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Abstract

Recently, directly detecting 3D objects from 3D point

clouds has received increasing attention. To extract object

representation from an irregular point cloud, existing meth-

ods usually take a point grouping step to assign the points

to an object candidate so that a PointNet-like network could

be used to derive object features from the grouped points.

However, the inaccurate point assignments caused by the

hand-crafted grouping scheme decrease the performance of

3D object detection.

In this paper, we present a simple yet effective method for

directly detecting 3D objects from the 3D point cloud. In-

stead of grouping local points to each object candidate, our

method computes the feature of an object from all the points

in the point cloud with the help of an attention mechanism

in the Transformers [42], where the contribution of each

point is automatically learned in the network training. With

an improved attention stacking scheme, our method fuses

object features in different stages and generates more ac-

curate object detection results. With few bells and whistles,

the proposed method achieves state-of-the-art 3D object de-

tection performance on two widely used benchmarks, Scan-

Net V2 and SUN RGB-D. The code and models are pub-

licly available at https://github.com/zeliu98/

Group-Free-3D

1. Introduction

3D object detection on point cloud simultaneously local-

izes and recognizes 3D objects from a 3D point set. As a

fundamental technique for 3D scene understanding, it plays

an important role in many applications such as autonomous

driving, robotics manipulation, and augmented reality.

Different from 2D object detection that works on 2D reg-

ular images, 3D object detection takes irregular and sparse

*This work is done when Ze Liu is an intern at MSRA.
†Contact person
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Figure 1. With the heuristic point grouping step, all points in blue

box of RoI-Pooling or blue ball of Voting are assigned and aggre-

gated to derive the object features, resulting in wrong assignments.

Our group-free based approach automatically learn the contribu-

tion of all points to each object, which has ability to alleviate the

drawbacks of the hand-crafted grouping.

point cloud as input, which makes it difficult to directly ap-

ply techniques used for 2D object detection techniques. Re-

cent studies [27, 35, 26, 51] infer the object location and ex-

tract object features directly from the irregular input point

cloud for object detection. In these methods, a point group-

ing step is required to assign a group of points to each object

candidate, and then computes object features from assigned

groups of points. For this purpose, different grouping strate-

gies have been investigated. Frustum-PointNet [27] applies

the Frustum envelop of a 2D proposal box for point group-

ing. Point R-CNN [35] groups points within the 3D box

proposals to objects. VoteNet [26] determines the group as

the points which vote to the same (or spatially-close) center

point. Although these hand-crafted grouping schemes fa-

cilitate 3D object detection, the complexity and diversity of

objects in real scene may lead to wrong point assignments

(shown in Figure. 1) and degrade the 3D object detection

performance.

In this paper, we propose a simple yet effective tech-

nique for detecting 3D objects from point clouds without the
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handcrafted grouping step. The key idea of our approach is

to take all points in the point cloud for computing features

for each object candidate, in which the contribution of each

point is determined by an automatically learned attention

module. Based on this idea, we adapt the Transformer to fit

for 3D object detection, which could simultaneously model

the object-object and object-pixel relationships, and extract

the object features without handcrafted grouping.

To further release the power of the transformer architec-

ture, we improve it in two aspects. First, we propose to

iteratively refine the prediction of objects by updating the

spatial encoding of objects in different stages, while the

original application of Transformers adopt the fixed spatial

encoding. Second, we use the ensemble of detection results

predicted at all stages during inference, instead of only us-

ing the results in the last stage as the final results. These

two modifications efficiently improve the performance of

3D object detection with few computational overheads.

We validate our method with both ScanNet V2 [6]

and SUN RGB-D [52] benchmarks. Results show that

our method is effective and robust to the quality of ini-

tial object candidates, where even a simple farthest point

sampling approach has been able to produce strong re-

sults on ScanNet V2 and SUN RGB-D benchmarks. For

the SUN RGB-D dataset, our method with the ensem-

ble scheme results in significant performance improvement

(+3.8 mAP@0.25). With few bells and whistles, the pro-

posed approach achieved state-of-the-art performance on

both benchmarks.

We believe that our method also advocates a strong po-

tential by using the attention mechanism or Transformers

for point cloud modeling, as it naturally addresses the in-

trinsic irregular and sparse distribution problems encoun-

tered by 3D point clouds. This is contrary to 2D image

modeling, where such modeling tools mainly act as a chal-

lenger or a complementary component to the mature grid

modeling tools such as ConvNets variants [16, 32, 46] and

RoI Align [2, 5].

2. Related Work

Grid Projection/Voxelization based Detection Early 3D

object detection approaches project point cloud to 2D grids

or 3D voxels so that the advanced convolutional networks

can be directly applied. A set of methods [18, 19, 50]

project point cloud to the bird’s view and then employ

2D ConvNets for learning features and generate 3D boxes.

These methods are mainly applied for the outdoor scenes

in autonomous driving where objects are distributed on a

horizontal plane so that their projections on the bird-view

are occlusion-free. Note these approaches also need to

address the irregular and sparse distribution issues of the

2D point projections, usually by pixelization. Other meth-

ods [4, 48] project point clouds into frontal views and then

apply 2D ConvNets for object detection. Voxel-based meth-

ods [37, 53] convert points into voxels and employ 3D Con-

vNets to generate features for 3D box generation. All these

projection/voxelization based methods suffer from quanti-

zation errors. The voxel-based methods also suffer from the

large memory and computational cost of 3D convolutions.

Point based Detection Recent methods directly process

point clouds for 3D object detection. A core task of these

methods is to compute object features from the irregularly

and sparsely distributed points. All existing methods first

assign a group of points to each object candidate and then

compute object features from each point group. Frustum-

PointNet [27] groups points by the 3D Frustum envelope

of a 2D box detected using an RGB object detector, and

applies a PointNet on the grouped points to extract object

features for 3D box prediction. Point R-CNN [35] directly

computes 3D box proposals, where the points within this 3D

box are used for object feature extraction. PV-RCNN [34]

leverages the voxel representation to complement the point-

based representation in Point R-CNN [35] for 3D object de-

tection and achieves better performance.

VoteNet [26] groups points according to their voted cen-

ters and extract object features from grouped points by the

PointNet. Some follow-up works further improve the point

group generation procedure [51] or the object box localiza-

tion and recognition procedure [3].

Our method is also a point-based detection approach.

Unlike existing point-based approaches, our method in-

volves all the points for computing the features of each ob-

ject candidate by an attention module. We also stack the

attention modules to iteratively refine the detection results

while maintaining the simplicity of our method.

Network architecture for Point Cloud A large set of

network architectures [38, 12, 29, 9, 47, 23, 44, 39, 45,

28, 30, 33, 43, 40, 17, 1, 41, 49, 10, 22] have been proposed

for various point cloud based learning tasks. [13] provides

a good taxonomy and review of all these architectures, and

discussing all of them is beyond the scope of this paper. Our

method can take any point cloud architecture as the back-

bone network for computing the point features. We adopt

PointNet++ [30] used in previous methods [26, 25, 51] in

our implementation for a fair comparison.

Attention Mechanism/Transformer in NLP and 2D Im-

age Recognition The attention-based Transformer is the

dominant network architecture for the learning tasks in the

field of NLP [42, 7, 21]. They have been also applied in

the field of 2D image recognition [16, 32, 46] as a strong

competitor to the dominant grid/dense modeling tools such

as ConvNets and RoI-Align. The most related works in 2D
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Figure 2. This figure illustrates the simple architecture of our approach, including three major components: a backbone network to extract

feature representations for each point in the point cloud, a sampling method to generate initial object candidates, and stacked attention

modules to extract and refine object representations from all points.

image recognition to this paper are those who apply the at-

tention mechanism or Transformer architectures into 2D ob-

ject detection [15, 11, 5, 2].

Among these approaches, our method is most similar to

[2], which also applies a Transformer architecture for 2D

object detection. However, we found that directly apply-

ing this method to point clouds leads to significantly lower

performance than our approach in 3D object detection task.

On the one hand, this is caused by the new technologies we

proposed, and on the other hand, it probably because our

method better integrated the advantage of traditional 3D de-

tection framework. We discussed these factors in Sec. 4.6.

Our approach improves the Transformer models to better

adapt the 3D object detection task, including the update of

object query locations in the multi-stage iterative box pre-

diction, and an ensemble of detection results of stages. Al-

though the attention mechanisms still have a certain per-

formance gap compared to the dominant convolution-based

methods in other tasks, we found that this architecture may

well address the point grouping issue for object detection

on point clouds. As a result, we advocate a strong potential

of this architecture for modeling irregular 3D point clouds.

3. Methodology

In 3D object detection on point clouds, we are given a

set of N points S ∈ R
N×3 and the goal is to produce a set

of 3D (oriented) bounding boxes with categorization scores

OS to cover all ground-truth objects. Our overall architec-

ture is illustrated in Figure 2, involving three major compo-

nents: a backbone network to extract feature representations

for each point in point clouds, a sampling method to gener-

ate initial object candidates, and stacked attention modules

to extract and refine object representations from all points.

Backbone Architecture While our framework can lever-

age any point cloud network to extract point features, we

adopt PointNet++ [30] as the backbone network for a fair

comparison with the recent methods [26, 51].

The backbone network receives a point cloud of N points

(i.e. 2048) as input. We follow the encoder-decoder archi-

tecture in [30] to first down-sample the point cloud input

into 8× resolution (i.e. 256 points) through four stages of

set abstraction layers, and then up-sample it to the resolu-

tion of 2× (i.e. 1024 points) by feature propagation lay-

ers. The network will produce a C-channel vector repre-

sentation for each point on the 2× resolution, denoted as

{zi}
M
i=1, which are then used in the initial object candidates

sampling module and the stacked attention modules. In the

following parts, we will first describe these two modules in

detail, and then present the loss function and head design

for this framework.

3.1. Initial Object Candidate Sampling

While object detection on 2D images usually adopts

data-independent anchor boxes as initial object candidates,

it is generally intractable or impractical for 3D object detec-

tion to apply this simple top-down strategy, as the number

of anchor boxes in 3D search space is too huge to handle.

Instead, we follow recent practice [35, 26] to sample initial

object candidates directly from the points on a point cloud,

by a bottom-up way.

We consider three simple strategies to sample initial ob-

ject candidates from a point cloud:

• Farthest Point Sampling (FPS). The FPS approach has

been widely adopted to generate a point cloud from

a 3D shape or to down-sample the point clouds to a

lower resolution. This method can be also employed to

sample initial candidates from a point cloud. Firstly, a

point is randomly sampled from the point cloud. Then

the farthest point to the already-chosen point set is it-

eratively selected until the number of chosen points

meets the candidate budget. Though it is simple, we

show in experiments that this sampling approach along

with our framework has been able to be comparable to

the previous state-of-the-art 3D object detectors.

• k-Closest Points Sampling (KPS). In this approach, we

classify each point on a point cloud to be a real ob-

ject candidate or not. The label assignment in training

follows this rule: a point is assigned positive if it is

inside a ground-truth object box and it is one of the

k-closest points to the object center. In inference, the

initial candidates are selected according to the classifi-

cation score of the point.
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• KPS with non-maximal suppression (KPS-NMS). Built

on the above KPS method, we introduce an additional

non-maximal suppression (NMS) step, which itera-

tively removes spatially close object candidates, to im-

prove the recall of sampled object candidates given a

fixed number of objects, following the common prac-

tice in 2D object detection. In addition to the object-

ness scores, we predict also the object center that each

point belongs to, where the NMS is conducted accord-

ingly. Specifically, the candidates locating within a ra-

dius of the selected object center will be suppressed.

The radius is set to 0.05 in our experiments.

In experiments, we will demonstrate that our framework

has strong compatibility with the choice of these sampling

approaches, mainly ascribed to the robust object feature ex-

traction approach described in the next subsection (see Ta-

ble 3). We use the KPS approach by default, due to its

better performance than the FPS approach, and the same

effectiveness as the more complex KPS-NMS approach.

3.2. Iterative Object Feature Extraction and Box
Prediction by Transformer Decoder

With the initial object candidates generated by a sam-

pling approach, we adopt the Transformer as the decoder to

leverage all points on a point cloud to compute the object

feature of each candidate. The multi-head attention net-

work is the foundation of Transformer, it has three input

sets: query set, key set and value set. Usually, the key set

and value set are different projections of the same set of

elements. Given a query set {qi} and a common element

set {pk} of key set and value set, the output feature of the

multi-head attention of each query element is the aggrega-

tion of the values that weighted by the attention weights,

formulated as:

Att(qi, {pk}) =

H∑

h=1

Wh(

K∑

k=1

A
h
i,k · Vhpk), (1)

A
h
i,k =

exp[(Qhqi)
T (Uhpk)]∑K

k=1 exp[(Qhqi)T (Uhpk)]
(2)

where h indexes over attention heads, Ah is the atten-

tion weight, Qh, Vh, Uh,Wh indicate the query projection

weight, value projection weight, key projection weight, and

output projection weight, respectively.

While the standard Transformer predicts the sentence of

a target language sequentially in an auto-regressive way,

our Transformer computes object features and predicts 3D

object boxes in parallel. The Transformer consists of sev-

eral stacked multi-head self-attention and multi-head cross-

attention modules, as illustrated in Figure 3.

Denote the input point features at stage l as {z
(l)
i
}M
i=1 and

the object features at the same stage as {o
(l)
i
}K
i=1. A self-

multi-head		self-attention

Q K	&	V

add	&	norm

multi-head	cross-attention

Q K	&	V

add	&	norm

objects	{oi}box	position
encoding

point	position
encoding

points	{zi}

attention module

FFN

add	&	norm

Figure 3. Architecture of the attention module.

attention module models interaction between object fea-

tures, formulated as:

Self-Att(o
(l)
i , {o

(l)
j }) = Att(o

(l)
i , {o

(l)
j }), (3)

A cross-attention module leverages point features to com-

pute object features, formulated as:

Cross-Att(o
(l)
i , {z

(l)
j }) = Att(o

(l)
i , {z

(l)
j }), (4)

where the notations are similar to those in Eq. (3). After the

object feature are updated through the self-attention module

and cross attention module, a feed-forward network (FFN)

is then applied to further transformed feature of each object.

There are a few differences compared to the original

Transformer decoders, as described below.

Iterative Object Box Prediction and Spatial Encoding

The original Transformer adopts a fixed spatial encoding

for all of the stacked attention modules, indicating the in-

dices of each word. The application of Transformers to 2D

object detection [2] instantiate the spatial encoding (object

prior) as a learnable weight. During inference, the spatial

encoding is fixed and same for any images.

In this work, we propose to refine the spatial encodings

of an object candidate stage by stage. Specifically, we pre-

dict the 3D box locations and categories at each decoder

stage, and the predicted location of a box in one stage will

be used to produce the refined spatial encoding of the same

object, the refined spatial encoding vector is then added

to the output feature of this decoder stage and fed into

the next stage. The spatial encodings of an object and a

point are computed by applying independent linear layers

on the parameterization vector of a 3D box (x, y, z, l, h, w)
and a point (x, y, z), respectively. In the experiments, we
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will show this approach can improve the mAP@0.25 and

mAP@0.5 by 1.6 and 5.0 on the ScanNet V2 benchmark,

compared to the approach without iterative refinement.

Ensemble from Multi-Stage Predictions Another differ-

ence is that we ensemble the predictions of different stages

to produce final detection results, while previous methods

usually adopt the output of the last stage as the final results.

Concretely, the detection results of different stages are com-

bined and they together go through an NMS (IoU threshold

of 0.25) procedure to generate the final object detection re-

sults. We find this approach can significantly improve the

performance of some benchmarks, e.g. +3.8 mAP@0.25

on the SUN RGB-D dataset. Also note the overhead of

this ensembling approach is marginal, mainly ascribed to

the multi-stage nature of the Transformer decoder.

3.3. Heads and Loss Functions

Decoder Head We apply head networks on all decoder

stages, with each mostly following the setting in [26]. There

are 5 prediction tasks: objectness prediction with a binary

focal loss [20] Lobj, box classification with a cross entropy

loss Lcls, center offset prediction with a smooth-L1 loss

Lcenter off, size classification with a cross entropy loss Lsz cls,

and size offset prediction with a smooth-L1 loss Lsz off.

Also, all 5 prediction tasks are obtained by a shared 2-layer

MLP and an independent linear layer.

The loss of l-th decoder stage is the combination of these

5 loss terms by weighted summation:

L
(l)

decoder
= β1L

(l)

obj
+β2L

(l)

cls
+β3L

(l)

center off
+β4L

(l)

sz cls
+β5L

(l)

sz off
,

(5)

where the balancing factors are set default as β1 = 0.5,

β2 = 0.1, β3 = 1.0, β4 = 0.1 and β5 = 0.1. The losses on

all decoder stages are averaged to form the final loss:

Ldecoder =
1

L

L∑

l=1

L
(l)

decoder
. (6)

Sampling Head The head designs and the loss functions

of the sampling module are similar to those of the decoders.

There are two differences: firstly, the box classification task

is not involved; secondly, the objectness task follows the

label assignment as described in Sec. 3.1. Our final loss is

the sum of decoder and sampling heads:

L = Ldecoder + Lsampler (7)

4. Experiments

4.1. Datasets and Evaluation Protocol

We validate our approach on two widely-used 3D object

detection datasets: ScanNet V2 [6] and SUN RGB-D [36],

and we follow the standard data splits [26] for them both.

ScanNet V2 [6] is constructed from an 3D reconstruction

dataset of indoor scenes by enriched annotations. It con-

sists of 1513 indoor scenes and 18 object categories. The

annotations of per-point instance, semantic labels, and 3D

bounding boxes are provided. We follow a standard evalu-

ation protocol [26] by using mean Average Precision(mAP)

under different IoU thresholds, without considering the ori-

entation of bounding boxes.

SUN RGB-D [36] is a single-view RGB-D dataset for 3D

scene understanding, consisting of ∼5K indoor RGB and

depth images. The annotation consists of per-point semantic

labels and oriented bounding object bounding boxes of 37

object categories. The standard mean Average Precision is

used as evaluation metrics and the evaluation is reported on

the 10 most common categories, following [26].

4.2. Implementation Details

ScanNet V2 We follow recent practice [26, 31] to use

PointNet++ as default backbone network for a fair compari-

son. The backbone has 4 set abstraction layers and 2 feature

propagation layers. For each set abstraction layer, the in-

put point cloud is sub-sampled to 2048, 1024, 512, and 256

points with the increasing receptive radius of 0.2, 0.4, 0.8,

and 1.2, respectively. Then, two feature propagation layers

successively up-sample the points to 512 and 1024. More

training details are given in Appendix.

SUN RGB-D The implementation mostly follow [26]. We

use 20k points as input for each point cloud. The network

architecture and the data augmentation are the same as that

for ScanNet V2. As the orientation of the 3D box is re-

quired in evaluation, we include an additional orientation

prediction branch for all decoder stages. More training de-

tails are given in Appendix.

4.3. Systemlevel Comparison

In this section, we compare with previous state-of-the-

arts on ScanNet V2 and SUN RGB-D. Since previous

works [26, 24] usually report the best results of multiple

times on training and testing in the system-level compari-

son, we report both best results and average results1

ScanNet V2 The results are shown in Table 1. With

the same backbone network of a standard PointNet++,

the proposed approach achieves 67.3 mAP@0.25 and 48.9

mAP@0.5 using 6 decoder stages and 256 object candi-

dates, which is 2.8 and 5.5 better than previous best results

using the same backbones. By more decoder stages as 12,

the gap increases to 6.3 on mAP@0.5.

With stronger backbones and more sampled object can-

didates, i.e. 2× more channels and 512 candidates, the

1We train each setting 5 times and test each training trial 5 times. The

average performance of these 25 trials is reported to account for algorithm

randomness.
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methods backbone mAP@0.25 mAP@0.5

HGNet [3] GU-net 61.3 34.4

GSDN [14] MinkNet 62.8 34.8

3D-MPA [8] MinkNet 64.2 49.2

VoteNet [26]2 PointNet++ 62.9 39.9

MLCVNet [31] PointNet++ 64.5 41.4

H3DNet [51] PointNet++ 64.4 43.4

H3DNet [51] 4×PointNet++ 67.2 48.1

Ours (L6, O256) PointNet++ 67.3 (66.3) 48.9 (48.5)

Ours (L12, O256) PointNet++ 67.2 (66.6) 49.7 (49.0)

Ours (L12, O256) PointNet++w2× 68.8 (67.7) 52.1 (50.6)

Ours (L12, O512) PointNet++w2× 69.1 (68.6) 52.8 (51.8)

Table 1. System level comparison on ScanNet V2 with state-of-the-arts. The main comparison is based on the best results of multiple
experiments between different methods, and the number within the bracket is the average result.
Notations: 4×PointNet++ denotes 4 individual PointNet++; PointNet++w2× denotes the backbone width is expanded by 2 times; L denotes the decoder

depth, and O denotes the number of object candidates, e.g. Ours (L6, O256) denotes a model with 6-layer decoder(i.e. 6 attention modules) and 256 object

candidates.

methods backbone inputs mAP@0.25 mAP@0.5

VoteNet [26]2 PointNet++ point 59.1 35.8

MLCVNet [31] PointNet++ point 59.8 -

HGNet [3] GU-net point 61.6 -

H3DNet [51] 4×PointNet++ point 60.1 39.0

imVoteNet [25]∗ PointNet++ point+RGB 63.4 -

Ours (L6, O256) PointNet++ point 63.0 (62.6) 45.2 (44.4)

Table 2. System level comparison on SUN RGB-D with state-of-the-arts. The main comparison is based on the best results of multiple

experiments between different methods, and the number within the bracket is the average result. ∗imVoteNet use RGB images as addition

inputs.

sampling method mAP@0.25 mAP@0.5

FPS 64.5 46.2

KPS-NMS 65.8 48.7

KPS 66.3 48.5

Table 3. Ablation study on applying different sampling strategies.

performance of the proposed approach is improved to 69.1

mAP@0.25 and 52.8 mAP@0.5, outperforming previous

best method by a large margin.

SUN RGB-D We also compare the proposed approach

with previous state-of-the-arts on the SUN RGB-D dataset,

which is another widely used 3D object detection bench-

mark. In this dataset, the ensemble approach over multi-

ple stages is used by default during inference. The results

are shown in Table. 2. Our base model achieves 63.0 on

mAP@0.25 and 45.2 on mAP@0.5, which outperforms all

previous state-of-the-arts that only use the point cloud. In

particular, it outperforms the H3DNet on mAP@0.5 by 6.2.

4.4. Ablation Study

In this section, we validate our key designs on ScanNet

V2. If not specified, all models have 6 attention modules,

2We report the results of MMDetection3D(https://github.com/open-

mmlab/mmdetection3d) instead of the official paper, which reported 46.8

mAP@0.25 and 24.7 mAP@0.5 on ScanNet V2, and 57.7 mAP@0.25 and

32.0 mAP@0.5 on SUN RGB-D.

k mAP@0.25 mAP@0.5

1 65.7 48.7

2 65.8 48.3

4 66.3 48.5

6 66.1 48.4

Table 4. Ablation study on different values of k in KPS strategy.

iterative position encoding mAP@0.25 mAP@0.5

none 64.7 43.4

center+size 64.6 43.5

✓ center 65.2 47.5

✓ center+size 66.3 48.5

Table 5. Ablation study on the effectiveness of iterative box pre-

diction.

256 sampled candidates, and are equipped with the pro-

posed iterative object prediction approach. In evaluation,

we report the average performance of 25 trials by default.

Sampling Strategy We first ablate the effects of different

sampling strategies in Table. 3. It shows that our approach

performs well by using different sampling strategies. It also

works well in a wide range of hyper-parameters, such as k

in the KPS sampling approach (see Table. 4).

These results indicate the robustness of our framework

for choosing different sampling approaches.

Iterative Box Prediction Table 5 ablates several design
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# of layers mAP@0.25 mAP@0.5

0 63.3 40.7

1 64.8 43.9

2 66.0 45.6

3 66.4 46.6

4 66.2 47.9

5 66.3 48.3

6 66.3 48.5

Table 6. Ablation study on the performance of iterative box pre-

diction with different decoder layers.

ensemble
ScanNet V2 SUN RGB-D

mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5

66.3 48.5 59.2 43.3

✓ 66.4 48.7 63.0 45.2

Table 7. Ablation study on the effectiveness of multi-stage ensem-

ble.

choices for iterative box prediction. With a naive iterative

method where no spatial encoding is involved in the decoder

stages, the approach shows reasonably good performance

of 64.7 mAP@0.25 and 43.4 mAP@0.25, likely because

the location information may have been implicitly included

in the input object features. Actually, an additional fixed

position encoding does not improve detection performance

(64.6 mAP@0.25 and 43.5 mAP@0.5).

By refining the encodings of the box location stage by

stage, the localization ability of the approach is significantly

improved of the 4.1 points gains on the mAP@0.5 metric

over the naive implementation (47.5 vs. 43.4). Also, more

detailed spatial encoding by both box center and size is ben-

eficial, compared to that only encodes box centers (66.3 vs.

65.2 on mAP@0.25 and 48.5 vs. 47.5 on mAP@0.5).

Table. 6 shows the performance of iterative box pre-

diction with different decoder stages. More stages can

bring significant performance improvement, especially in

the mAP@0.5. Compared with not applying any attention

modules, our 6-stage model performs better on mAP@0.25

and mAP@0.5 by 3.0 and 7.8, respectively.

Ensemble Multi-stage Predictions Each decoder stage of

our approach will predict a set of 3D boxes. It is nat-

ural to ensemble these results of different decoder stages

in expecting better final detection results. Table 7 shows

the results, where significantly performance improvements

are observed on SUN RGB-D (+3.8 mAP@0.25 and +1.9

mAP@0.5) and maintained performance on ScanNet V2.

We hypothesize that it is because the point clouds of SUN

RGB-D have lower quality than those of ScanNet V2: SUN

RGB-D adopts real RGB-D signals to generate point clouds

that many objects have missing parts due to occlusion,

while the ScanNet V2 generate point clouds from 3D shape

meshes which are more complete. The ensemble method

can boost the performance more on real 3D scenes.

Comparison with Group-based Approaches Aggregat-

method mAP@0.25 mAP@0.5

RoI-Pooing 65.1 44.4

Voting 64.2 44.1

Ours 66.3 48.5

Table 8. Comparison with grouping-based approaches.

method backbone
mAP

frames/s
0.25 0.5

MLCVNet [31] PointNet++ 64.5 41.4 5.44

H3DNet [51] 4×PointNet++ 67.2 48.1 3.76

Ours (L6, O256) PointNet++ 67.3 48.9 6.71

Ours (L12, O256) PointNet++ 67.2 49.7 5.70

Ours (L12, O256) PointNet++w2× 68.8 52.1 5.23

Ours (L12, O512) PointNet++w2× 69.1 52.8 5.17

Table 9. Comparison on realistic inference speed on ScanNet V2.

ing point features through RoI-Pooing, or according to the

voted centers are two typical handcrafted grouping strate-

gies [35, 26] in 3D object detection. We refer these two

grouping strategies as baselines and compare with them.

For a fair comparison, we only switch the feature aggre-

gation mechanism while all other settings (e.g. the 6-stage

decoder) remain unchanged. More details are in Appendix.

Table 8 show the results. Although RoI-Pooling outper-

forms than the voting approach, it is still worse than our

group-free approach by 1.2 points on mAP@0.25 and 4.1

points on mAP@0.5.

4.5. Inference Speed

The computational complexity of the attention model

is determined by the number of points in a point cloud

and the number of sampled object candidates. In our ap-

proach, only a small number of object candidates are sam-

pled, which makes the cost of the attention model insignifi-

cant. With our default setting (256 object candidates, 1024

output points), stacking one attention model brings 0.95

GFLOPs, which is quite light compared to the backbone.

In addition, the realistic inference speed of our method

is also very competitive, compared to other state-of-the-art

methods. For a fair comparison, all experiments are run on

the same workstation (single Titan-XP GPU, 256G RAM,

and Xeon E5-2650 v3) and environment (Ubuntu-16.04,

Python 3.6, Cuda-10.1, and PyTorch-1.3.1). The official

code of other methods is used for evaluation. The batch

size of all experiments is set to 1 (i.e. single image). The

results are shown in Table. 9. Our method achieves better

performance and also higher inference speed.

4.6. Comparison with DETR

DETR [2] is a pioneer work that applies the Trans-

former to 2D object detection. Compared with DETR, our

method involves more domain knowledge, such as the data-

dependent initial object candidate generation, where DETR

uses a data-independent object prior to representing each
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Figure 4. Qualitative results of different decoder stages. The first row is the results on SUN RGB-D, and the second row is the results on

ScanNet V2. The color of bounding boxes represents their category.

method epoch mAP@0.25 mAP@0.5

DETR 400 39.6 21.4

DETR+KPS 400 59.6 41.0

DETR+KPS+iter pred 400 59.9 42.9

DETR+KPS+iter pred 1200 61.8 45.2

Ours 400 66.3 48.5

Table 10. The comparison between DETR and our method on

ScanNet V2. KPS represent k-Closest Points Sampling, iter pred

represents iterative prediction.

object candidate and is automatically learned without ex-

plicit supervision. Moreover, there is no iterative refinement

on spatial encodings in DETR as in our approach. We evalu-

ate these differences in 3D object detection. For a fair com-

parison, the backbone and decoder heads used in DETR are

the same as in ours. We carefully tune the hyper-parameters

for DETR and chose the best setting in comparison.

The results are shown in Table 10. With the same train-

ing length of 400 epochs, DETR achieves 39.6 mAP@0.25

and 21.4 mAP@0.5, significantly worse than our method.

We guess it is mainly because of optimization difficulty by

the data-independent object representation. The fixed spa-

tial encoding also may contribute to inferior performance.

In fact, the performance can be improved significantly by

bridging these differences, reaching 59.9 mAP@0.25 and

42.9 mAP@0.5 using the same training epochs, and 61.8

mAP@0.25 and 45.2 mAP@0.5 by longer training.

The remaining performance gap is due to the difference

in ground-truth assignments, where DETR adopts a set loss

to automatically determine the assignments by detection

losses and our approach manually assigns object candidates

to ground-truths. This assignment may also be difficult for

a network to learn.

Layer3 Layer6Layer1Scene

Figure 5. Visualizations on cross-attention weight in different de-

coder stages. The green point represents the reference object can-

didates. The redder color represent higher attention weight.

4.7. Qualitative Results

Fig. 4 illustrates the qualitative results on both ScanNet

V2 and SUN RGB-D. As the decoder networks go deeper,

the more accurate detection results are observed.

Fig. 5 visualizes the learned cross-attention weights of

different decoder stages. We could observe that the model

of the lower stage always focuses on the surrounding points

without considering the geometry. With the refinement, the

model of the higher stage could focus more on the geometry

and extract more high-quality object features.

5. Conclusion

In this paper, we present a simple yet effective 3D object

detector based on the attention mechanism in Transform-

ers. Unlike previous methods that require a grouping step

for object feature computation, this detector is group-free

which computes object features from all points in a point

cloud, with the contribution of each point automatically de-

termined by the attention modules. The proposed method

achieves state-of-the-art performance on ScanNet V2 and

SUN RGB-D benchmarks.
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