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Abstract

Video-Text Retrieval has been a hot research topic with
the growth of multimedia data on the internet. Transformer
for video-text learning has attracted increasing attention
due to its promising performance. However, existing cross-
modal transformer approaches typically suffer from two
major limitations: 1) Exploitation of the transformer archi-
tecture where different layers have different feature charac-
teristics is limited; 2) End-to-end training mechanism limits
negative sample interactions in a mini-batch. In this paper,
we propose a novel approach named Hierarchical Trans-
former (HiT) for video-text retrieval. HiT performs Hierar-
chical Cross-modal Contrastive Matching in both feature-
level and semantic-level, achieving multi-view and compre-
hensive retrieval results. Moreover, inspired by MoCo, we
propose Momentum Cross-modal Contrast for cross-modal
learning to enable large-scale negative sample interactions
on-the-fly, which contributes to the generation of more pre-
cise and discriminative representations. Experimental re-
sults on the three major Video-Text Retrieval benchmark
datasets demonstrate the advantages of our method.

1. Introduction

Cross-modal Retrieval [58, 10, 13, 67, 8, 3, 35, 9, 11,
46, 59, 60, 25, 57, 29, 42] has attracted the increasing at-
tention with the aim to search the semantic similar samples
from different modalities. Specially, the explosive growth
of video contents on the internet has brought great chal-
lenges to accurate video-text retrieval. In this paper, we
focus on the learning of video-text retrieval and also hope
to inspire other cross-modal tasks.
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Figure 1. Hierarchical Cross-modal Contrastive Matching consists
of Feature-level and Semantic-level Contrastive Matching. No-
tably, Momentum Cross-modal Contrast is not shown in this fig-
ure.

Recent works [49, 70, 13, 39, 12] have shown that trans-
former can learn high level video representations, which
capture semantically meaningful and temporally long-range
structures for videos. Notably, existing approaches for
cross-modal learning can be roughly categorized as two-
stream, single-stream and dual stream architectures. Two-
stream architecture, as shown in Figure 2-(a), utilizes a
vision transformer and a text transformer to learn visual
and textual representations independently, then introduces
a multi-modal transformer [32, 70, 50] to achieve cross-
modal information exchange. Singe-stream architecture
[28, 27, 47, 19], as shown in Figure 2-(b), fuses visual and
textual representations at the initial stage of the transformer
model. However, these two architectures are not suitable
for large-scale cross-modal retrieval tasks, due to the re-
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(a) Two-stream Architecture
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(b) Single-stream Architecture
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(c) Dual-stream Architecture

Figure 2. Three types of transformer based architectures for cross-
modal learning. Assuming that we haveM videos andN texts, (a)
Two-stream and (b) Single-stream Architecture require pairwise
inputs with O(MN) time complexity. (c) Dual-stream Architec-
ture requires unary inputs with O(M +N) time complexity.

quirement of pairwise inputs and O(MN) time complex-
ity of intra-model information exchange. Approaches with
dual-stream architecture [13, 39, 12, 63] and our method,
as shown in Figure 2-(c), have become a recent trend for
cross-modal retrieval with better efficiency, requiring a time
complexity of O(M + N). In the line of dual-stream ar-
chitecture, this paper proposes a novel transformer based
method to achieve video-text retrieval, namely Hierarchi-
cal Transformer (HiT), where two contributions are jointly
performed:

Hierarchical Cross-modal Contrastive Matching. Ac-
cording to the attention allocated characteristics of different
layers in transformer architectures, the features in different
layers focus on different views for samples [15, 43, 51, 28].
For example, the features in lower layers tend to encode
more local contents with basic syntactic representations.
Higher layers capture more complex semantics and usu-
ally produce higher-level semantic representations, as re-
cent works [12, 39] performed. Based on these specialities,
we propose Hierarchical Cross-modal Contrastive Match-
ing to achieve multi-view and comprehensive video-text re-
trieval hierarchically, which is designed as Figure 1.

Momentum Cross-modal Contrast. Recently, a class
of self-supervised methods for unsupervised visual repre-
sentation learning [62, 5, 16, 4] emphasize the necessity of
large-scale negative samples. Inspired by these works, we
argue that large-scale negative sample interactions in the
training process have been neglected in cross-modal con-
trastive learning. In this paper, we introduce MoCo [16, 5]
into HiT to enable large-scale negative sample interactions

on-the-fly. We name it as Momentum Cross-modal Contrast
(MCC). In MCC, we build several memory banks to save
a rich set of negative representations, which help broader
negative sample interactions during training. However, if
we utilize video and text encoders that are updated dramat-
ically by gradient descent to generate representations for
memory banks, it would result in the representation incon-
sistency in memory banks, thus largely affect the retrieval
performance. Hence, key encoders for two modalities with
momentum update (updated more smoothly) are required to
maintain representation consistency.

Contributions: We propose Hierarchical Transformer
(HiT) with Momentum Contrast for Video-Text Retrieval,
which jointly performs Hierarchical Cross-modal Con-
trastive Matching and Momentum Cross-modal Contrast.
Extensive experiments demonstrate the advantages of the
proposed methods on three benchmarks, including MSR-
VTT, ActivityNet and LSMDC.

2. Related Work
2.1. Video-Text Retrieval

Video-Text Retrieval has received wide attention with
the exploitation of the huge multimedia data and rich ap-
plication scenarios. Several excellent works [67, 8, 46, 58,
10, 13, 8, 3, 35, 9, 11] are introduced to address this task.
JSFusion [67] proposes a joint sequence fusion model for
sequential interaction of videos and texts. Dual Encoding
[8] consists of mean pooling, biGRU and CNN models to
encode sequential videos and texts in multiple levels. PVSE
[46] presents a polysemous instance embedding network
to learn multiple and diverse representations of videos and
texts for the polysemous problem. A graph-based frame-
work is proposed in [65] for matching between movie seg-
ments and synopsis paragraphs, which takes into account
both the flow of events and the interactions among charac-
ters. HGR [3] is a Hierarchical Graph Reasoning model,
which decomposes video-text matching into global-to-local
levels and disentangles texts into a hierarchical semantic
graph with three levels of events, actions and entities.

2.2. Video-Text Learning with Transformer

BERT [55] is a transformer based representation model
for natural language process tasks. It evolves a line of works
that learn a universal language encoder by pre-training with
language modeling objectives. Recently, several attempts
[28, 32, 47, 50, 12, 49, 70, 27, 19, 26, 41] have been
made which utilize BERTs and transformers as the back-
bones for cross-modal tasks. In video-text learning tasks,
VideoBERT [49] transforms a video into spoken words
paired with a series of images and applies a transformer
to learn joint representations. ActBERT [70] learns a joint
video-text representation that uncovers global and local vi-
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Figure 3. The pipeline of our method. All encoders adopt transformer based architectures. Video Encoding: Query Video Encoder and
Key Video Encoder. Text Encoding: Query Text Encoder and Key Text Encoder. Momentum Cross-modal Contrast: Four memory
banks are built to save the key representations from two level of two modalities. Two query encoders are updated by gradient descent
and two key encoders are momentum updated. Hierarchical Cross-modal Contrastive Matching: Semantic-level Contrastive Matching
is performed between query video (text) semantic-level representations and key text (video) semantic-level representations in memory
banks. Feature-level Contrastive Matching is performed between query video feature-level (text word-level) representations and key text
word-level (video feature-level ) representations in memory banks.

sual clues from paired video sequences and text descrip-
tions. Both the global and the local visual signals interact
with the semantic stream mutually. MMT [12] proposes the
multi-modal transformer which processes features extracted
from different modalities at different moments in videos,
such as video, audio and speech. COOT [13] proposes a
hierarchical model that exploits long-range temporal con-
text producing the video/text embeddings based on hier-
archically interactions between local and global contexts.
Support-set [39] incorporates a auxiliary generative task,
i.e., cross-captioning task, to alleviate mismatching prob-
lems existed in recent works. Very recently, T2VLAD [63]
uses a paradigm of global-local alignment to perform video
retrieval. It obtains the global similarities by calculating the
similarities multiple times between video-related and text
features. For obtaining local similarities, they need to clus-
ter the local features into several shared centers firstly, and
calculate the similarities between local features and cluster
centers. Though it also performs hierarchical matching as
HiT, it performs their idea in a more complicated way.

2.3. Contrastive Learning

Contrastive Learning [4, 16, 5, 53, 21, 54, 36, 61, 6, 14]
has made the remarkable progress in unsupervised visual
representation learning. We introduce several representative
contrastive learning mechanisms that benefit from the op-
timization with negative samples. End-to-end mechanism
uses samples in the current mini-batch, where one can use

its augmented views as positive samples and consider other
samples in the current batch as negatives. Memory bank
[62] mechanism uses the representations sampled from a
memory bank to conduct broader negative sample learning.
However, the representations in the memory bank are from
very different encoders all over the past epoch and they are
less consistent. MoCo [5, 16] improves the memory bank
mechanism by using a momentum-updated key encoder
to generate the large-scale negative representations for the
memory bank which can maintain better representations’
consistency. SimCLR [4] shows that contrastive learning
in unsupervised visual representation learning benefits from
large batch size negatives, stronger data augmentation and
introducing the learnable nonlinear transformation, i.e., us-
ing projection heads. Though recent works [6, 14] show
that contrastive learning can achieve decent performance
even without negatives by using a momentum encoder [14]
or stop gradient operation [6] to prevent collapse solutions,
our HiT in video-text retrieval and [16, 4, 5, 62, 20] in visual
representation learning indeed benefit from the large-scale
negative sample learning. The effects of cross-modal learn-
ing without negatives are not involved in this paper.

3. Problem Definition

For the video-text retrieval task, we are given M videos
V = {Vi}M−1

i=0 and N captions T = {Ti}N−1
i=0 . Each video

has several kinds of expert embeddings to represent videos
in multiple views, e.g., motion, appearance and audio. Each
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caption is represented by the natural language in English.
Formally, the target of our methods for video-text retrieval
is to obtain two query encoders f : V → Z = {Zi}Li=1 and
g: T → Z = {Zi}Li=1 jointly, where f and g are for video
and text domains respectively, and Z consists of L com-
mon embedding spaces. In the common embedding spaces,
cross-modal samples are represented by a series of com-
pact embeddings. Meanwhile, the distance among similar
cross-modal samples are smaller than that of among dissim-
ilar cross-modal samples in the common embedding spaces.
The constraint can be formulated as follows:

d(f(Vi), g(Ti)) ≤ d(f(Vi), g(Tj)) s.t. i 6= j (1)

where d(·, ·) is the distance measurement. The overall sim-
ilarity between two cross-modal samples is decided by hi-
erarchical contrastive matching results.

4. Hierarchical Transformer
Figure 3 illustrates the structure of the Hierarchical

Transformer (HiT) for video-text retrieval. For video en-
coding, there are Query Video Encoder and Key Video En-
coder. Both two video encoders utilize the same architec-
ture. For text encoding, there are Query Text Encoder and
Key Text Encoder that adopt the same architecture. No-
tably, Siamese encoders, a.k.a., key encoders, are shown for
the utilization of Momentum Cross-modal Contrast (MCC),
which will be discussed later. There are only two query en-
coders left if we remove MCC, as shown in Figure 1.
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Figure 4. The visual input of video encoders.

4.1. Video Encoders

The video encoders, including query and key video en-
coders, are designed as transformer based architectures. We
transform the raw visual features into a discrete sequence
of tokens as inputs. To this end, we generate a sequence
of pre-trained video-related features, including motion, ap-
pearance and audio features, to obtain Visual Embeddings
Fv as the inputs. Visual Segment Masks Mv and Visual Posi-
tion Embeddings Pv are needed to indicate the real numbers
and positions of input features respectively. We append Ex-
pert Embeddings E to identify the attending expert. The fi-
nal visual input V can be formulated as follows, also shown
in Figure 4:

V = Fv + Mv + Pv + E (2)

• Video Feature-level Feature. As studied in [52, 40, 56],
in the transformer based architectures, the features in lower
layers capture low-level patterns that describe basic syntac-
tic information. We obtain these visual token features in
the first layer of the query video encoder and the key video
encoder. Then we do Average Pooling and Nonlinear Pro-
jection for them and obtain vqf ∈ RDv and vkf ∈ RDv , re-
spectively. MLPs are adopted as the nonlinear projection
heads to do nonlinear transformations. [4] has proved that
a nonlinear projection head can improve the representation
quality of the layer before it.
• Video Semantic-level Feature. Higher layer features in
transformer based architectures capture higher-level repre-
sentations with more complex semantic meanings. We do
average pooling for the contextual tokens in the last layer to
represent the semantic-level features. Then two projection
heads are used to do nonlinear transformations for obtain-
ing vqs ∈ RDv and vks ∈ RDv generated by the query video
encoder and the key video encoder respectively.

4.2. Text Encoders

We leverage BERT-base-uncased [7] as the text en-
coders and fine-tune it. It’s worth noting that the video fea-
tures are generated by pre-trained deep neural networks and
already have higher level semantic representation ability.
While the text modality has different inherent complexity
from the video modality and needs more transformer blocks
to model semantic relations among words. Thus, text en-
coders are deeper than video encoders.

Each word in a caption will be embedded into a word
embedding vector and we obtain Token Embeddings Ft.
[CLS] and [END] are embedded into the first and last po-
sitions. Text Segment Mask Mt is needed to indicate the real
length of the input sequence. Text Position Embedding Pt

is used to represent the word indexes of the input sequence
in text encoders. The final input for text encoders is defined
as:

T = Ft + Mt + Pt (3)

• Text Word-level Feature. We obtain text word-level fea-
tures from the first layer of query text encoder and key text
encoder. Similar to the acquisition of video feature-level
features, we perform average pooling and utilize two pro-
jection heads to do nonlinear transformations and obtain
tqw ∈ RDt , tkw ∈ RDt .
• Text Semantic-level Feature. The average pooling of to-
ken features from the last layer are referred as text semantic-
level features. These contextual tokens represent the higher-
level meaning of the given caption. Two projection heads
are used to do nonlinear transformations for obtaining tqs ∈
RDt and tks ∈ RDt .
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4.3. Momentum Cross-modal Contrast

The end-to-end training mechanism as most methods
implemented largely limits the negative sample interac-
tions. To enable large-scale negative sample interactions
for generating more precise and discriminative represen-
tations, Momentum Cross-modal Contrast (MCC) is pro-
posed. Four memory banks are firstly built as queues for
saving negative representations dynamically.
• Text Memory Banks. Text memory banks, includingBw

T

for saving key text word-level features and Bs
T for saving

key text semantic-level features, are built as two queues. In
each training iteration, the current mini-batch key text rep-
resentations tkw and tks encoded by the key text encoder will
be enqueued into Bw

T and Bs
T , and the oldest mini-batch

will be dequeued. The key text representations in Bw
T and

Bs
T will be used to calculate the loss with the current mini-

batch video representation vqf and vqs encoded by the query
video encoder.
•Video Memory Banks. Similarly, video memory banks
Bf

V for saving key video feature-level features vkf , and Bs
V

for saving key video semantic-level features vks are built.
Moreover, to maintain the representation consistency in

the memory banks, two key encoders, which perform mo-
mentum update [16, 5], are required. We denote θvq and
θvk as the parameters of the query and key video encoders.
θtq and θtk are the parameters of the query and key text en-
coders. We formulate the momentum update for θvk and θtk
as:

θvk ← mθvk + (1−m)θvq

θtk ← mθtk + (1−m)θtq
(4)

where m ∈ [0, 1) is a momentum coefficient, which is a
relatively large value. We set m = 0.999 in this paper. The
parameters θvq and θtq are updated by back-propagation. The
momentum update makes θvk and θtk evolve more smoothly
than θvq and θtq . As a result, though the key representations
in the memory banks are encoded by different encoders
(in different mini-batches), the difference among these en-
coders will be small.

4.4. Hierarchical Cross-modal Contrastive Match-
ing

We propose hierarchical cross-modal contrastive match-
ing for video-text retrieval learning. Specifically, we uti-
lize video feature-level features and text word-level fea-
tures for feature-level contrastive matching. The video and
text semantic-level features are used for semantic-level con-
trastive matching.

Feature-level Contrastive Matching. For the view of
retrieving texts with videos, we get positive similarity svt+

by calculating cosine similarity between vqf and tkw. Then,
we obtain negative similarity Svt− = {svt−i }Kt

i=1 by calcu-
lating cosine similarity among vqf and all key text represen-

tations in Bw
T . Thus, we achieve Svt = {svt+} ∪ Svt− =

{svti }
1+Kt
i=1 , where Kt is the queue size of Bw

T . Simi-
larly, for the view of retrieving videos with texts, we get
Stv = {stv+}∪Stv− = {stvi }

1+Kv
i=1 , where Kv is the queue

size of Bf
V . The InfoNCE [38], a form of contrastive loss

functions, is adopted as our objective function for feature-
level contrastive matching:

L1 = −log exp(svt+/γ)∑1+Kt

i=1 exp(svti /γ)
− log exp(stv+/γ)∑1+Kv

i=1 exp(stvi /γ)
(5)

where γ is a temperature hyper-parameter, which is set to
0.07 in this paper.

Semantic-level Contrastive Matching. Similarly, we
achieve positive and negative similarity Cvt = {cvt+} ∪
Cvt− = {cvti }

1+Kt
i=1 and Ctv = {ctv+} ∪ Ctv− =

{ctvi }
1+Kv
i=1 . The objective function of semantic-level con-

trastive matching is defined as:

L2 = −log exp(cvt+/γ)∑1+Kt

i=1 exp(cvti /γ)
− log exp(ctv+/γ)∑1+Kv

i=1 exp(ctvi /γ)
(6)

Thus, the overall objective function is L:

L = αL1 + βL2 (7)

where α and β are two hyper-parameters to balance two
objectives. We set both α, β to 1 in our experiments.

5. Experiments

5.1. Datasets and Evaluation Metrics

We adopt video-text retrieval experiments on three
datasets. Pre-training experiments are conducted on
HowTo100M [35].
• MSR-VTT [66] contains 10,000 videos, where each
video is annotated with 20 captions in English. We follow
the training protocol defined in [12, 30, 35] to evaluate on
text-to-video and video-to-text retrieval tasks on the 1k-A
testing split with 1,000 video or text candidates defined by
[67].
• ActivityNet Captions [24] consists of 20K YouTube
videos temporally annotated with sentence descriptions. We
follow the approach of [48, 12], where all the descriptions
of a video are concatenated to form a paragraph. The train-
ing set has 10,009 videos. We evaluate our video-paragraph
retrieval on the “val1” split (4,917 videos).
• LSMDC [44] contains 118,081 short video clips (∼45s)
extracted from 202 movies. Each clip is annotated with a
caption, extracted from either the movie script or the audio
description. The testing set is composed of 1,000 videos,
from movies not present in the training set.
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Table 1. The experimental results on MSR-VTT. Larger R@1,R@5,R@10 and smaller MedR indicate better retrieval performance.

Methods Video-to-Text Retrieval Text-to-Video Retrieval rsumR@1 R@5 R@10 MedR R@1 R@5 R@10 MedR
AM [2] 6.8 18.1 26.5 42 7.0 18.1 27.0 40 103.5

LJE [37] 9.2 27.6 39.1 22 6.9 22.5 29.8 32 134.9
ActBERT [70] - - - - 8.6 23.4 33.1 36 -
JSFusion [67] 9.5 28.6 40.2 18 9.6 29.8 42.1 20 159.8

HowTo100M [35] 12.2 33.5 47.5 13 12.6 36.2 48.1 13 190.2
CE [30] 20.9 48.8 62.4 6 20.6 50.3 64.0 5.3 267.0

MMT [12] 24.4 56.0 67.8 4 24.6 54.0 67.1 4 293.9
SUPPORT-SET [39] 26.6 55.1 67.5 3 27.4 56.3 67.7 3 300.6

HiT 28.8 60.3 72.3 3 27.7 59.2 72.0 3 320.3
HowTo100M [35] 16.8 41.7 55.10 8 14.9 40.2 52.8 9 221.5

NoiseEstimation [1] - - - - 17.4 41.6 53.6 8 -
UniVL [33] - - - - 21.2 49.6 63.1 6 -
AVLnet [45] 28.5 54.6 65.2 4 27.1 55.6 66.6 4 297.5
MMT [12] 27.0 57.5 69.7 3.7 26.6 57.1 69.6 4 307.5

SUPPORT-SET [39] 28.5 58.6 71.6 3 30.1 58.5 69.3 3 316.6
HiT Pre-trained on HT100M 32.1 62.7 74.1 3 30.7 60.9 73.2 2.6 333.7

Table 2. Text-to-video retrieval results on ActivityNet.

Methods R@1 R@5 R@50 MedR
FSE [69] 18.2 44.8 89.1 7.0
CE [30] 18.2 47.7 91.4 6.0

HSE [69] 20.5 49.3 - -
MMT [12] 22.7 54.2 93.2 5.0

SUPPORT-SET [39] 26.8 58.1 93.5 3.0
HiT 27.7 58.6 94.7 4.0

HiT Pre-trained 29.6 60.7 95.6 3.0

Table 3. Text-to-video retrieval results on LSMDC.

Methods R@1 R@5 R@10 MedR
CT-SAN [68] 5.1 16.3 25.2 46
JSFusion [67] 9.1 21.2 34.1 36

CCA [23] 7.5 21.7 31.0 33
MEE [34] 9.3 25.1 33.4 27

MEE-COCO [34] 10.1 25.6 34.6 27
CE [30] 11.2 26.9 34.8 25.3

MMT [12] 13.2 29.2 38.8 21.0
HiT 14.0 31.2 41.6 18.5

•Metric. We measure the retrieval performance with com-
mon metrics in information retrieval, including Recall at K
(R@K and K=1, 5, 10), and Median Rank (MedR). R@K
is the percentage of test queries that at least one relevant
item is found among the top-K retrieved results. The MedR
measures the median rank of correct items in the retrieved
ranking list, where lower score indicates a better model. We
also take the sum of all R@K as rsum to reflect the overall
retrieval performance.

5.2. Implementation Details

• Pre-trained Features. We follow MMT [12] to conduct
pre-trained feature extraction. Motion features are extracted
from S3D [64] trained on the Kinetics action recognition
dataset. Audio features are extracted from VGGish model
[17] trained on YT8M. Appearance features are extracted
from the final global average pooling layer of SENet-154
[18] trained on ImageNet.

For MSRVTT and LSMDC, we use all motion, appear-
ance and audio experts. We employ 30 features for each
type of visual features as the visual input, and the 25 first
words from captions as the text input. For HowTo100M
and ActivityNet, we use motion and audio experts, each of
which has 100 features as the visual input, and the first 100
words as the text input.
• Backbone. For text encoders, we use 12-layer
BERT-base-uncased [7] and fine-tune it. Video en-
coders have 4 transformer layers with 4 attention heads.
The hidden size and the intermediate size are set to 512 and
3,072, respectively. We set the hidden size of projection
heads to 8,192. Dv andDt are both set to 2,048. The ReLU
is used as the activation function and BN layers are used in
hidden layers.
• Optimization. The initial learning rate is set to 2e-5 and
the network is optimized by AdamW [31] optimizer. The
10% proportion of warm up and cosine decay are used for
scheduling the learning rate. The batch size is 128 and we
train 40 epochs. All experiments are conducted on NVIDIA
3090Ti GPUs.
• Kv and Kt in MCC . For MSR-VTT, we report retrieval
results when we set Kv and Kt to 4,096. Kv and Kt in Ac-
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Table 4. Ablation study on MSR-VTT to investigate the contributions of Momentum Cross-modal Contrast.

Methods Memory Bank Video-to-Text Retrieval Text-to-Video Retrieval rsumUse Qk Qv R@1 R@5 R@10 R@1 R@5 R@10
HiT w/o MCC % - - 27.1 55.3 68.3 27.0 58.0 70.8 306.5
HiT w MCC " 256 256 26.9 56.1 69.0 27.0 58.6 71.0 308.6
HiT w MCC " 512 512 27.6 58.3 70.0 27.4 58.7 70.8 312.8
HiT w MCC " 1,024 1,024 27.7 57.9 70.3 27.3 59.7 71.8 314.7
HiT w MCC " 2,048 2,048 28.0 59.6 71.9 27.4 59.0 71.5 317.4
HiT w MCC " 4,096 4,096 28.8 60.3 72.3 27.7 59.2 72.0 320.3
HiT w MCC " 8,192 8,192 28.1 58.9 72.5 27.0 58.7 71.0 316.2

tivityNet are set to 512. In LSMDC, Kv and Kt are 1,024.
We setKv andKt to 8,192 in HowTo100M. These numbers
should vary with the batch size.

5.3. Compare to state of the art

The Table 1-3 present the retrieval results of HiT on
MSR-VTT, ActivityNet Captions and LSMDC. We also
compare HiT with other state-of-the-art methods.

As shown in the results, HiT outperforms all comparison
methods by a clear margin. For MSR-VTT, we report video-
to-text retrieval and text-to-video retrieval results. In partic-
ular, our retrieval performance at rsum is 320.3, exceeding
recent state-of-the-art methods [39] by a margin of 19.7. It
well reflects the overall retrieval quality of HiT. With pre-
training on HowTo100M, HiT further boosts the retrieval
performance. For ActivityNet Captions and LSMDC, we
report the retrieval performance in terms of text-to-video re-
trieval. HiT still outperforms comparison methods. We find
that the growth of retrieval performance benefits from the
proposed components, including Hierarchical Cross-modal
Contrastive Matching and Momentum Cross-modal Con-
trast. To demonstrate the effectiveness and robustness of
two components, we exhaustively and comprehensively ab-
late our method in the following sections.

6. Ablation Study
Hierarchical Cross-modal Matching. As mentioned

above, we use token features from the first layers to per-
form Feature-level Contrastive Matching while token fea-
tures from the last layers are adopted for Semantic-level
Contrastive Matching. In this section, we design several
variants to verify the impacts of Hierarchical Cross-modal
Contrastive Matching. Note that we do not perform MCC
for efficiency in this .
• HiT-sl. We only implement semantic-level matching
while feature-level matching is removed.
• HiT-fl. Only feature-level matching is implemented.
• HiT-4-level. To investigate the potential of hierarchical
matching for transformer architectures, contrastive match-
ing with respect to more levels is conducted. Since a text

Table 5. The investigation of Hierarchical Cross-modal Con-
trastive Matching in Text-to-Video Retrieval.

Methods R@1 R@5 R@10 MedR
HiT-sl 23.5 56.2 68.8 4.0
HiT-fl 25.1 53.6 67.2 4.0

HiT-4-level 27.1 59.2 71.0 3.0
HiT-3-level-a 28.5 58.4 71.0 3.0
HiT-3-level-b 26.7 58.5 71.4 3.0

HiT 27.0 58.0 70.8 3.0

encoder has 12 transformer blocks and a video encoder
has 4 blocks, except feature-level (between layer-1 in text
encoder and layer-1 in video encoder) and semantic-level
(between layer-12 in text encoder and layer-4 in video en-
coder), we append contrastive matching with more levels
between layer-5 in text encoder and layer-2 in video en-
coder, layer-9 in text encoder and layer-3 in video encoder.
• HiT-3-level-a. We append contrastive matching between
layer-9 in text encoder and layer-3 in video encoder.
• HiT-3-level-b. Contrastive matching between layer-5 in
text encoder and layer-2 in video encoder is appended.
• HiT. Original HiT in Table 1.

Table 5 presents the ablation results on MSR-VTT in
text-to-video retrieval. We find that using more levels to
conduct contrastive matching is able to obtain clear im-
provements. However, n-level matching requires n times
retrieval during inference. In addition, significant improve-
ments are not shown in 3-level and 4-level matching results.
For the sake of retrieval efficiency and efficient training with
Momentum Cross-modal Contrast, we select 2-level match-
ing in this paper to report the main results.

Momentum Cross-modal Contrast. To explore the im-
pacts of the memory bank size, sufficient experiments are
conducted. The results are shown in Table 4. We vary
the queue size of Kv and Kt from 0 to 8,192, and evaluate
R@K and rsum. As shown in the results, it deserves atten-
tion that the introduction of large-scale negatives for sim-
ilarity learning indeed achieves considerable performance
improvements, in which we attribute it to broader nega-
tive sample interactions for obtaining more precise and dis-
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criminative representations. In addition, with the growth
of queue size Kv and Kt, retrieval performance is slightly
degraded after the growth which is probably due to some
positive samples are misclassified as negative samples.

Momentum Encoders. For maintaining representation
consistency in memory banks, we introduce two key en-
coders with momentum update for two modalities to gen-
erate representations. In this section, we abate two mo-
mentum encoders to explore their effectiveness in terms of
maintaining representation consistency by evaluating the re-
trieval performance. We achieve the ablation by directly us-
ing query encoders to produce representations for memory
banks. Table 6 presents the ablation results. We can find
that it shows the performance degradation when we do not
use momentum encoders. Particularly, it degrades perfor-
mance at R@5 to 48.4%, which clearly demonstrates the
necessity of momentum encoders.

Table 6. The impacts of Momentum Encoders for generating key
representations.

Encoders R@1 R@5 R@10 MedR

Query Encoders 21.1 48.4 60.9 6.0
Key Encoders 27.7 59.2 72.0 3.0

Contrastive Loss. In Equation 5 and 6, InfoNCE is
adopted as the Contrastive loss to perform common space
learning. In this section, we use another commonly used
loss function, i.e., Triplet Ranking Loss, as the objectives
and present the retrieval performance for MSR-VTT in Ta-
ble 7. Though it exists the difficulty in tuning the appropri-
ate combination of temperature and batch size, we find that
InfoNCE achieves better performance than Triplet Ranking
Loss in HiT.

Table 7. The selection of Contrastive losses.
Encoders R@1 R@5 R@10 MedR

Triplet Ranking Loss 25.6 56.7 69.1 4.0
InfoNCE 27.7 59.2 72.0 3.0

The temperature γ in InfoNCE is a sensitive parameter.
To show how γ affects retrieval performance, the impacts
of γ with regard to rsum are presented in Table 8. We can
observe that the best performance can be achieved when we
set γ to 0.07. A number with the same magnitude as 0.07
won’t change the performance obviously.

Table 8. Parameter analysis for temperature γ.
γ 0.0007 0.007 0.07 0.7 7

rsum 285.1 311.2 320.3 155.4 112.2

Expert Utilization. In MSR-VTT, we use three types
of expert embeddings as the visual input, including motion,
appearance and audio features. The ablation of the different
experts are in Table 9.

Table 9. Ablation study on different experts.
Experts R@1 R@5 R@10 MedR

Motion only 25.1 51.6 65.0 5.0
Appearance only 18.2 41.9 55.5 6.0

Audio only 10.9 22.1 31.1 16.0
Motion + Appearance 24.2 52.5 65.1 5.0

Motion + Audio 28.1 57.8 71.5 3.0
Appearance + Audio 20.1 46.9 58.7 5.0

All 27.7 59.2 72.0 3.0

From the results, we find that the motion expert achieves
the best results when we only use one of three experts.
Using audio features solely shows the worst performance.
When using two experts, the combination of motion and
audio experts achieves best results. As analysed in [12], we
also note that audio features contribute the most when being
used together with others, which indicates that they provide
many complementary cues.

Feature Aggregation. As illustrated in Section 4.1 and
4.2, we leverage Average Pooling to produce aggregated
features before projection heads, in the sense of capturing
important features from all tokens. Alternately, we evaluate
three more aggregation methods, including Max Pooling,
1D-CNN [22] (kernel sizes: [2,3,4,5]) and using a [CLS]
aggregated token. To obtain aggregated visual features from
[CLS] token, similar to the text inputs, here we need to
embed [CLS] and [END] tokens into the first and last po-
sitions of the visual input. We initialize them with random
vectors. Table 10 presents comparison results in terms of
text-video retrieval. Note that the decent results are not pre-
sented in [CLS]. We suppose the reason is that the features
are not well aggregated in the [CLS] at feature-level.

Table 10. Feature aggregation method comparison.
Aggregation R@1 R@5 R@10 MedR

Average Pooling 27.7 59.2 72.0 3.0
Max Pooling 26.8 60.1 71.2 3.0

1D-CNN 24.4 55.6 68.2 4.0
[CLS] 24.2 53.1 65.0 5.0

7. Conclusion

We summarize our paper in two aspects: 1) In Hier-
archical Cross-modal Contrastive Matching, we show that
taking advantage of feature hierarchies in transformers can
achieve decent performance gains. 2) Momentum Cross-
modal Contrast demonstrates that cross-modal learning can
benefit from large-scale negative sample learning. For fu-
ture: work: 1) To facilitate the exploitation of feature hi-
erarchies in transformers, we can design the fusion mod-
ules to utilize hierarchical features more effectively and ef-
ficiently. 2) To improve Momentum Cross-modal Contrast,
some feature-level operations can be applied in memory
banks, such as data mixing, hard negative selection, etc.
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