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Abstract ping, to input images to generate augmented images, which
have labels the same as their originals. In practice, data
Human-designed data augmentation strategies haveaugmentation has been widely used to improve the general-
been replaced by automatically learned augmentation pol- ization in deep learning models and is thought to encourage
icy in the past two years. Speci cally, recent work has em- model insensitivity towards data perturbation [19, 14, 16].
pirically shown that the superior performance of the au- Although data augmentation works well in practice, design-
tomated data augmentation methods stems from increasingng data augmentation strategies requires human expertise,
the diversity of augmented data [4, 5]. However, two factors and the strategy customized for one dataset often works
regarding the diversity of augmented data are still missing: poorly for another dataset. Recent efforts have been ded-
1) the explicit de nition (and thus measurement) of diver- icated to automating the design of augmentation strategies.
sity and 2) the quanti able relationship between diversity It has been shown that training models with a learned data
and its regularization effects. To bridge this gap, we pro- augmentation policy may signi cantly improve test accu-
pose a diversity measure called Variance Diversity and the- racy [20, 28, 5, 15, 13].
oretically show that the regularization effect of data aug- However, we do not yet have a good theory to ex-
mentation is promised by Variance Diversity. We validate in plain how data augmentation improves model generaliza-
experiments that the relative gain from automated data aug- tion. Currently, the most well-known hypothesis is that data
mentation in test accuracy is highly correlated to Variance augmentation improves generalization by imposing a reg-
Diversity. An unsupervised sampling-based framewbDik,  ularization effect: it regularizes models to give consistent
VvAug, is designed to directly maximize Variance Diver- outputs within the vicinity of the original data, where the
sity and hence strengthen the regularization effect. With- vicinity of the original data is de ned as the space that con-
out requiring a separate search process, the performancetains all augmented data after applying operations that do
gain from DivAug is comparable with the state-of-the-art not drastically alter image features [27, 6, 23]. Meanwhile,
method with better ef ciency. Moreover, under the semi- previous automated data augmentation works claim that the
supervised setting, our framework can further improve the performance gain from applying learned augmentation poli-
performance of semi-supervised learning algorithms com- cies arises from the increase in diversity [4, 5, 15]. How-
pared to RandAugment, making it highly applicable to real- ever, the diversity in the claims remains a hand-waving
world problems, where labeled data is scarce. The code isconcept: it is evaluated by the number of distinct sub-
available athttps://github.com/warai-0toko/ policies utilized during training or visually evaluated from a
DivAug . human perspective. Without formally de ning diversity and
its relation to regularization, the augmentation strategies
. can only be evaluated indirectly by evaluating the models
1. Introduction trained on the augmented data, which may cost thousands of

Data augmentation is a technique to create synthetic datd>FY hours [4]. It motivates us to explore the possibility of
from existing data with controlled perturbation. For exam- USing an explicit diversity measure to quantify the regular-
ple, in the context of image recognition, data augmentation ization effect of the augmented data may have on the model.

refers to applying image operatiorsg, cropping and ip- Thus, in this way we can directly maximize th_e diyersity of
the augmented data to strengthen the regularization effect to

*The rst two authors contributed equally to this paper. improve the generalization of the model.
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Figure 1: The DivAug framework overview. At the expanding stage, each data in the mini-batch is augmented by multiple
randomly generated sub-polices. Notice the probability vectors of these augmented data are also obtained. At the selection
stagek-means++ seeding algorithm is used to sub-sample a subset of augmented data whose probability vectors are far apart
from each other and thus diversi es the augmented data. Then the sampled data is used to train the model.

To bridge the gap, in this paper we propose a new di- proposed measure.
versity measure, called Variance Diversity, to quantify the
diversity of augmented data. We show that the regulariza- ~ Based on the proposed measure, we design a sampling-
tion effect of data augmentation is promised by Variance based framework to explicitty maximize diversity.
Diversity. Our measure is motivated by the recent theoret- ~ Without requiring a separate search process, the per-
ical result that after applying augmented data to train the formance gain from DivAug is comparable to the state-
model, the loss implicitly contains a data-driven regular- of-the-art method with better ef ciency.

ization term that is in proportion to the variance of prob- . . .

ability vectors, where probability vectors are the outputs Our method is unsupervised and can plug in the stan-
from models trained with the augmented data [6]. Speci - dard training process. We show that our method can
cally, we measure the diversity of a set of augmented data  further boost the performance of the semi-supervised
by the variance of their corresponding probability vectors. learning algorithm, making it highly applicable to real-
Based on the measure, we propose a plug-in automated data  World problems, where labeled data is scarce.
augmentation framework namé&ivAug, which can plug

in the standard training process without requiring a sepa-2. Related Work

rate search process.. As |Ilustrateq in Figure 1, the frame'Recently, AutoAugment (AA) [4] has been proposed to au-
work has two stages: the expanding stage, where we ran-

domly generate several augmented data for each Originag)matlcally search for augmentation policies from a dataset.

) . peci cally, AutoAugment utilizes a recurrent neural net-
input data, and the selection stage, where we sub-sample Gork (RNN) as the controller to nd the best policy in a sep-
subset of augmented data and feed them to train the model, policy P

Speci cally, at the selection stage, for each image, we Sub_arate search process on a small proxy task (smaller model

. . ) . . size and dataset size). Once the search process is over, the
sample a subset of augmented images with high diversity L
. . . learned policies are transferred to the target task and xed
by applying thek-means++ seeding algorithm [1], where . .
. . o during the whole training process. These learned augmen-
the augmented data accompanied with probability VeCtortation olicies signi cantly improve the generalization of
which is far away from that of the original data is sampled P 9 y imp 9

with high probability. Following the mathematical deriva- deep models [4]. However, its search time is huge:_lt_ costs
. R . . . . roughly 5,000 GPU hours to search for the best policies on
tion, the regularization effect increases with the diversity of

the augmented data. Consequently, the stronger regulariza"fl.SmaIller dataset they call reduced CIFAR-10 , which con-

. Lo . sists of 4,000 randomly chosen images.
tion effect can lead to better model generalization, which Most of the followina works adopted the AutoAuament
is observed in terms of improved model performance. Our wing w b utoAug

. o : ) search space and formulation with improved optimization
main contributions can be summarized as follows: . .
algorithms [28, 20, 15, 13]. Population-based augmenta-

We propose a new measure for quantifying the diver- tion (PBA) [15] replaces the xed policy with a dynamic
sity of augmented data. We validate in our experiments schedule of policies evolving along with the training pro-
that the relative gain in the accuracy of a model after cess. Fast AutoAugment (Fast AA) [20] proposes a den-
applying data augmentation is highly correlated to our sity match method to accelerate the search process and
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Table 1: Summary of automated data augmentation.

Method non- xed without the separate search process unsupervised without proxy tasks
AA[4] 7 7 7 7
Fast AA [20] 7 7 7 3
PBA [15] 3 7 7 7
Adv. AA [28] 3 7 7 3
RA[5] 7 3 3 3
DivAug (this paper) 3 3 3 3

treats the augmented data as missing points in the trainingoperationop(x; p; m) is de ned as:
set. RandAugment (RA) [5] eliminates the separate search

process by randomly applying augmentation sub-policies, op(x;p; m) =
which best resembles our work. Adversarial AutoAugment

(Adv. AA) [28] achieves state-of-the-art results by utiliz- g5ch operation comes with a maximum range of magni-
ing an RNN controller to learn policies that could generate ,ges to avoid extreme image transformations. For exam-
augmented data with higher loss. As shown in Table 1, we ple Rotate operation is only allowed to rotate images at
outline a general taxonomy of automated data augmentationyost 30 degrees. The maximum range of magnitude for
methods, characterized by four core propertlden-xed  each operation is set to be the same as those reported in the
augmentation policies are dynamically changed along with AytoAugment. Meanwhile, we normalize the magnitude
the training processyithout the separate search process parametem to within [0; 1], wherel stands for the max-

op(x; m); with probabilityp:
X; with probabilityl p:

methods do not require a separate search prouessper-  jmum acceptable magnitude. One example for illustrating

vised methods do not require label information to nd the {he operation is shown in Figure 2.

best policy; andwithout proxy tasksmethods perform the In general, previous automated data augmentation meth-

search directly on target tasks. ods search for the top augmentation policy, which is a set
of ve sub-policies, with each sub-policy consisting of two

3. Methodology operations to be applied to the original images in sequence.

In this section, we introduce the design and implementa- Lett be the sub-policy that consists of two consecutive op-
tion of DivAug. First, we describe our search space in Sec- €rations, namelyt(x) = op 2(0p1(X; p1; M1); p2; M2). For
tion 3.1. Then we mathematically show that after employ- the sake of description convenience, we simplify the no-
ing augmented data, the training loss implicitly contains a tation ast := op, op;. Given the search space, previ-
data-driven regularization term that is in proportion to the 0us automated data augmentation methods explore and rank
variance of probability vectors (Section 3.2). Subsequently, the possible policy candidates in a separate search process.
we propose to measure the diversity of a set of augmentedonce the search process is over, the top ve policies are col-
data by the variance of their corresponding probability vec- lected to form a single nal policy, which is a set containing
tors. Based on the measure, we derive a sampling-based aw?5 distinct sub-policies. The nal policy is xed throughout
tomated data augmentation method to explicitly maximize the training process. For each image in a mini-batch, only
the diversity of augmented data (Section 3.3). one sub-policy will be randomly selected to be applied [4].

3.1. Search Space Rotate(a;0.7,1.0)

Probability 0.3

We adopt the basic structure of the well-designed search
space introduced in AutoAugment [4]. There are to-
tally 16 image operations in our search space, including
Sharpness , ShearX/Y , TranslateX/Y , Rotate ,

AutoContrast , Invert , Equalize , Solarize Original image  Frobabillty 0.7

Posterize , Color , Brightness , Cutout [8], <

Sample Pairing [17], and Contrast . Let O = Rotate(z;1.0)
fSharpness ; ;Contrast g be the set of all available Figure 2: The schema of operati®otate ( ;0:7; 1:0),

operatlons.. 'Each opergﬂon @O has.twc.) parameters, where 1.0 is the normalized magnitude of the operation.
the probability of applymg the c_Jperatlo_n, am the_ mag- Notice Rotate (;0:7;1:0) denotes rotating the image by
mtt_Jde of the operation. To avoid crgatmg confusion in no- 5, degrees with the probability of 0.7.

tations, we us®p( ; m) to represent image transformation

speci ed byop, with magnitudem. Given an image, the However, the xed policy may be sub-optimal due to
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the following two factors. First, there does not exist a sub- tion, we can expand Equation (1) around point

policy universally better than all other sub-policies through- R

out the training process [10, 15, 28]. For example, sub- i 1 isyi)*

policies that can reduce generalization error at the end of Er 1[ho(yix}h) HEERNE (2)
training is not necessarily a good sub-policy at the initial

phase [11]. Second, the choices (hence diversity) of theThe second term in Equation (2) can be cancelled by pick-
augmented data is limited by the xed set of unique sub- ing i = E; 7tP(yjx}), i.e,, i is the averaged probability
policies. From the above analysis, we design our searchvector of all samples within the vicinity of;. If we fur-
space similar to the AutoAugment’s search space with two ther expand Equation (1) around point = E; +p(yjx})
differences. First, inspired by Fast AutoAugment [20], to by considering the second order term, we have:
introduce more stochasticity, we relax both the probability

p and magnitudem as continuous parameters with value 51 i)+ }Et L 71 Gyl (3)
range[0; 1]. Second, the nal policy in our search space is 2
de ned as the universal set that contains all the possible sub- . .= = Pyjxh) i is the difference between the prob-

policies. In contrast, the nal policy in other work’s search ab|I|ty vector p(yjx!) referring to the augmented daa,
space is setto a xed set of 25 unique sub-policies. We noteand the averaged probability vector. The second term
that RandAugment [5] samples the sub-policies uniformly in Equation (3) is so called the data-driven regularization
over the search space similar to ours. The major distinctionsterm | which is exact the variance of the probability vec-
in RandAugment are 1) the magnitude parametés xed tor p(yjx!), weighted by ;;y;). That means employing
discrete integer value, 2) the probability parametisrxed  augmented data imposes a regularization effect by implic-
to . That means RandAugmelivaysapplies operations ity controlling the variance of model's outputs.

on the original data
3.3. The DivAug Framework

3.2. Regularization Effects of Data Augmentation To establish the relationship between the diversity of

We derive the regularization effect of data augmenta- augmented data and their regularization effect, we propose
tion following from the theoretical analysis in [6]. We & new diversity measure, called Variance Diversity, for the
start by introducing the setting and notations of represen-augmented data whose regularization effect can be quanti-
tation |earning‘ Consider a neura| netwder) param_ ed. Based on thiS, we derive a Sampling-based framework
eterized by o f map the inputx into a vector repre_ that eXp|ICIt|y maximizes the Variance DiVerSity of the aug'
sentationf (x) 2 RP with D output dimensions. We Mmented data.
aim to minimize loss functiond : RP R! R
over a dataset(x;;y;)d\, , wherey; 2 f1; Dg. Let
p(yjx) = Softmax (f (x)) be the probability vector, where \We start by proposing a new diversity measure for aug-
the Softmax function is used to normalizé (x) into a mented data, whose regularization effect can be quanti ed.
probability dlstrlbut’gn We denote the loss function to be
minimized asL = = L, L;, whereL; = I(p(yjxi);Vi)- | @ Ppeie
We denote the gradient dfwith respect to the rst argu-
ment asl® 2 RP. Similarly, we usd®2 RP P to rep-
resent the Hessian matrix bfwith respect to the rst ar-
gument. We use to represent the sub-policy, afdis the
set of all available sub-policiest! is the augmented data

3.3.1 Diversity Measure of Augmented Data

N
‘ N Augmented
\\ Data

1
in the vicinity of X; obtained by applying to x;. We use * ¢ B
h; i to denote inner-product. For a s&twe usgSj to rep- * A4
resent its cardinality. With these notations, after applying | ™™ =~ o 3’/;‘"\ :; A
data augmentation, the new loss function becomes: Model's =
decision boundary
N _ Sty vV . . . .
Li = Ec r[I(BCyixi): yi)l: @) Figure 3: An example to illustrate the diversity between

augmented data. DivAug explicitly looks for augmented
data whose corresponding probability vectors are far away
from each other in the decision space.

Suppose data augmentation does not signi cantly mod-
ify the feature map. Using the rst order Taylor approxima-

*Although RA always applies operations, RA may keep the original From Equatilon ), after- tra.ining models on augmented
image unchanged since its search space contaiideatity ~ operation. data, a data-driven regularization term can be decomposed
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Algorithm 1: DivAug

Input: input imagex; modelf ; all possible operation®©=f Sharpness , ,Contrast ¢
Parameters:the number of augmented images per input imagéhe number of selected augmented images per
input image used for training

Output: S := a set ofS augmented images of input image

1forj=1; ;Edo

2 Sample operationsp;; op, O uniformly at random

3 p. Uniform(0;1);p>  Uniform(0;1)

4 m;  Uniform(0;1);m,  Uniform(0; 1)

5 | Getsub-policytj :=op1( ;pi;m1) opz( ;p2;M2)

6

7

8

9

Generate!i = t(x)
Computep(yjx'i )= Softmax (f (x'))

end
Generate a set of augmented ima§esf sizeS, which is a random subset b%'i ;j =1; ;Eg, using
k-means++ seeding algorithm op(yjx'i):j =1; ;Eg
10 return S

from the loss function. From above, we quantify the di- Therefore, it is harder for models to give consistent predic-
versity of a set of augmented data by the variance of theirtions for diversely augmented data. This forces the models
corresponding probability vectors. Formally, given a model to generalize over the vicinity of original data.

f , for a set of augmented daga= fx'i g, , wherex" is
generated from the same original dathy applying differ-

ent sub-policyt; , we de ne the diversity o6 as: 332 Design of DivAug

According to the de nition of Variance Diversity and Equa-
tion (3), the increase of Variance Diversity directly strength-
ens the regularization effect of augmented data. Based on
this insight, our DivAug framework generates a set of di-

: . versely augmented data and minimizes the loss over them.
If CrossEntropy is used as the loss function, then the Hes—Sloeci cally, DivAug consists of two stages: the expanding

i ix|OF v ) i i i - ; i
sian matrix|®{ _|,y.) is a diagonal matrix, where the ele stage and the selection stage. At the expanding stage, for
ments on the diagonal are all zero, except for the one corre-

. S ) each original datx;, we rst randomly generate a set of
sponding to the true label. This implies that under the super- g ' Y9

! \ ; " P sub-policiesft; gF_, , wherefx' gE_, are the set of aug-
vised setting, only the variance of the probability associated P t’J =1 ! 9=1 g.
with the true label will be penalized. We can extend this Mented data;’ corresponding td;. The second stage is
penalty effect to unsupervised domain by setitfg ;:y:) the selection stage,twhEere we sub-sample a subset of aug-
’ ] 1S:7 =
in Equation (3) as the identity matrix. In this way, Equation mented dat& 1 x;'gr, , wherejSij = S <E. Then
(3) penalizes the variance of the probability associated with e feed the selected augmented data to the model. Our Di-

any class. We note that this is essentially the consistency/AU9 framework is illustrated in Figure 1. Formally, with

regularization, which is one of the key techniques in semi- the notations introduced in Section 3.2 and Section 3.3.1,

supervised learning and self-supervised learning, which en-9'venf , we minimize the following objective:
courages the model to produce similar probability vectors

D(S)= Eyips 7 - )

p(yjxti) = Softmax (f (x4)) is the probability vector
corresponding ta'i , and =~ p(yjx'i)  E, ,5 PYjXY).

when the input data is perturbed by noise [24, 2]. More- min X [} X LB(YX): V)1 ®)

over, ifI%C ;:y;) in Equation (3) is set as the identity ma- NS s RO

trix, the diversity of augmented data is exact the data-driven e

regularization term in Equation (3). St: S = argmax E o P (8)
According to Equation (4), we name our diversity mea- sifox) 9=

sure Variance Diversity . We note that this is a unsuper- 1Sij=$

vised model-speci c measure, which depends only on the b . _
model prediction without involving any label information. where = Byixi") E,1 5 Byix;"). From Equation
Intuitively, as illustrated in Figure 3, if a set of augmented (6), we target at selecting a subset of augmented 8ata
data has large Variance Diversity, that means their corre-whose corresponding probability vectors have maximum

sponding probability vectors are far away from each other. variance. Unfortunately, getting the solution of Equation (6)
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poses a signi cant computational hurdle. Instead of com- S = 2 due to limited resources. For the semi-supervised
puting the optimal solution, we ef ciently samplg with learning experiment, we s& = 4 andS = 2. We did

the k-means++ seeding algorithm [1], which is originally not tune these two hyperparameters, and we choose them
made to generate a good initialization fermeans clus-  mainly according to the available GPU memory.

tering. k-means++ seeding selects centroids by iteratively The methods for comparison are as below: We com-
sampling points in proportion to their squared distances pare Algorithm 1 with AutoAugment (AA) [4], Fast Au-
from the closest centroid that has been chosen. Here, wdoAugment (Fast AA) [20], Population Based Augmenta-
de ne the distance between a pair of probability vector as tion (PBA) [15], RandAugment (RA) [5], and Adversarial
their Euclidean distance. Therefokemeans++ samples a AutoAugment (Adv. AA) [28]. For each image, the aug-
subset of augmented data where their probability vectors arementation policy proposed by different methods and the de-
far apart from each other, which practically leads to a large fault augmentation are applied in sequence.w

Variance Diversity. For more details, themeans++ seed-
ing algorithm is shown in Algorithm 2 in the Appendix A.
We show the algorithm of DivAug in Algorithm 1 and re-
mark that the operation is randomly generated. There are To answerRQ1, we calculate the Variance Diversity of
two hyperparameters in Algorithm 1. Namely, the num- augmented data generated by AA, Fast AA, RA, the de-
ber of augmented images per input imdgeand the num-  fault augmentation introduced in Section 4.1, and DivAug
ber of selected augmented images per input image used folThen, we report the test accuracy of models trained on aug-
training S. Moreover, the two hyperparamete®sand E mented data generated by different methods.

do not need to be tuned on proxy tasks and can be cho- Because Variance Diversity is an unsupervised, model-
sen according to available computation resources. Similarspeci ¢ measure, for a fair comparison, we rst train a
to RandAugment, DivAug is a sampling-based method that Wide-ResNet-40-2 model on CIFAR-10 without applying
does not require a separate search process. Note that there iy data augmentation methods. Then we use it a$ the
no label information involved in Algorithm 1, which means in Equation (4) to evaluate all different automated data aug-
DivAug is suitable for both semi-supervised learning and mentation methods. To verify the correlation between gen-

4.2. Correlation Between Variance Diversity and
Generalization

supervised learning. eralization and Variance Diversity, we calculate the Vari-
) ance Diversity of augmented data as follows: for each im-
4. Experiments age in the training set, an automated augmentation method

is used to randomly generate four augmented images. Then
we calculate the Variance Diversity of these four images ac-
cording to Equation (4). We report the averaged Variance
RQ1. What is the effect of Variance Diversity on Diversity over the entire training set in Figure 4.

model generalization?

Our experiments aim to answer the following research
questions:

97.04
efaul [ ]
RQ2. How effective is the proposed DivAug compared . me
with other automated data augmentation methods un- & . A 3
der the supervised settings? b o Divug .
2 96.0
RQ3. How well does DivAug improve the perfor- g
mance of semi-supervised learning algorithms? i: 9.5
=
4.1. Experimental Settings 9.0
Below, we rst introduce the datasets and the default aug- P Py RR— PYTaE——
mentation method for them. Then, we will introduce the Variance Diversity
hyperparameter setting of Divaug§ &ndE in Algorithm 1) _ o N
, and the baseline methods for Comparison_ Flgure 4: The performance gainis pOSItlver correlated

We adopt four benchmark datasets for evaluating ourto Variance Diversity. In general, almost all points lies
proposed method: CIFAR-10, CIFAR-100, SVHN and Im- near the diagonal, and the relative gain in test accuracy in-
ageNet. These four datasets are processed based on tigeases with larger Variance Diversity.
way and codes provided in [4]. The basic statistics of these  Figure 4 demonstrates the performance gain and Vari-
four datasets and the default data augmentation for them ar@nce Diversity are positively correlated (the detailed test ac-
suinmanzed In Appendlx. _FOI’ DIYAUQ’ we set=8 and . We do not include Adv. AA because the of cial code is not released.
S =4 forthe experlments in Section 4.2 and 4.3, excluding ror pBa, the of cial code is based on Ray and hard to migrate our code-
the ImageNet experiment. For ImageNet, wekset 4 and base for a fair comparison.
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curacy is shown in the rst row of Table 2). As shown in The effect of k-means++ : To check the effect ok-
the gure, all automated data augmentation methods couldmeans++ in DivAug, we compare the performance of Wide-
improve the Variance Diversity of augmented data over the ResNet-28-10 with DivAug and that with the random base-
default augmentation. Speci cally, AA and Fast AA has line in Appendix C Table 6. The random baseline here
small Variance Diversity. It makes sense because both ofrandomly picksS augmented images frofa candidates
them try to minimize the distribution shift of the augmented for training. Also, the magnituden and probabilityp
data from the original distribution. For example, Fast AA are also randomly picked. As shown in Table 6, DivAug
treats the augmented data as the missing point in the trainis signi cantly better than the random baseline. More-
ing set. As a result, for CIFAR-10, all of the reported sub- over, to understand the effect kimeans++ and how Di-
policy proposed by AA and Fast AA do not contain the vAug improves the test accuracy over RA, we further vi-
counter-intuitive operatiorsamplePair [4, 20], which sualize the distribution of sub-policies selected by DivAug
limits the Variance Diversity of the augmented data gen- with Wide-ResNet-40-2 on CIFAR-10 over the training pro-
erated by them. In contrast, DivAug has the largest Vari- cess. As shown in Figure 5, we observe that the per-
ance Diversity because it tries to explicitly maximize the centages of some operations picked from the sampled sub-
Variance Diversity of the augmented data. Notice RA has policies, such aJranslateY , ShearY , Posterize ,
larger Variance Diversity compared to AA and Fast AA. and SampleParing , gradually increase along with the
This might be a result of RA randomly sample operations. training process. In contrast, some color-based operation,
As aresult, RA samples more distinct sub-policies than AA such aslnvert , Brightness , AutoContrast , and
and Fast AA do and leads to larger diversity. Here we re- Color , gradually decrease along with the training pro-
mark that although RA has larger Variance Diversity com- cess. This behavior is consistent with the discovery that
pared to AA and Fast AA, the model’s relative gain in accu- there does not exist an operation beating all other opera-
racy is smaller compared to those of AA and Fast AA. We tions throughout the training process [15, 28]. Also, the av-
provided a detailed analysis in the Appendix D. erage probability of applying operations in the selected sub-
We also present a simple case study in Appendix C policies slowly increases with the training process. That
Figure 6, where DivAug’'s candidate images are obtained means DivAug tends to mildly shift the distribution of aug-
by only applying the single transforRotate with xed mented images away from the original one over the training
probability parametep (the magnitude parameter remains process. From above, it suggests that the sub-policies se-
random). As shown in Figure 6, Variance Diversity and gen- lected by DivAug evolve throughout the training process.
eralization are generally correlated.

4.3. The Effectiveness of DivAug Under the Supen |~
vised Settings

7.0

centage (%)

6.5
The main propose of automated data augmentation is " a0
to further improve the generalization of models over tra-

ditional data augmentation techniques. To ans@e, we Figure 5:The distribution of selected sub-policies evolves

compare our proposgd method with several baselines unde<[;1Iong with the training process. (a) The statistics of sub-
the supervised learning settings.

policies selected by DivAug. (b) The averaged probability
of applying operations in sub-policies selected by DivAug.

0 50 100 150 200

4.3.1 Experiment on CIFAR-10 and CIFAR-100 o ) ) ) ) )
Training Ef ciency Analysis: DivAug is estimated to

Following [4, 20, 5], we evaluate our proposed method be signi cantly faster than Adv. AA for the following rea-
with the following models: Wide-ResNet-28-10, Wide- sons. Following the time cost metric in [23], we estimate
ResNet-40-2 [26], Shake-Shake (26 2x96d) [9], and Pyra-the inference cost (see Algorithm 1 line 7) equals half of
midNet+ShakeDrop [25, 12]. The details of hyperparame- the training cost. Under the setting Bf = 8 andS = 4,
ters are shown in Appendix Table 5. DivAug additionally generates four times more augmented
CIFAR-10 Results: In Table 2, we report the test accu- data for training. In contrast, Adv. AA needs to generate
racy of these models. For all of these models, our proposeceight times more augmented data to achieve the results re-
method can achieve better performance compared to preported in Table 2. Moreover, it also needs a separate phase
vious methods. We achiev@7%, 0:8%, 0:7%, 0:8% im- to search for the best policy. Although the search time for
provement on Wide-ResNet-28-10 compared to AA, Fast Adv. AA is not reported in [28]. The estimated costs are
AA, PBA and RA, respectively. Overall, DivAug sig- summarized in Table 3.
ni cantly improves the performances over baselines while  CIFAR-100 Results: As shown in Table 2, DivAug gen-
achieves comparable performances to those of Adv. AA. erally achieves non-trivial performance gain over all other



Table 2: Test accuracy (%) on CIFAR-10 and CIFAR-100. For ImageNet, we report the validation accuracy (%). We compare
our method with the default data augmentation (Baseline), AA, Fast AA, PBA, RA, and Adv. AA. Our results are averaged
over four trials except ImageNet.

Dataset Model Baseline AA FastAA PBA RA Adv. AA|l DivAug
Wide-ResNet-40-2 94.7 96.3 96.4 - 96.1 - 96.9 .1

CIEAR-10 Wide-ResNet-28-10 96.1 97.4 97.3 974 973 981 98.1 .1
Shake-Shake (26 2x96d) 97.1 98.0 98.0 98.0 98.0 981 98.1 .1
PyramidNet+ShakeDrog 97.3 98.5 98.3 98.5 985 98.6 985 .1
Wide-ResNet-40-2 74.0 79.3 79.4 - - - 81.3 .3

CIFAR-100 Wide-ResNet-28-10 81.2 82.9 82.7 83.3 833 845 84.2 2
Shake-Shake (26 2x96d) 82.9 85.7 85.1 84.7 - 85.9 85.3 .2

SVHN Wide-ResNet-28-10 96.9 98.1 - - 983 - 98.3 .3
ImageNet ResNet-50 76.3 77.6 77.6 - 776 794 78.0

Table 3: Comparison of the total cost of DivAug and Adv. this prerequisite limits their application in SSL. In contrast,
AA on CIFAR-10 relative to RA. The training cost of Adv.  our proposed method is suitable for SSL because it is un-

AAis cited from [28]. supervised and tries to explicitly maximize diversity. This
i leads to the following question: can SSL bene t from our

RA Adv. AA DivAug proposed DivAugRRQ3)? To answer this question, follow-
Training( ) | 1.0 8.0+ SearchCost 4.5 ing UDA, we change the source of perturbation from RA

to DivAug (detailed hyperparameters are shown in the Ap-

) . pendix). Here, we report the averaged results over four ran-
methods excluding Adv. AA. However, we note that Di- 4o trials. As shown in Table 4, DivAug can further boost
vAug does not require label information or a separate searchy, performance of UDA under different settings. More-
process. Also, DivAug is signi cantly faster than Adv. AA. over, the performance gap grows larger when there is less

labeled data available. This might be because, when there
4.3.2 Experiment on ImageNet is limited labeled data, the regularization effect brought by

diversity plays a much bigger role in model performance.
Following [4, 20, 5], we select ResNet-50 [14] to evalu- ¥ pay 99 P

ate our proposed method. The details of the hyperparameTable 4: Error rate (%) comparison on CIFAR-10 with
ters are shown in Appendix Table 5. As shown in Table 2, 1000, 2000, and 4000 labeled data. The architecture is
DivAug outperforms other baselines except Adv. AA. We Wide-ResNet-28-2. For fair comparison, we reproduced the
remark that due to the limited resources, the two hyperpa-UDA(RA) result by ourselves using the same codebase.
rameters in Algorithm 1 are set ® = 4 andS = 2, re-
spectively. The performance gain from DivAug is expected Methods CIFAR-10

to be further improved with largdf andS. 1000 2000 4000

) ) ) UDA(RA) 7.37 0.15 6.50 0.14 5.44 0.15
4.4. The Effectiveness of DivAug Under the Semi» UDA(DivAug) 6.94 0.12 6.26 0.15 5.40 0.12

Supervised Setting

One of the key techniques in semi-supervised learindg conclusion
[3] (SSL) is consistency regularization, which encourages
the model to produce similar probability vectors when the  In this work, we propose a new diversity measure called
input data is perturbed by noise. It has been proven thatVariance Diversity by investigating the regularization ef-
the augmented data produced by state-of-the-art automatefect of data augmentation. We validate in experiments that
methods can serve as a superior source of noise under théhe performance gain from automated data augmentation is
consistency regularization framework [24, 22]. Speci cally, highly correlated to Variance Diversity. Based on this mea-
UDA [24] utilizes RA as the source of perturbation and sure, we derive the DivAug framework to explicitly max-
achieves non-trivial performance gain. Also, it has been imize Variance Diversity during training. We demonstrate
theoretically shown that the success of UDA stems from the our proposed method has the practical utility of achieving
diversity of augmented data generated by RA [24]. better performance without the need to search for top poli-

However, most automated data augmentation methodscies in a separate phase. Therefore, DivAug can bene t both
require label information to search for the best policy. Thus, the supervised tasks and the semi-supervised tasks.
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