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Abstract

Relational reasoning is at the heart of video question an-
swering. However, existing approaches suffer from several
common limitations: (1) they only focus on either object-
level or frame-level relational reasoning, and fail to inte-
grate the both; and (2) they neglect to leverage semantic
knowledge for relational reasoning. In this work, we pro-
pose a Hierarchical VisuAl-Semantic RelatIonal Reasoning
(HAIR) framework to address these limitations. Specifi-
cally, we present a novel graph memory mechanism to per-
form relational reasoning, and further develop two types
of graph memory: a) visual graph memory that leverages
visual information of video for relational reasoning; b) se-
mantic graph memory that is specifically designed to explic-
itly leverage semantic knowledge contained in the classes
and attributes of video objects, and perform relational rea-
soning in the semantic space. Taking advantage of both
graph memory mechanisms, we build a hierarchical frame-
work to enable visual-semantic relational reasoning from
object level to frame level. Experiments on four challeng-
ing benchmark datasets show that the proposed framework
leads to state-of-the-art performance, with fewer parame-
ters and faster inference speed. Besides, our approach also
shows superior performance on other video+language task.

1. Introduction
Video Question Answering (VideoQA), an emerging

task that requires machines to answer questions about

videos in a natural language form, has recently drawn in-

creasing interests from researchers. The task is particu-

larly challenging, as it requires fine-grained understand-

ing of video content involving various complex relations

such as object-object relation, frame-frame relation etc.
Thus, relational reasoning plays an important role in solv-
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Q: What does the woman do after hold bucket?                 A: Dump bucket
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Figure 1. (a) Hierarchical relational reasoning. Humans perform

object-level first and then frame-level relational reasoning for un-

derstanding the whole video content. (b) A concise comparison of

vanilla GNN, memory network and our graph memory.

ing VideoQA problem. Recent works [9, 12, 14, 28, 20, 43]

have introduced memory networks [44, 35], attention mech-

anisms [46] or Graph Convolutional Networks (GCNs) [22]

for relational reasoning in VideoQA. Although achieving

promising results, these existing approaches suffer from two

common limitations.

First, current approaches for VideoQA only focus on
either object-level [14] or frame-level relational reason-
ing [9, 12, 26, 51, 20], and do not integrate the both in
a hierarchical manner. Given a video clip and an associ-

ated question, as shown in Figure 1(a), a typical reasoning

process for human is that we first recognize relevant ob-

jects and their interaction in each video frame (e.g. woman
hold bucket, woman dump bucket), and then correlate these

frames to understand a sequence of actions and their tempo-

ral relationship (e.g. woman dump bucket after hold bucket).
Finally, the correct answer can be naturally derived based

on the understanding of video content. Such a process of

relational reasoning is conducted in a hierarchical way, i.e.,
from object level to frame level. It is desired to endow the

machines with the same characteristic as human. However,
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none of current approaches have attempted to explicitly per-

form hierarchical relational reasoning. These approaches

may miss the modeling of some crucial relations that are

necessary for answering questions correctly.

Second, current approaches for VideoQA only con-
sider visual information for relational reasoning, and
neglect the reasoning in the semantic space. In [26, 20,

28], the proposed approaches perform relational reasoning

over video frame features extracted by CNN. Huang et al.
[14] and Jin et al. [19] exploited object-level visual infor-

mation using RCNN. These methods neglect to leverage se-

mantic knowledge for relational reasoning, possibly leading

to the misunderstanding of visual content due to the inher-

ent semantic gap. Compared to visual information, seman-

tic knowledge (e.g. the attributes and classes of multiple

objects) provides more explicit and richer cues to benefit

the reasoning, which has been demonstrated in the image

recognition domain [29, 7].

In this work, in an effort to address the aforementioned

limitations, we put forward a Hierarchical VisuAl-Semantic

RelatIonal Reasoning (HAIR) framework, which jointly

performs visual and semantic relational reasoning in a hi-

erarchical structure (Figure 2). The core component of the

framework is the graph memory mechanism, inspired by

graph neural network (GNN) [40] and memory network

[44]. The GNN can pass message among nodes, which is

a natural choice to perform relational reasoning. While the

memory network is able to gradually distill query-related

information through read and write operations. Here, we

marry GNN with memory network to inherit the advan-

tages of the both, enabling more efficient relational rea-

soning. A concise comparison of vanilla GNN, memory

network and our graph memory is shown in Figure 1(b).

Moreover, we develop two types of graph memory mech-

anisms: a) visual graph memory, which exploits visual in-

formation of video for relational reasoning, and gradually

learns query-related relation-aware visual representation; b)

semantic graph memory, where we represent object classes

and attributes as nodes and build edges to encode common-

sense semantic relationships. It explicitly leverages seman-
tic knowledge to facilitate relational reasoning. The two

graph memory mechanisms work cooperatively and inter-

act with each other via learnable visual-to-semantic and

semantic-to-visual node mapping. Finally, taking advan-

tage of the proposed graph memory mechanisms, we build

a hierarchical structure, from object to frame level, thus en-

abling hierarchical visual-semantic relational reasoning.

In summary, the contributions of this work are three-

fold: (1) We present graph memory, a novel relational rea-

soning mechanism. Furthermore, we develop visual graph

memory and semantic graph memory to reason over dif-

ferent types of information. (2) We propose a hierarchical

visual-semantic relational reasoning (HAIR) framework to

integrate object-level and frame-level relational reasoning

in a hierarchical manner. (3) Experimental results show

that our framework achieves state-of-the-art performance

on four datasets for VideoQA, with fewer parameters and

faster inference speed. Our approach also shows superior

performance on other video+language tasks, e.g., language-

based temporal grounding.

2. Related Work
Video Question Answering. The Video Question An-

swering (VideoQA) task is an extension of Image Question

Answering (ImageQA). Compared with the well-studied

ImageQA which focuses on understanding static images

[2, 52, 1, 30, 31], VideoQA is much more challenging be-

cause of the existence of extra temporal domain. When

solving the VideoQA problem, one repuires to figure out

various complex relations, such as spatial, temporal, visual

and semantic relations to reason about answer. A lot of

efforts have been made to explore relational reasoning in

VideoQA. In [28, 26, 20, 27, 18], the proposed methods

represent each video frame as global feature vector, hence

only frame-level relational reasoning is considered. In par-

ticular, Li et al. [28] and Kim et al. [20] used a self-attention

[46] based technique to model global dependencies among

frames of a video. Jiang et al. [18] proposed heterogeneous

graph alignment (HGA) network. These approaches lack

the exploitation of fine-grained information on spatial di-

mension, and are thus struggling to answer questions in-

volving multiple objects and their relations. To alleviate this

issue, Huang et al. [14] proposed to reason over detected ob-

jects with location-aware graph convolutional network, but

failed to explore frame-level relational reasoning. Unlike

these works that focus on either frame-level or object-level

relational reasoning, our HAIR framework mimics the cog-

nition process of human [10, 23, 39] and performs hierar-
chical relational reasoning.

GNN & Memory Network. Graph Neural Network (GNN)

is able to easily pass message among nodes and update node

representation iteratively, which is very suitable to learn re-

lational reasoning. As a result, GNN has been broadly ap-

plied in many fields, such as image domain (including im-

age recognition [8, 45], pose estimation [3], etc.) and video

domain (including action recognition [42, 41], video object

segmentation [48], etc.). However, for multimodal tasks,

the relational reasoning needs to absorb necessary query in-

formation and should be under the dynamic guidance of

query, in order to retrieve relevant information at each it-

eration step. For these, GNN cannot handle them well, al-

though some works [36, 11] attempted to represent node as

the fusion of visual and query feature. Memory network

is first introduced in [49, 44], which allows the model to

explicitly retrieve and store information by read and write

operations. It has been proven to be effective in multimodal
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Figure 2. Hierarchical Visual-Semantic Relational Reasoning (HAIR) framework for VideoQA. It first extracts the input representations,

and constructs visual graph and semantic graph at object level. After that, both graph memory mechanisms perform object-level relational

reasoning over visual and semantic representations, respectively. Node aggregation is used to aggregate nodes for each frame and build

new graphs at frame level. Next, both gragh memory mechanisms perform frame-level relational reasoning over visual and semantic

representations, respectively. Multi-scale node aggregation captures multi-scale temporal information and produces global representation

of video. Finally, the answer decoder fuses the multimodal representations to infer the answer.

QA task [50, 12, 9], where memory network is able to grad-

ually and dynamically learn query-related information. In-

spired by these, we marry GNN with memory network to

enable dynamic relational reasoning under the guidance of

query. We call it graph memory. We show the proposed

graph memory performs much better than GNN and other

variants in Sec. 4.3.

Relational Reasoning. Relational reasoning has been ex-

plored in other video understanding tasks besides VideoQA.

Huang et al. [15] proposed a dynamic graph module to

model object-object interactions in video activities. Ma et
al. [33] utilized an LSTM to model interactions between

arbitrary subgroups of objects. However, these methods

only perform relational reasoning over visual object, pos-

sibly resulting in incomplete understanding of video due to

the lack of frame-level reasoning and semantic knowledge.

Mavroudi et al. [34] proposed to build an additional sym-

bolic graph using action categories. However, their method

only operates at object level. In comparison, our HAIR is

a hierarchical relational reasoning framework. We believe

this is the first attempt to: (1) consider semantic knowl-

edge to facilitate relational reasoning; and (2) explore both

object-level and frame-level relational reasoning in a hier-

archical way for VideoQA.

3. Our Approach
In this section, we present an end-to-end trainable frame-

work − Hierarchical Visual-Semantic Relational Reasoning

(HAIR) for VideoQA. The overall architecture is illustrated

in Figure 2. We begin with the introduction of the both

graph memory mechanisms (i.e. visual graph memory and

semantic graph memory) in Sec. 3.1, then present the over-

all architecture in Sec. 3.2.

3.1. Graph Memory

The graph memory consists of a fully-connected graph

and read-write controllers. The fully-connected graph al-

lows to fully explore the relations among nodes. The con-

trollers carry query information and interact with the node

representations by a series of read and write operations. We

develop two types of graph memory: visual graph memory

and semantic graph memory, to reason over different repre-

sentations.

3.1.1 Visual Graph Memory

The visual graph memory performs iterative relational rea-

soning over visual representations, as shown in Figure 3.

Since our approach contains read and write operations of

memory network, we follow a similar style to describe our

graph memory.

Read Operation. Let q(0) ∈ R
d denote the initial state

of read controller and v
(0)
i ∈ R

d denote the initial repre-

sentation of the i-th graph node. At each reasoning step

k ∈ {1, ...,Kv}, the read controller attentively reads the

content r(k) from all nodes:

a
′(k)
i = V a

rtanh(W
a
rq

(k−1) +Ua
rv

(k−1)
i ) (1)

a
(k)
i = exp(a

′(k)
i )/

∑
jexp(a

′(k)
j ) (2)

r(k) =
∑

ia
(k)
i v

(k−1)
i (3)

where W a
r ,U

a
r and V a

r are learnable weights (bias term is

omitted for simplicity). Once acquiring the node content

r(k), the read controller updates its state as follows:

q̃(k) = W h
rq

(k−1) +Uh
rr

(k) (4)

g(k) = σ(W g
rq

(k−1) +Ug
rr

(k)) (5)

q(k) = g(k) ◦ q̃(k) + (1− g(k)) ◦ q(k−1) (6)

where W s and Us are learnable weights. σ and ◦ represent

the sigmoid function and Hadamard product, respectively.

The update gate g(k) controls how much previous state to

be preserved.
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Figure 3. Illustration of Visual Graph Memory (VGM).

Write Operation. After the read operation, we need to up-

date the node representations with new query information

and relations among nodes. At each step k, the write con-

troller updates the i-th node by considering its previous rep-

resentation v
(k−1)
i , current content from the read controller

q(k) and the representations from other nodes {v(k−1)
j }j �=i.

Concretely, we first aggregate the information from neigh-

bor nodes to capture the context:

e
′(k)
i,j = MLP([v

(k−1)
i ;v

(k−1)
j ]) (7)

e
(k)
i,j = exp(e

′(k)
i,j )/

∑
j �=iexp(e

′(k)
i,j ) (8)

c
(k)
i =

∑
j �=ie

(k)
i,j v

(k−1)
j (9)

where MLP is Multi-Layer Perceptron consisting of two

linear layers with the ReLU activation in between, e
(k)
i,j is

the relation weight from the j-th to i-th node, and [·; ·] de-

notes the feature concatenation. After obtaining the context

representation c
(k)
i , the write controller updates the node

representation as:

ṽ
(k)
i = W v

uq
(k) +Uv

uv
(k−1)
i + V v

uc
(k)
i (10)

g
(k)
i = σ(W g

uq
(k) +Ug

uv
(k−1)
i + V g

uc
(k)
i ) (11)

v
(k)
i = g

(k)
i ◦ ṽ(k)

i + (1− g
(k)
i ) ◦ v(k−1)

i (12)

As shown in Eq.1-12, our graph memory retains the ad-

vantage of GNN and is capable of modeling the relations

among visual representations. Meanwhile, it possesses the

read and write controllers of memory network, thus en-

abling dynamic interaction between query and visual rep-

resentations and dynamic selection of relevant information

(due to the internal gating mechanism).

The full process of iterative reasoning can be written as:

v(Kv) = VGM(q(0),v(0)) (13)

where VGM represents visual graph memory, q(0) is the

initial state of the read controller, v(0) = {v(0)
i }|V |

i=1 is the

initial visual representations of graph nodes (where |V | is

the number of nodes), and v(Kv) is the updated representa-

tions after Kv reasoning steps.

3.1.2 Semantic Graph Memory

The semantic graph memory leverages semantic knowledge

and performs iterative relational reasoning over semantic

Semantic Graph

Question Feature
(Query)

Read Write Read ...

...

Write

Iterative Relational Reasoning

Visual Graph
Residual Connection

Visual-to-Semantic Node Mapping Semantic-to-Visual Node Mapping

)0(~s )1(~s )(~ sKs

)0(q )1(q )2(q )( sKq

)( vKv v~

Figure 4. Illustration of Semantic Graph Memory (SGM).

representations, as shown in Figure 4. It has three inputs:

the initial state of the read controller q(0) ∈ R
d, the ini-

tial representations of the semantic graph s(0) ∈ R
|S|×d,

and the updated representations of the visual graph v(Kv) ∈
R

|V |×d, where |S| and |V | represent the number of nodes.

As a first step, we enhance the semantic representations us-

ing visual evidence. To achieve this, we introduce a learn-

able visual-to-semantic node mapping mechanism:

φvj→si = exp(W vs
i v

(Kv)
j )/

∑|S|
i′=1exp(W

vs
i′ v

(Kv)
j ) (14)

fvs
i =

∑|V |
j=1φvj→siW

v
pv

(Kv)
j (15)

where φvj→si represents the confidence of mapping the fea-

ture from the j-th visual node to the i-th semantic node,

W vs = {W vs
i }|S|

i=1 ∈ R
|S|×d is a trainable weight matrix

for calculating voting weights, and W v
p ∈ R

d×d is a pro-

jection weight matrix. The representation of each semantic

node is updated as: s̃
(0)
i = [s

(0)
i ;fvs

i ].
Then, we perform iterative relational reasoning over the

enhanced semantic representations s̃(0). The read and write

operations are identical with those in the visual graph mem-

ory, defined in Eq.1-12. After Ks reasoning steps, we obtain

the updated semantic representations s̃(Ks) = {s̃(Ks)
i }|S|

i=1,

which is then mapped back into visual space to enrich the

visual representation with global semantic knowledge via a

semantic-to-visual node mapping:

φ′
sj→vi

= W sv
i [s̃

(Ks)
j ;v

(Kv)
i ] (16)

φsj→vi
= exp(φ′

sj→vi)/
∑|S|

j=1exp(φ
′
sj→vi) (17)

fsv
i =

∑|S|
j=1φsj→viW

s
ps̃

(Ks)
j (18)

where W sv
i ∈ R

1×2d and W s
p ∈ R

d×d are learnable pro-

jection weights. Through the two node mapping mecha-

nisms, the visual graph memory and the semantic graph

memory work cooperatively and interact with each other,

to achieve a better relational reasoning and a more compre-

hensive understanding of video content. The final represen-

tation of the i-th visual node is obtained using a residual

connection: ṽi = v
(Kv)
i + fsv

i .
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The entire process can be concisely written as:

ṽ = SGM(q(0), s(0),v(Kv)) (19)

3.2. Overall Architecture

In this subsection, we present the overall architecture

of our hierarchical visual-semantic relational reasoning

(HAIR) framework (see Figure 2), based on the definition

of the graph memory in Sec. 3.1.

Input Embedding. Given a video containing T frames,

we use a modified Faster R-CNN [38] pre-trained on

the VGenome [25] to extract the visual features of N
objects from each frame. To capture the object’s spa-

tial location, we introduce a 4-dimensional location fea-

ture from the object’s relative bounding box coordi-

nates [xmin/Wfr, ymin/Hfr, xmax/Wfr, ymax/Hfr], where

Wfr and Hfr are frame width and height respectively. Then,

the visual object feature and the location feature are pro-

jected into the d-dimensional space with two learned linear

layers, and are summed up as the initial visual representa-

tion v
(0)
t = {v(0)

t,n}Nn=1, where t ∈ {1, ..., T} is the frame

index and v
(0)
t,n ∈ R

d is the representation of the n-th ob-

ject in the t-th frame. In the meanwhile, we extract classes

and attributes of the detected objects, e.g., “white cat”, us-

ing the same Faster R-CNN. These semantic knowledge is

embedded by a pre-trained word embedding model (fast-

Text [4] in our case), and are then linearly projected into a

d-dimensional space to produce the initial semantic repre-

sentations s
(0)
t = {s(0)t,n}Nn=1.

For the question, we first embed each word into a 300-

dimensional vector, which is initialized with pre-trained

GloVe vectors [37]. To obtain contextual representation, we

further pass these embedding vectors through a Bi-LSTM

[13]. The final question embedding is denoted as q(0) ∈ R
d.

Reasoning at Object Level. After obtaining the input em-

beddings v
(0)
t , s

(0)
t , and q(0), we use them to initialize the

visual graph, the semantic graph, and the read controller, re-

spectively. Then, both graph memory mechanisms perform

iterative relational reasoning over visual object representa-

tions and semantic object representations, respectively.

v
(Kv)
t = VGM(q(0) ,v

(0)
t ) (20)

ṽt = SGM(q(0) , s
(0)
t ,v

(Kv)
t ) (21)

where ṽt = {ṽt,n}Nn=1 is updated representation for the

t-th frame, encoding query-relevant object-level visual and

semantic relations.

Node Aggregation. We aggregate graph nodes for each

frame, and build new graph by using the aggregated repre-

sentation of each frame as nodes, thus enabling subsequent

frame-level relational reasoning. To be specific, for visual

graph, nodes are aggregated via question-guided attention

[1]: v̄t = Attn(ṽt, q
(0)), where v̄t ∈ R

d is the aggre-

gated visual representation of the t-th frame. We inject the

temporal location information into v̄t following [46]. For

semantic graph, we aggregate nodes using average pooling:

s̄t =
1
N

∑N
n=1s

(0)
t,n, where s̄t ∈ R

d is the aggregated seman-

tic representation of the t-th frame.

Reasoning at Frame Level. We construct two new graphs

and initialize their node states with the frame-level repre-

sentations: v(0) = {v̄t}Tt=1 and s(0) = {s̄t}Tt=1. The read

controller is initialized with the question embedding q(0).

Afterwards, both graph memory mechanisms perform iter-

ative relational reasoning over visual frame representations

and semantic frame representation, respectively.

v(Kv) = VGM(q(0) ,v(0)) (22)

ṽ = SGM(q(0) , s(0),v(Kv)) (23)

where ṽ ∈ R
T×d. Through such iterative relational rea-

soning at frame level, the model learns to gradually attend

to the key frames and capture the appropriate relations be-

tween frames (as shown in Figure 6). Moreover, by incor-

porating high-level semantic knowledge, the yielded video

representation is more discriminative.

Multi-Scale Node Aggregation. Answering different ques-

tions usually needs temporal information of different dura-

tions. To this end, we design a multi-scale node aggrega-

tion method to aggregate ṽ into a holistic representation.

The component consists of H parallel heads. Each head

includes a linear layer that reduces the input dimension

by 1/H , a temporal average pooling with different kernel

size that captures multi-scale temporal information, and a

question-guided attention [1] that aggregates nodes with at-

tention weights. We concatenate the output of each head as

final output, denoted as v̂ ∈ R
d. Note that all nodes are ar-

ranged in time order before applying the temporal pooling.

Answer Decoder. Following previous work [26, 9], we

adopt different answer decoders depending on the question

type. (1) For open-ended questions, we treat them as classi-

fication tasks. The video representation v̂ is fused with the

question embedding q(0) to compute scores on all candidate

answers: p = MLP([v̂ ; q(0)]). The cross-entropy is used

as the loss function. (2) For counting questions, the model

is required to predict a number ranging from 0 to 10. We

leverage a linear layer followed by a rounding function upon

the fused representation to predict the number: num =
round(W pfvq), where fvq = ReLU(W f [v̂ ; q(0)]). The

loss for this question type is Mean Squared Error (MSE).

(3) For multi-choice questions, each answer choice is con-

catenated with the question to form a query. We feed each

pair of query and video into the network. As a result, we

obtain a set of query representations {q(0)
a }|A|

a=1 and video

representations {v̂a}|A|
a=1, where |A| is the number of an-

swer choices. The score of each answer choice is computed
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as pa = MLP([v̂a ; q
(0)
a ]). A softmax function is applied to

process the scores. We use the cross-entropy loss function.

4. Experiments
4.1. Experimental Setup

Datasets. Four datasets are used in our experiments. TGIF-

QA [16] is currently the most prominent benchmark dataset

for the VideoQA task, which contains 165K QA pairs col-

lected from 72K animated GIFs. There are four task types:

(1) Count: an open-ended counting task that retrieves the

number of repetition of an action; (2) Action: a multiple-

choice task that aims to recognize the action repeated for

a given number of times; (3) Transition: a multiple-choice

task asking about the transition of two states; and (4) Frame
QA: an open-ended task similar to ImageQA, which can be

answered from a single video frame. MSVD-QA [51] is a

small dataset of 51K QA pairs which are automatically gen-

erated from the descriptions of MSVD videos [5]. All ques-

tions are open-ended and divided into five types − what,
who, how, when and where. MSRVTT-QA [51] is a larger

dataset containing 243K QA pairs. Youtube2Text-QA [53]

includes open-ended and multiple-choice questions, which

are divided into three types (i.e. what, who and other). More

statistics of the four datasets are in the Supp. material.

We adopt accuracy as the evaluation metric for all tasks

except the count task on TGIF-QA dataset. For count, we

use Mean Square Error (MSE) to measure the performance.

Implementation Details. We evenly sample 10 frames to

represent the video and select 6 detected objects with the

highest scores per frame. The dimensionality of the joint

embedding space d is 512. The number of visual and se-

mantic reasoning steps, Kv and Ks, are set to 2 and 2, re-

spectively. We use 4 heads in the multi-scale node aggre-

gation. The kernel sizes of temporal pooling in each head

are respectively set to 1, 2, 3 and 4, and the stride size is 1.

Models are trained using the Adam optimizer [21] with an

initial learning rate of 1e-4 and a batch size of 64. The entire

training takes approximately 12 hours on one Nvidia Tesla

V100 GPU. The results are reported at the epoch giving the

best validation performance.

4.2. State of the Art Comparison

We compare our HAIR with state-of-the-art methods on

four challenging datasets. Table 1 shows the performance

comparison on TGIF-QA dataset. Only with ResNet vi-

sual feature, HAIR outperforms previous methods (even

those that use more visual features) on Action (+2.8%),

Trans. (+0.9%) and FrameQA (+3.9%) tasks. The improve-

ment is particularly noticeable on FrameQA task, where

object-level relational reasoning is required. It is noted

that L-GCN [14] uses GCN [22] to reason about object-

object relations while PSAC [28] applies self-attention to

Table 1. Comparison with state-of-the-art methods on TGIF-QA

dataset. For Count task, the lower the better. Visual features are:

R(ResNet), C(C3D), F(FlowCNN), RX(ResNext).

Method Action Trans. FrameQA Count

ST-VQA (R+C) [16] 60.8 67.1 49.3 4.40

Co-Mem (R+F) [12] 68.2 74.3 51.5 4.10

PSAC (R) [28] 70.4 76.9 55.7 4.27

HME (R+C) [9] 73.9 77.8 53.8 4.02

L-GCN (R) [14] 74.3 81.1 56.3 3.95

HCRN (R+RX) [26] 75.0 81.4 55.9 3.82

HAIR (R) 77.8 82.3 60.2 3.88

Table 2. Comparison with state-of-the-art methods: Co-Mem [12],

AMU [51], HME [9], QueST [17] and HCRN [26] on MSVD-QA

and MSRVTT-QA datasets.

Dataset Co-Mem AMU HME QueST HCRN HAIR

MSVD-QA 31.7 32.0 33.7 36.1 36.1 37.5
MSRVTT-QA 32.0 32.5 33.0 34.6 35.6 36.9

Table 3. Comparison with state-of-the-art methods on

Youtube2Text-QA dataset.

Task Method What Who Other All

HME [9] 83.1 77.8 86.6 80.8

Multiple-Choice L-GCN [14] 86.0 81.5 80.6 83.9

HAIR 87.8 82.4 81.4 85.3

HME [9] 29.2 28.7 77.3 30.1

Open-Ended L-GCN [14] 24.5 53.2 70.4 38.0

HAIR 32.4 54.7 72.2 43.0

model frame-frame relations, but they fail to integrate

object-level and frame-level relational reasoning. Table

2 shows the performance comparison on MSVD-QA and

MSRVTT-QA datasets. It can be seen from the table that

our model HAIR significantly outperforms existing meth-

ods on both datasets, establishing new state-of-the-art re-

sults of 37.5% and 36.9% on MSVD-QA and MSRVTT-

QA, respectively. Table 3 shows the performance com-

parison on Youtube2Text-QA dataset. Our HAIR achieves

remarkable improvements (+1.4% for multiple-choice task

and +5% for open-ended task) over L-GCN [14] in overall

accuracy. These facts prove the effectiveness and generality

of our approach on different task types and datasets.

4.3. Ablation Studies

Hierarchical Relational Reasoning. We first conduct ex-

periments to investigate the effect of hierarchical relational

reasoning. As shown in the first block of Table 4, ablating

any hierarchical level (i.e. object level or frame level) leads

to severe performance degradation on all task types. We ob-

serve “object level only” performs better than “frame level

only”. This indicates object-level relational reasoning plays

a more important role in VideoQA. However, few of previ-

ous work explore such relational reasoning. We also exper-
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Table 4. Ablation studies of our model on TGIF-QA dataset. For

Count task, the lower the better.

Setting Action Trans. FrameQA Count

Object level only 73.5 79.2 57.1 4.08

Frame level only 71.2 78.0 55.9 4.15

Two-stream 75.3 80.7 57.8 4.01

w/o visual 70.6 77.2 57.4 4.13

w/o semantic 74.6 80.6 56.0 4.06

w/o visual+semantic 68.4 76.1 54.7 4.28

GCN 73.4 79.0 56.2 4.07

GCN (fusion) 75.1 81.4 57.7 3.95

Self-attention 73.9 80.5 56.7 4.06

Memory network 72.4 78.1 54.2 4.16

Full 77.8 82.3 60.2 3.88

Table 5. Comparison of inference time, model size and memory

footprint.

Method Inference Time Model Size Memory Footprint

HME [9] 3.2s 43.3M 3055MB

HCRN [26] 0.6s 42.8M 2111MB

Ours 0.5s 24.2M 2541MB

iment with two-stream framework. One stream is the object

level and another is the frame level. The worse results from

the two-stream framework suggest the superiority of our hi-

erarchical framework.

Visual-Semantic Relational Reasoning. We then analyze

the impact of visual-semantic relational reasoning in the

second block of Table 4. Generally, “w/o visual” pro-

duces larger performance drop compared with “w/o seman-

tic”. However, on FrameQA task, “w/o visual” (i.e. using

only semantic knowledge for reasoning) achieves surpris-

ingly better performance than “w/o semantic”. The reason

is that the semantic knowledge can provide explicit answer

cues for some FrameQA questions. For example, the class

“cat” can be directly utilized to answer the question “What
jumps up at itself in the mirror?”. When disabling both

graph memory mechanisms, we observe the performance

further degenerates, showing the complementarity between

visual and semantic relational reasoning.

Graph Memory. We propose a novel relational reasoning

mechanism − graph memory, which elegantly combines the

ideas of GNN and memory network. We also investigate

other relational reasoning modules in the third block of Ta-

ble 4. “GCN” denotes graph convolutional network [22],

and “GCN (fusion)” denotes using the fusion of multimodal

features as node representation. We can see that GCN vari-

ants underperform our graph memory, due to the disability

of dynamic query guidance and dynamic feature selection.

Self-attention [46] is applied to model the dependencies of

frames in [20, 28]. We stack a few self-attention layers to

keep the same reasoning steps as ours, and replace our graph

memory in HAIR framework. As shown in the table, self-

Figure 5. Comparison of different visual relational reasoning steps

(Kv) and semantic relational reasoning steps (Ks) on TGIF-QA.

attention deliver worse results than ours. Memory network

[44] has been introduced to solve QA problem [50, 12]. It is

capable of performing iterative reasoning in a dynamic way,

but can not explicitly model relations, thus leading to per-

formance drop. These results demonstrate the superiority of

our graph memory mechanism.

# of Reasoning Steps. It is also of interest to explore how

many steps of visual and semantic relational reasoning are

sufficient for VideoQA task. We test our model with dif-

ferent reasoning steps. The results are exhibited in Figure

5. We have the following observations: (1) When Kv = 2
and Ks = 2, the best performance is obtained on all four

tasks. (2) When Ks = 1 (i.e. blue line), increasing Kv

from 1 to 3 can constantly boost the performance. It seems

that more visual reasoning steps can make up for the lack

of semantic reasoning to some extent. This may be because

more iterations can distill some semantic knowledge from

visual information, which is similar to that deeper CNN lay-

ers usually carry high-level semantic information compared

to shallow layers. (3) Increasing Ks from 2 to 3 produces

larger performance drop compared to increasing Kv from

2 to 3. This phenomenon can be explained that seman-
tic knowledge is already explicit and high-level represen-

tation, and thus using more semantic relational reasoning

steps would smooth (or blur) the semantics.

Model Efficiency Comparison. Table 5 shows the infer-

ence time, model size (#param), and memory footprint of

different methods. We run our method and the released

codes of HME1 [9] and HCRN2 [26] on one Nvidia Tesla

V100 GPU with batch size 32. It can be observed that our

HAIR is more efficient than HME and HCRN (recent SO-

TAs), with nearly half params and faster inference time.

Performance on Other Video+Language Task. To fur-

ther validate the effectiveness and generality of our hier-

archical visual-semantic relational reasoning, we conduct

experiment on other video+language task, e.g., language-

1https://github.com/fanchenyou/HME-VideoQA
2https://github.com/thaolmk54/hcrn-videoqa
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Q: What is pointing at the small dog in a toilet papered room?
A: Cat

Q: What does the woman do after brush hair?
A: Shake head

Q: What is pointing at the small dog in a toilet papered room?
A: Cat

Q: What is pointing at the small dog in a toilet papered room?
A: Dog

Q: What does the woman do after brush hair?
A: Clap hand

Q: What does the woman do after brush hair?
A: Cross arm

Visual Relational Reasoning Step 1 Semantic Relational Reasoning Step 2Visual Relational Reasoning Step 2 
black headsitting dog

dog
black chairchair

yellow floor
white paper

yellow floor

yellow floor
dog

white dogwhite dog

standing woman

brown hair
woman

standing woman

lifting hand
woman

standing woman
black coat

woman

standing woman
crossing arm
black coat

Figure 6. Visualization of relational reasoning process of our HAIR. In each frame, we show the most attended object (red box), and two

most related objects (yellow box) with different line width indicating the relations between them and the red box. The most attended frame

is highlighted with blue box. The blue arrows with different line width denotes the relation weights from other frames to the most attended

frame. When reaching the semantic relational reasoning step, we show the semantic knowledge (i.e. classes and attributes) on the top (or

bottom due to space limitation) of the boxes. See more examples in the Supp.

Table 6. Performance comparison on the language-based temporal

grounding task.

Method IoU@0.3 IoU@0.5 IoU@0.7

CBP [47] 54.3 35.8 17.8

ABLR [54] 55.7 36.8 -

DEBUG [32] 55.9 39.7 -

HVTG [6] 57.6 40.2 18.3

HAIR 57.3 40.5 18.2

based temporal grounding. We adopt ActivityNet Cap-

tions dataset [24] for performance comparison and “R@1,

IoU@x” as the evaluation metrics. We use a similar predic-

tion module and loss function to [6]. As shown in Table 6,

our HAIR achieves promising results.

4.4. Qualitative Analysis

To provide more insights about our HAIR, we show the

visualization of relational reasoning process in Figure 6.

Initially, the model fails to focus on the relevant object and

frame (e.g., the object “sign”, “door” and the 1st frame are

focused on in the second example), and fails to model accu-

rate object-object relations and frame-frame relations (e.g.,

the relation between the “woman” and the “sign” and the

relation between the 1st and the 2nd frame are modeled).

As the iteration (step) goes on, the model gradually learns

to attend to the most relevant object and frame (e.g., the ob-

ject “crossing arm” and the 4th frame), and model accurate

object-object relations and frame-frame relations (e.g., the

relations between the “woman” and the “crossing arm”,

between the 3rd and the 4th frame). In particular, without

explicit semantic knowledge, the model mistakenly recog-

nizes the object and the action, although more visual rela-

tional reasoning steps have been conducted. After lever-

aging the semantic knowledge for relational reasoning, the

model finally gives the correct answer. These visualizations
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0.3    
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nding woman    
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g arm
    

black 
coat   

brown hair  
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tria
ngular si
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Figure 7. Visualization of attention weights of visual-to-semantic

(left) and semantic-to-visual (right) node mapping.

help explain our approach. Some failure examples are pro-

vided in the Supp. material. We take the 4th frame in

the second example and visualize the attention of visual-

to-semantic and semantic-to-visual node mapping mecha-

nisms at object level. As shown in Figure 7, the proposed

node mapping mechanisms are able to collect the related

information from another representation to enhance the cur-

rent representation and benefit the relational reasoning.

5. Conclusion

In this paper, we propose a hierarchical visual-semantic

relational reasoning (HAIR) framework for VideoQA,

which integrates object-level and frame-level relational rea-

soning in a hierarchical way and explores high-level se-

mantic knowledge to facilitate relational reasoning. The

basic unit is graph memory, which can achieve relational

reasoning under dynamic guidance of query and also en-

able dynamic information selection. Extensive experiments

demonstrate the effectiveness and generality of our method.
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