, 11], and effective loss func-
tion designs [26, 6, 41, 39, 53, 27, 4, 25, 13, 7]. Despite
many efforts, most prior works use the sample-to-sample
absolute similarity metric during inference. The identities
are determined by directly thresholding cosine or L2 dis-
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tance for each face image pair. It is inconsistent with the
training process, which optimizes the relative margin be-
tween the intra-class and the inter-class similarities.
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Figure 1: The similarity distributions on different evaluation
metrics of pairs from different IDs. The green histogram
represents the positive pairs, and the red histogram repre-
sents the negative pairs. (a): Distribution of cosine simi-
larity metric. ID1 and ID2 have the same margin between
positive and negative pairs, whereas the overall similarity
of pairs of ID2 is less than ID1, which leads to judge a
large number of positive pairs of ID2 as false negatives. (b):
Distribution of our proposed Discrepancy Alignment Met-
ric (DAM). The scores of positive pairs of ID2 are calibrated
to a higher level.

Specifically, the popular softmax-based loss functions
(e.g., ArcFace [5], CosFace [41]) or metric learning based
loss functions (e.g., Triplet loss [27]) seek to reduce sn−sp
or sn − sp + m as the optimization target [32], where sp
is the intra-class (positive) similarity, sn refers to inter-
class (negative) similarity and m is the margin term to
enhance the discriminative ability. Therefore, the rela-
tive score sp − sn indicates the optimization degree for
each face image during the training process. It works well
for common close-set classification, which maintains cate-
gory weights of the classifier by relative probabilities, i.e.,
cpred = arg max

i
{ ezi∑

ezj
}Ci=1. However, in open-set face
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recognition1, the absolute cosine similarity between the pair
of features s = 〈f1,f2〉 is considered as the probability
of having the same identity (ID), which causes the gap be-
tween the training and verification process. The zi and zj
are the logits predicted by the classifier, f1 and f2 are the
face embeddings extracted from the neural network, and
cpred is the predicted class label from C classes.

A snapshot of a typical example is also shown in Fig. 1a,
where two IDs have the same margin between the positive
pairs and the negative pairs (i.e., ∆1 = ∆2). It means that
they are optimized to the same degree during the training
process. In contrast, the overall absolute cosine similarities
of pairs of ID2 are less than ID1. When applying the op-
timized model in practice, a large number of positive pairs
of ID2 are judged as false negatives. In addition, the long-
tail or non-uniform distributions usually exist in the train-
ing data of real-world face recognition. Therefore, the op-
timized model is biased to different domains [1], which ex-
acerbates the gap. Consequently, a more accurate metric,
which is more consistent with the existing loss functions, is
needed to compensate for the gap between the training and
inference for face recognition.

Motivated by the above analysis, we propose a new met-
ric called Discrepancy Alignment Metric (DAM), which
aims to bridge the gap between the training and verification
process for face recognition. First, we analyze the afore-
mentioned gap and introduce the DAM, which incorporates
the Local Inter-class Discrepancy (LID) of each feature to
normalize the absolute similarity score, and is more con-
sistent with the current popular loss functions. Then, we
introduce two types of Local Inter-class Discrepancy Es-
timation (LIDE) methods, which are the reference-based
LIDE and learning-based LIDE methods, respectively. In
our LIDE, we propose to randomly sample from the training
set or employ GAN to generate a set of images from diverse
identities to build the anchor image set. For the reference-
based LIDE method, the neighbors from the anchor image
set are searched in the feature space to estimate the LID for
each face image, which is flexible without tuning the op-
timized models. For the learning-based LIDE method, we
directly leverage a learnable regression module to regress
the LID for each face image, which avoids the need of an
anchor image set during the verification process.

The contributions of our paper are as follows:

1) We are the first to investigate the gap between the train-
ing and verification process of face recognition, and
propose a new metric called Discrepancy Alignment
Metric, which is plug-and-play and can be readily in-
tegrated into existing face recognition methods.

2) The Local Inter-class Discrepancy (LID) of each fea-

1In this paper, “open-set face recognition” and “face recognition” can
be used interchangeably.

ture is incorporated into the new metric to normal-
ize the similarity, and two types of Local Inter-class
Discrepancy Estimation (LIDE) methods are intro-
duced, including the reference-based and learning-
based LIDE methods.

3) Extensive experiments on multiple benchmark datasets
show that our proposed DAM significantly improves
the performance of face recognition.

2. Related works
Overview of Face Recognition. There are three essen-
tial factors for face recognition including network architec-
ture [37, 34, 31, 35, 30, 36, 33], large-scale dataset [9, 50,
16] and effective loss function [27, 46, 51, 20, 19, 41, 39, 6,
25, 13, 49]. First, with the process of neural network archi-
tecture, many hand-designed networks (e.g., VGGNet [30],
GoogleNet [36] and ResNet [10]) also achieves promising
performance for face recognition. Meanwhile, Neural Ar-
chitecture Search (NAS) was proposed to relieve the burden
from the hand-crafted network design process, and its effec-
tiveness has been demonstrated in many computer vision
tasks [56, 18]. For the large-scale datasets, many widely-
used face recognition datasets are proposed to improve the
generalization ability of face recognition. For the loss func-
tion, as face recognition is usually under the open-set pro-
tocol in the real-world scenarios, most face recognition ap-
proaches adopt the metric learning based loss functions.
For example, Triplet loss [27] utilizes Euclidean distance
to measure similarity score for each face image pair. Cen-
ter loss [46] and range loss [51] are proposed to reduce
intra-class variations via minimizing distances within each
class. However, constraining margin in Euclidean space is
insufficient to achieve optimal generalization. Therefore,
many angular-margin based loss functions are proposed to
tackle the problem, where angular constraints are integrated
into the softmax cross-entropy loss function to improve
the learned face representation in L-softmax [20] and A-
softmax [19]. In addition, CosFace [41], AM-softmax [39]
and ArcFace [6] additionally maximize angular margins
when compared above methods. Overall, the existing loss
functions seek to maximize the intra-class similarities and
reduce the inter-class similarities, where the optimization
target in the training process is not compatible with the co-
sine similarity in the verification process.
Verification Metric for Face recognition. In the begin-
ning, instead of using distance or similarity metric, the
SVM [35, 37] and Joint Bayesian [3, 34] model are uti-
lized as classifiers to determine whether a pair of images
have the same identity. Recently, deep CNN is utilized
to extract the feature embedding for each image. Metric
learning loss (e.g., contrastive loss [4], triplet loss [27], the
squared L2 distance) between features turned to be the ver-
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ification similarity metric [20, 33, 27] with the widespread
application of CNN [30, 36]. Besides, the concept of angle
and hyper-sphere manifold are proposed due to the optimal
generalization and discriminative representation, where the
features are explicitly normalized, and cosine similarity is
used as verification metric [41, 6, 39]. In addition, several
methods considered each face image as probabilistic distri-
butions [28, 29, 2] in the feature space, where correspond-
ing distribution-based similarity metrics (e.g., uncertainty-
aware log-likelihood score [29]) are proposed.

3. Methodology

In this section, we describe our proposed DAM as shown
in Fig. 2. Specifically, given a pair of face images, we first
use a pre-trained neural network to extract the feature for
each face image, and then generate the Local Inter-class
Discrepancy (LID) for each face image by our proposed
Local Inter-class Discrepancy Estimation (LIDE) method.
Finally, the DAM takes the features and the LIDs of a pair
of images as input, and generates the similarity score for
this pair of face images.

3.1. Discrepancy Alignment Metric

In this section, we first analyze the gap between the ex-
isting loss functions and evaluation metrics for face recog-
nition. Then we propose the Discrepancy Alignment Met-
ric (DAM) to evaluate the similarity for a pair of face im-
ages. Finally, we theoretically analyze why our DAM is
more consistent with existing loss functions by showing the
relationship of our DAM with the NormFace [40], which is
a common loss function for face recognition.

In general, current face recognition methods [4, 27, 24,
6] tend to extract the feature embedding for each face im-
age by using a backbone network, and adopt effective loss
functions to increase the discriminative ability of the fea-
ture embedding. During training, the well-defined loss
functions [4, 27, 24, 6] aim to minimize the difference be-
tween the inter-class similarity and the intra-class similarity,
which is a relative-based optimization target. However, for
open set evaluation of face recognition, the cosine similar-
ity metric is commonly used to measure whether two face
images belong to the same identity, which is an absolute
metric for face recognition. Therefore, we observe a natu-
ral gap between the loss function for training and the cosine
similarity metric for evaluation.

To illustrate this gap more clearly, as many popular
cosine-based loss functions [19, 41, 6] can be considered
as the variants of NormFace loss [40], we take the Norm-
Face loss [40] as an example. Additionally, we can obtain
similar conclusions using triplet loss [27].

In [40], there is totally C classes in the training set. The

NormFace loss is defined as follows:

LNormFace = − log
eszi,yi

C∑
j=1

eszi,j
, (1)

where yi is the class label for the feature embedding f i,
and zi,j = cos (θi,j). Here, θi,j is the angle between the
j-th class weight vector wj and f i, and s is a positive scale
hyper-parameter to adjust the scale of zi,j .

We can rewrite the NormFace loss function in the fol-
lowing way:

LNormFace = − log
1

C∑
j=1,j 6=yi

es(zi,j−zi,yi ) + 1

.
(2)

Theoretically, the above loss function is intrinsically
relative-based. Specifically, the loss function aims to mini-
mize the difference (i.e., zi,j−zi,yi ) between inter-class zi,j
and intra-class similarity zi,yi , which may cause an ambigu-
ous optimization gap in the verification process in Fig. 1.
Therefore, a more accurate metric, which is consistent with
the existing loss functions, is needed to compensate such
gap between the training and verification for face recogni-
tion.
Instantiation of DAM.

In our work, we propose a new metric named as Dis-
crepancy Alignment Metric (DAM) to measure the similar-
ity score for a pair of face embeddings (i.e., f1, f2), which
aims to be consistent with the existing loss functions. The
DAM is defined as follows:

DAM(f1,f2) = es〈f1,f2〉 · ( 1

G(f1)
+

1

G(f2)
), (3)

where s is the scale hyper-parameter, 〈·, ·〉 is the inner prod-

uct of two face image embeddings, G(f1) =
k∑
i=1

es〈f1,f
i
1〉

and G(f2) =
k∑
i=1

es〈f2,f
i
2〉 denote the local inter-class dis-

crepancy for f1 and f2, respectively. Here, f i1 (f i2) de-
note the i-th neighboring embedding for f1 (f2) in the fea-
ture space. In our work, we define Ψf1

= {f i1}ki=1 and
Ψf2

= {f i2}ki=1 to denote the neighboring embedding set
for f1 and f2 in the feature space, respectively, where the
size of the neighboring embedding set is k.

Then, we discuss why our proposed DAM is more con-
sistent with the loss function. We also take NormFace as an
example in Eq. 2, and minimize the loss function LNormFace
in the training process. Meanwhile, we can formulate the
Eq. 2 as following optimization task:

min

C∑
j=1,j 6=yi

es(zi,j−zi,yi ). (4)
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Figure 2: The face verification process of DAM. First, we use a pre-trained face recognition (FR) model to extract the
features for a pair of images. Then, we generate the Local Inter-class Discrepancy (LID) for each face image by using our
proposed Local Inter-class Discrepancy Estimation (LIDE) method (Here, we take the reference-based LIDE as an example.).
Finally, DAM takes both the extracted features and the LIDs from this pair as input, and returns the similarity score for face
verification.

The objective in Eq. 4 can be reformulated as follows:

max
eszi,yi

C∑
j=1,j 6=yi

eszi,j
, (5)

where the zi,yi can be considered as the intra-class similar-
ity, and the zi,j (j 6= yi) can be considered as the inter-class
similarity.

Therefore, given a pair of face embeddings f1, f2, we
can easily generate the intra-class similarity by computing
the cosine similarity score, and an ideal metric should in-
volve the inter-class similarities between the current em-
bedding and other class weights in Eq. 5. Besides, we call
the denominator in Eq. 5 as the inter-class discrepancy. In
Eq. 5, the inter-class similarities between the embedding
of each face image and most other class weights are all
around 0, so the effect of most other classes on the inter-
class discrepancy is very small [52]. As shown in Fig. 3,
the curve of inter-class cosine similarity for each sample
becomes flat quickly and decays to 0, which indicates that
only several closest classes dominate the inter-class discrep-
ancy information for each sample. Hence, we factorize the
inter-class discrepancy (i.e., the denominator in Eq. 5) into

two items:
k∑

j=1,j 6=yi
eszi,j and

C∑
j=k+1,j 6=yi

eszi,j . The first

item consists of similarities between each sample and the
corresponding k closest inter-class neighbors in the embed-
ding space. Meanwhile, the similarities in the second term
are approaching 0, so the value of the second term can be
simplified as C − k − 1, where C is the number of classes.
Therefore, we directly adopt the k-closest neighboring em-
beddings as the local inter-class discrepancy (LID) G(f) for
each face embedding f in Eq.3, which aims to approximate
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Figure 3: The cosine similarity distribution along category
of each sample. We train the ResNet-50 [10] on MS-Celeb-
1M [9] using ArcFace [6], and randomly select 500 sam-
ples. Cosine similarity distribution of each sample along
category is sketched, and one L-shaped curve represents the
cosine similarity distribution along category of a sample,
i.e., (cos θi,1, cos θi,2, ..., cos θi,C). The cos θi,j is the an-
gle between the face embedding of the i-th sample and the
weight of the j-th class center. We tile all samples’ curves
along the y-axis. The similarities with other categories are
descending sorted.

the overall inter-class discrepancy information.

3.2. Local Inter-class Discrepancy Estimation

Accordingly, how to acquire the local inter-class discrep-
ancy (LID) G(f) for each face embedding f during the in-
ference is crucial in Eq.3. In this section, we introduce two
types of Local Inter-class Discrepancy Estimation (LIDE)
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methods (i.e., the reference-based LIDE and the learning-
based LIDE methods) to estimate the LID for each face em-
bedding.
Reference-based LIDE. As it is difficult to estimate the en-
tire embedding distribution of the face recognition model in
the feature space, we propose to sample from the embed-
ding distribution. Specifically, the face recognition model
extracts the feature embedding f for each face image I as
follows:

f =MFace(I), for I ∈ I and f ∈ E , (6)

where I and E are the image space and the embedding
space, respectively, and MFace is the face recognition
model. Hence, by uniformly sampling a certain number of
face images in the image space I and then projecting to the
embedding space E , we can obtain a sampling from the em-
bedding distribution of the face recognition model. We call
the sampled image set as the “anchor image set”, which is
denoted as AI . The corresponding embedding set is named
as “anchor embedding set”, which is denoted as AE . In the
face verification process of each face pair, we extract the
feature embedding f for each face image, and search the
neighboring embedding set Ψf from the “anchor embed-
ding set” for each face image. Then, we generate the LID
G(f), and compute the similarity score of this face pair by
the DAM in Eq.3. The algorithm is shown in Algorithm 1.

Algorithm 1 Reference-based LIDE.

Require:
two face images I1 and I2;
the trained FR modelMθ;
the anchor embedding set AE ;

Ensure:
normalized similarity score s∗ of the two face images;

1: Extract features of two images, i.e., f1 = Mθ(I1),
f2 =Mθ(I2);

2: Acquire the LID G(f1) by searching for the top-k max-
imum similarity scores of f1 in the AE ;

3: Acquire the LID G(f2) by searching for the top-k max-
imum similarity scores of f2 in the AE ;

4: return s∗ = DAM(f1,f2);

However, it is difficult to achieve uniform sampling, and
the purpose of the anchor image set is to generate the fea-
ture embedding distribution of the face recognition model.
In practice, a straight-forward way is to randomly sample
from the training set to construct the anchor image set AI ,
and extract the features of the anchor image set by face
recognition model to build the anchor embedding set AE .
We call the anchor feature set as the “real-db”. In addi-
tion, we also propose to use fake face images generated by
GAN [8, 15] to construct the anchor embedding set, which

is called as “fake-db”. Compared with the “real-db”, gener-
ated fake images do not contain private information, which
is more conducive to practical use and dissemination. Be-
sides, the identities of the “fake-db” will not conflict with
the samples in the testing dataset. In the following exper-
iment section, the “fake-db” is shown to have comparable
performance with the “real-db”. Furthermore, in our exper-
iments, the effectiveness of “fake-db” also shows that the
specific identity is not important to estimate the local inter-
class discrepancy.

Meanwhile, compared to the original verification pro-
cess, the external computational overhead is the process of
searching for the neighboring embedding set. However, in
practice, the size of the anchor embedding set is usually
small (no more than 100000), and many off-the-shelf near-
est neighbor search libraries can be used to reduce the time
consumption [21, 14], so the external computational cost is
accessible for face recognition. The complete face verifica-
tion process is also shown in Fig. 2.
Learning-based LIDE. In addition to obtaining the LID
by querying the anchor embedding set, we also propose a
learning-based LIDE method, where the LID G(f) is di-
rectly predicted by the neural network for each face em-
bedding f . Specifically, a learnable local inter-class dis-
crepancy regression (LIDR) module denoted asMLIDR is
adopted to learn the G(f). Formally, the loss function is
defined as follows:

LLIDR = ‖MLIDR(f)− G(f)‖2 (7)

The LIDR module consists of two fully connected lay-
ers with ReLU activation function, so the additional com-
putational overhead is also negligible. LIDR takes the face
embedding f as input and predicts the local inter-class dis-
crepancy G(f) for f . Inspired by [29], a stage-wise training
strategy is adopted. Specifically, we first pre-train the face
recognition model. Then, we fix the parameters of the pre-
trained face recognition model and only optimize the LIDR
module to learn the G(f). Besides, the LIDR module is
trained on the same dataset of the face recognition model,
so the stage-wise training strategy provides a fair compari-
son between the proposed method and the original method.
Plug-and-play. Overall, it is convenient to incorporate our
proposed DAM into the existing methods for face recog-
nition. First, the proposed DAM does not change the
way of feature extraction. Thus, DAM can be combined
with modern network architectures, such as VGGNet [30],
GoogleNet [36] and ResNet [10]. Second, most FR loss
functions [19, 41, 6, 45, 54] aims to learn discriminative and
deterministic representations, and DAM does not change
the feature distribution on the hypersphere, which means
that DAM is easy to improve the performance of different
loss functions with an extra local inter-class discrepancy es-
timation process in the verification stage.
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4. Experiments
In this section, we conduct extensive experiments to

demonstrate the effectiveness of our proposed DAM. Then,
we conduct a detailed ablation study to further analyse the
contributions of different components in our DAM.

4.1. Implementation details

Datasets. For the training datasets, we employ the
CASIA-WebFace [50] and the refined version of MS-Celeb-
1M [9] provided by [6]. For the testing datasets, we use the
following benchmark datasets: LFW [12], CALFW [55],
YTF [48], IJB-B [47], IJB-C [22], and RFW datasets [44].

Experiments setting For pre-prepossessing, we follow
the recent works [6, 19, 41, 17, 5] to generate the nor-
malised face crops (112× 112). For the backbone network,
we utilize the widely used neural networks(e.g., ResNet-18,
ResNet-50, ResNet-100 [10]), in which we follow [6] to
leverage BN-Dropout-FC-BN network structure to produce
256-dim embedding feature representation. By default, the
size of the anchor image set is 50000, the size of the neigh-
boring embedding set is 10, and the s is 1. We utilize the
SGD algorithm with a momentum of 0.9 and weight de-
cay of 5 × 10−4. For all experiments, we first pre-train the
backbone network using the existing loss functions (e.g.,
ArcFace, CosFace). For the pre-training on the CASIA-
WebFace, the initial learning rate is 0.1, and is divided by
10 at the 20k, 30k, 35k iterations. The total iteration is 40k.
For the pre-training on MS-Celeb-1M, the initial learning
rate is 0.1 and divided by 10 at the 100k, 140k, 160k it-
erations. The total iteration is 200k. As for the learning-
based method in LIDE, we utilize two fully-connected lay-
ers with ReLU activation function [23] as the regression
network. The initial learning rate for the regression net-
work is 0.001, and is divided by 0.1 at the 15k, 20k, 25k
iterations. The total iteration is 30k. The batch size of all
experiments is set as 512. Besides, we use StyleGAN [15]
to generate the anchor image set. In addition, we use our
proposed reference-based LIDE method and learning-based
LIDE method based on the pre-trained network, which are
called as DAM-R and DAM-L in the following experi-
ments, respectively.

4.2. Results on IJB-B and IJB-C datasets

We provide the results of DAM on challenging IJB-
B [47] and IJB-C [47] datasets. Since our method can be
readily integrated into existing loss functions, we provide
detailed experiments based on CosFace [41], ArcFace [6]
and CurricularFace [26]. The backbone network is ResNet-
100 trained on MS-Celeb-1M [9]. As shown in Table 1,
both the DAM-R and the DAM-L methods achieve sig-
nificant performance improvements on IJB-B and IJB-C
datasets in all cases when compared with original base-
lines, which indicates our proposed methods are robust for

Table 1: The TAR results on IJB-B and IJB-C datasets with
different loss functions.

Method IJB-B (@FAR=1e-4) IJB-C (@FAR=1e-4)
CosFace [41] 94.80 96.37

+DAM-R 94.97 96.45
+DAM-L 94.87 96.43

ArcFace [6] 94.25 95.63
+DAM-R 94.63 95.78
+DAM-L 94.54 95.73

CurricularFace [26] 94.81 96.11
+DAM-R 95.12 96.20
+DAM-L 95.01 96.18

different loss functions. Besides, the performance of our
proposed DAM-L is comparable with the DAM-R, which
means that our learning-based approach DAM-L can learn
to estimate the local inter-class discrepancy well.

4.3. Results on LFW, CALFW and YTF datasets

To further demonstrate the effectiveness of our method,
we provide the results on LFW [12], CALFW [55] and
YTF [48] in Table 2. Specifically, we leverage our pro-
posed DAM-R and DAM-L methods based on pre-trained
ResNet-18 on CASIA-WebFace dataset using ArcFace loss
function [6]. As shown in Table 2, when compared with
the original method based on ArcFace, the proposed DAM-
R improves the accuracy by +0.30% on LFW, +0.38% on
CALFW, and +0.26% on YTF, respectively.

Table 2: The verification accuracy (%) on the LFW,
CALFW and YTF datasets.

Methods LFW(%) CALFW YTF(%)
ArcFace [6] 98.73 91.67 94.97
+DAM-R 99.03 92.05 95.23
+DAM-L 98.98 92.03 95.17

4.4. Results on RFW dataset

To show the effect of DAM on non-uniform distribution
(e.g., different races), we follow the setting of [43] to re-
port the results of DAM on RFW [44] with the ResNet-34
model based on ArcFace loss function and using the BUPT-
Balancedface [43] as the training set, where RFW contains
faces from four race groups (African, Asian, Caucasian, and
Indian). In Table 3, DAM also achieves superior results on
all races in the RFW dataset, which demonstrates the effec-
tiveness of our proposed DAM.

Table 3: The verification accuracy (%) on RFW.

Methods Caucasian Indian Asian African Avg
ArcFace 96.13 94.70 93.75 93.95 94.63
+DAM-R 96.30 95.20 94.31 94.51 95.08
+DAM-L 96.20 95.11 94.15 94.32 94.95
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4.5. Ablation study

The size of the neighboring embedding set and anchor
embedding set. We evaluate our DAM-R method using
different sizes of the neighboring embedding sets and the
anchor embedding sets, and results on the IJB-B dataset are
shown in Fig 4. Specifically, we leverage the ResNet-50
trained on MS-Celeb-1M dataset based on the ArcFace loss
function. In Fig. 4a, we set the size of the anchor embed-
ding set as 50000, and use different sizes of the neighboring
embedding sets. When the size of the neighboring embed-
ding set increases from 1 to 10, our method achieves better
performance, which indicates that the neighboring embed-
ding set could represent the LID appropriately. However,
when the size of the neighboring embedding set continues
to increase from 10, the performance on the IJB-B dataset
begins to drop. It is reasonable that as the size increases, the
LID of each face image tends to be similar, and the discrim-
inative ability is diminished. Meanwhile, in Fig. 4b, we set
the size of the neighboring set as 10, and use different sizes
of the anchor embedding set. As the size of the anchor em-
bedding set increases, the performance first gradually im-
proves, and then tends to be flat. The anchor embedding
set is to sample from the feature distribution for the trained
model. When we increase the size of the anchor embedding
set, we can obtain more accurate sampling, which helps to
generate a better estimation of LID. Whereas, when the size
is large enough, the improvement of performance becomes
relatively stable.
The effect of the hyper-parameter s. To demonstrate the
effect of the hyper-parameter s, we conduct more experi-
ments by setting different values of s on the IJB-B dataset,
and the results at FAR=0.001% are shown in Fig. 4c.
Specifically, we leverage the ResNet-50 trained on MS-
Celeb-1M dataset based on the ArcFace loss function. As
shown in Fig. 4c, when the s increases from 0.5 to 1, the
performance on IJB-B becomes better. However, when we
continue to increase the s from 1, the performance begins to
drop. In the training process, as analyzed in AdaCos [53],
the scale factor of the loss function aims to balance the diffi-
culty of the optimization, where the larger scale factor leads
to an easier optimization goal. In contrast, in our DAM, if
we use a large scale factor, the value of the local inter-class
discrepancy is dominated by very few restricted neighbor
samples (e.g., only the nearest one), which cannot reflect
inter-class discrepancy well. Meanwhile, with s → 0, the
local inter-class discrepancy becomes indiscriminative.
Different types of anchor embedding sets. To analyze the
effect of the anchor embedding set, we leverage different
types of anchor embedding sets for our DAM-R method,
and the results on the IJB-B dataset are reported in Table 4.
The ResNet-50 model is adopted and trained on MS-Celeb-
1M dataset. Specifically, “ArcFace” denotes the original
result based on Arcface loss. “Weights of FC layers” de-

notes that we use the converged weights of the last fully-
connected layer of ArcFace loss function. The weights ap-
proximate the centers of all classes of the training dataset.
“Real-db” means that we randomly sample one image per
identity from MS-Celeb-1M dataset, and extract features by
the ResNet-50 model. “Fake-db” means that the images are
generated by StyleGAN [15] trained on the MS-Celeb-1M
dataset. As shown in Table 4, similar results are achieved
when using different types of anchor embedding sets, which
shows that our method is not sensitive to the types of anchor
embedding sets.

Table 4: The results on IJB-B dataset when using different
types of anchor embedding sets.

Types of anchor image set IJB-B (TAR@FAR)
0.001% 0.01%

ArcFace [6] 85.50 93.09
Weights of FC layers 87.50 93.48

Real-db 87.86 93.64
Fake-db 87.89 93.63

4.6. Further analysis

Statistical analysis of cosine similarity and probability.
We train the ResNet-50 [10] with MS-Celeb-1M [9]. As
shown in the first two columns of Fig. 5, we visualize the co-
sine similarity score distribution corresponding to the posi-
tive category center and probability (output of softmax) dis-
tribution at different optimization steps. Then we select two
disjoint segments in the probability distribution (the second
column), and show their corresponding cosine distributions
in the last column of Fig. 5. The two cosine distributions
overlap each other. We have two observations from Fig. 5:
1) As the training proceeds, the curves of both score dis-
tribution and probability become sharp. 2) Meanwhile, the
overlap of the selected distribution does not disappear with
the convergence of the model, which shows the gap between
the cosine similarity and probability.
Effectiveness of DAM. To analyze the effect of the DAM,
in Fig. 6, we visualize the similarity score computed by
DAM of the same samples in the two disjoint segments in
Fig. 5. Compared with the original cosine similarity, the
overlap of normalized score decreases, and the curve be-
comes sharper, as shown in Fig. 6. It demonstrates that the
misalignment between probability and similarity is reduced
with the incorporation of local inter-class discrepancy.
Differences with cohort score normalization. Cohort
score normalization (CSN) [38] has been used for face
recognition by post-processing the raw matching score us-
ing the cohort samples. The differences of our proposed
DAM and CSN are as follows. First, for a pair of face im-
ages, CSN utilizes the similarity scores between each face
image with respective neighboring face images as an addi-
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Figure 4: (a) The effect of the size of neighboring embedding set. (b) The effect of the size of anchor image set. (c) The
effect of the hyper-parameter s.
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Figure 5: The distributions of softmax probability and co-
sine similarity between the training sample and its positive
category at different optimization stages. The total iteration
is 20,0000 steps, and the first row, the second row and the
third row show the distributions of the 80,000th, 140,000th,
and 200,000th steps, respectively. Two disjoint segments
of the probability distribution are selected, and their corre-
sponding cosine distributions are demonstrated in the last
column.

tional discriminative feature to assist recognition. The mo-
tivation of CSN is to generate more convincing features for
face verification. In contrast, we propose a new metric for
inference, which is more consistent with optimization tar-
get in the training process. The similarities with neighbors
in DAM are used to estimate the local inter-class discrep-
ancy instead of additional representation in CSN. Second,
CSN tries to exploit the patterns from sorted similarities
and needs regression strategies to produce discriminative
information. Whereas, our DAM is plug and play follow-
ing Eq. 3 without external regression process. Third, CSN
is proposed based on traditional facial descriptors, but our
DAM is based on the SOTA framework using deep neural
network architectures and effective loss functions, where
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Figure 6: Comparison between the cosine similarity and the
normalized similarity score of DAM. The green and blue
curves represent similarity distributions correspond to the
two disjoint segments of probability, as described in Fig. 5.
The right illustrates the original cosine similarity, and the
left represents the similarity score of DAM.

the extracted features are distributed on the hyper-sphere.
Moreover, we also propose a learning based method to esti-
mate the LID without searching neighboring samples.
Discussion on the combination format of DAM. We re-
place the summation operation with the multiplication op-
eration in Eq. 3. We adopt the same setting of Table 1 to
compare the summation and multiplication operations un-
der the reference-based DAM, which are called as DAM-R-
S and DAM-R-M, respectively. The TAR results of DAM-
R-M are 94.56% and 90.80% on the IJB-B dataset under the
FAR of 1e-4 and 1e-5, respectively, which are comparable
with the results (94.63%, 90.83%) of DAM-R-S. It indicates
that the choices of summation and multiplication operations
do not bring explicit differences of our proposed DAM.

5. Conclusion

In this paper, we have investigated the gap between the
training and verification process and the effectiveness of lo-
cal inter-class discrepancy information for face recognition.
Then, we have proposed a novel verification metric called
DAM for face recognition. Extensive experiments among
different face recognition benchmarks demonstrate the ef-
fectiveness of our proposed DAM.
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