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Abstract

We extend the task of composed image retrieval, where
an input query consists of an image and short textual de-
scription of how to modify the image. Existing methods have
only been applied to non-complex images within narrow do-
mains, such as fashion products, thereby limiting the scope
of study on in-depth visual reasoning in rich image and lan-
guage contexts. To address this issue, we collect the Com-
pose Image Retrieval on Real-life images (CIRR) dataset,
which consists of over 36,000 pairs of crowd-sourced,
open-domain images with human-generated modifying text.
To extend current methods to the open-domain, we pro-
pose CIRPLANT, a transformer based model that leverages
rich pre-trained vision-and-language (V&L) knowledge for
modifying visual features conditioned on natural language.
Retrieval is then done by nearest neighbor lookup on the
modified features. We demonstrate that with a relatively
simple architecture, CIRPLANT outperforms existing meth-
ods on open-domain images, while matching state-of-the-
art accuracy on the existing narrow datasets, such as fash-
ion. Together with the release of CIRR, we believe this work
will inspire further research on composed image retrieval.
Our dataset, code and pre-trained models are available at
https://cuberick-orion.github.io/CIRR/.

1. Introduction

We study the task of composed image retrieval, that is,
finding an image from a large corpus that best matches a
user query provided as an image-language pair. Unlike tra-
ditional content-based [38] or text-based [24, 42] image re-
trieval where a single modality is used to describe the target
image, composed image retrieval involves both visual and
textual modalities to specify the user’s intent. For humans
the advantage of a bi-modal query is clear: some concepts
and attributes are more succinctly described visually, others

Reference Image Target Image #1 Target Image #2

Modification text for #1: “Be a same breed dog with his puppy running”
Modification text for #2: “Two dogs of the same breed on the floor”

Figure 1. Example of composed image retrieval from the proposed
CIRR dataset. The input is composed of a reference image and a
modifying text, to which the model must find a close match. A
major challenge is the inherent ambiguity and underspecification
of visual aspects to be preserved or modified. Our dataset includes
open-domain images with rich contexts to facilitate the study of
such challenge.

through language. By cross-referencing the two modalities,
a reference image can capture the general gist of a scene,
while the text can specify finer details. The challenge is the
inherent ambiguity in knowing what information is impor-
tant (typically one object of interest in the scene) and what
can be ignored (e.g., the background and other irrelevant
objects). However, existing datasets for this task fall short
of allowing us to adequately study this problem.

Consider the example in Fig. 1. Real-life images usu-
ally contain rich object interactions on various scales. In
each case, to readily identify the relevant aspects to keep or
change and pay less attention elsewhere (e.g., the color of
the dog’s fur and background objects), a model must de-
velop in-depth visual reasoning ability and infer implicit
human agreements within both the visual and language con-
texts. However, existing datasets are constrained to domains
such as fashion products [4, 12, 13] or synthetic objects [40]
with relatively simple image contents. We argue that the
current datasets are insufficient for exploring the unique re-
search opportunity mentioned above.

Motivated by this problem, we collect the Compose Im-
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age Retrieval on Real-life images (CIRR) dataset. It is
based on the open-domain collection of real images from
NLVR2 [35], for which we collected rich, high-quality an-
notations that aim to tease out the important aspects of the
reference image and textual description for a given query.

Compared with existing datasets, CIRR places more em-
phasis on distinguishing between visually similar images,
which provides a greater challenge, as well as a chance for
studying fine-grained vision-and-language (V&L) reason-
ing in composed image retrieval. Our dataset also allows
for evaluation on fully labeled subsets, which addresses a
shortcoming of existing datasets that are not fully labeled
and therefore contain multiple false-negatives (as unlabeled
images are considered negative).

Meanwhile, we propose Composed Image Retrieval
using Pretrained LANguage Transformers (CIRPLANT),
which extends current methods into open-domain images by
leveraging the knowledge of large-scale V&L pre-trained
(VLP) model [25]. Although the advantages of such pre-
trained models have been validated in many visiolinguis-
tic tasks [6, 25, 28], to the best of our knowledge, none
have been applied to composed image retrieval. We conjec-
ture one of the reasons being the existing domain-specific
datasets cannot greatly benefit from the pre-training, which
uses more complex, open-world images. Moreover, to
adopt the VLP models for fine-tuning, most of the down-
stream tasks are formulated as classification tasks [6, 25].
For composed image retrieval, it requires taking as input
both the reference and target images. However, this greatly
raises the computational overhead for retrieval, as the model
needs to exhaustively assess each input query paired with
each candidate target before yielding the one with the
highest prediction score. Instead, we propose to preserve
the conventional metric learning pipeline, where the input
queries are jointly embedded using the VLP model and later
compared with features of candidate images through ℓ2-
norm distance. Specifically, our design maintains the same
objective of “language-conditioned image feature modifica-
tion” as previous work [5, 8, 40], while manages to utilize
the pre-trained V&L knowledge in large-scale models. We
demonstrate that our proposed model reaches state-of-the-
art on the existing fashion dataset while outperforming cur-
rent methods on CIRR.

2. Related Work
Image retrieval. Existing work on image retrieval using
deep learning can be categorized by the type of queries con-
sidered. Content-based Image Retrieval (CBIR) refers to
the use of image-only queries for product search [26], face
recognition [29, 34], etc. This setup leaves little room for
iterative user feedback or refinement. Other possible modal-
ities to form queries include attributes [13], natural lan-
guage [24, 42], and sketches [31]. These are motivated by

a more natural user experience, but require more advanced
retrieval mechanisms. Vo et al. [40] propose composed im-
age retrieval that combines visual and text modalities. Here
the query consists of a reference image and short text de-
scribing desired differences with this image. Guo et al. [12]
demonstrate the potential of this setup for the narrow do-
main of fashion recommendation.

Our work focuses on composed image retrieval in an
open-domain setting, i.e., not restricted to fashion products
for example. We specifically address the case of distin-
guishing visually similar images, which requires more in-
depth, fine-grained reasoning ablility over both the visual
and language modalities.

Compositional learning. The topic of compositional
learning has been extensively studied in V&L tasks includ-
ing visual question answering (VQA) [3], image caption-
ing [1, 2] and video retrieval [41]. The aim is to produce
learned joint-embedding features that capture the salient in-
formation in both visual and text modalities along with their
interactions. For composed image retrieval, Vo et al. [40]
first propose a residual-gating mechanism that aims to con-
trol variation of the input image features through text. Hos-
seinzadeh and Wang [17] use region-based visual features
from R-CNN models [10, 32] originally proposed for im-
age captioning [1] and VQA [37]. Recently, Chen et al.
[5] use a transformer-based model [39] and inject the text
modality at varying depths of the image model. Dodds
et al. [8] introduce the concept of modality-agnostic tokens,
which they obtain from “divided” spatial convolutional fea-
tures and LSTM hidden states. In this work, we propose a
method that leverages the rich knowledge in VLP models.
Our method can modify the input image features based on
natural language without the need of developing monolithic
architecture on the specific task.

Vision-and-language pre-training. The success of pre-
trained BERT [7] inspired numerous attempts on VLP mod-
els, including [6, 23, 25, 28, 36]. The aim is to de-
velop Transformer-based [39] models trained on large-scale
image-text triplets to produces V&L representations appli-
cable to various tasks. The advantage is clear, instead of
training monolithic models on task-specific datasets from
zero, different V&L tasks can start with the representations
learned from (usually) a considerably larger image-text cor-
pus, and fine-tune on specific tasks. Motivated by success
in other V&L tasks, we propose to adopt the VLP model on
composed image retrieval. The key obstacle is to design the
architecture to encourage a controlled modification of im-
age features, which, differs greatly from the conventional
use cases of such models.

Datasets for composed image retrieval. Most existing
datasets suitable for composed image retrieval are repur-
posed from other tasks [13, 18, 40]. Images are paired
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within classes and textual descriptions of their differences
are generated automatically from existing labels. These
datasets are relatively simple visually and only contain short
descriptions with simple language. CSS [40] uses the syn-
thetic images of geometric 3D shapes from CLEVR [20],
paired with descriptions generated according to differences
in appearance of the objects. Fashion200k [13] contains
approx. 200k images tagged with attributes that can be
used to compose text descriptions of differences between
images. MIT-States [18] contains images of entities in dif-
ferent states each labelled with one noun and one adjective.
The adjectives can describe limited differences between im-
ages. More recent works introduced human-generated de-
scriptions. Guo et al. [11] present annotations for Shoes [4],
a dataset of 10k footwear images. Fashion-IQ [12] contains
crowd-sourced descriptions of differences between images
of fashion products. Dodds et al. [8] introduce benchmarks
for the Birds-to-Words [9] and Spot-the-Diff [19] datasets.

In this paper, we introduce a new dataset that addresses
current deficiencies. Our dataset is open-domain and not
restricted, e.g., to fashion products [4, 12, 13]. We design
a careful collection process to produce high-quality pairs
from our diverse collection of images by only associating
visually- and semantically-related images. We also address
the issue of false-negative targets, that is, candidate target
images that are valid for a certain input query, but not la-
beled as such. Previous datasets failed to resolve this issue
due to the cost of exhaustively labeling images against ev-
ery possible query, which is mitigated by our data collection
strategy. Although not used in our current work, the dataset
also contains a rich set of auxiliary annotations that clarify
ambiguities not addressed in the textual query.

3. The Proposed Model
In this section, we first briefly introduce the vision-and-

language pre-trained (VLP) models, then we discuss our
adaptation of it for the task of composed image retrieval.

3.1. Vision-and-Language Pre-trained Models

Contemporary VLP models are inspired by BERT [7],
which is constructed with multi-layer transformers [39].
The model accepts variable-length sequential inputs iVLP,
which consist of a concatenation among words in the text
sequence(s) w = {w1, . . . , wT }, regional features from the
image v = {v1, . . . , vK}, and other optional tokens. For in-
stance, in OSCAR [25], an object label associated with each
regional feature is appended to the end as l = {l1, . . . , lK}.

Within each transformer layer, a multi-head self-
attention mechanism is designed to capture the dependen-
cies among the sequential tokens. Layers are stacked hier-
archically to attend to the output of the previous layer. Once
pre-trained on a large corpus, the final output representa-
tions can be used for fine-tuning on arbitrary downstream

tasks, where the usage varies depending on the task.
That said, downstream tasks share some common as-

pects. Mostly, a classification token [CLS] is inserted at
the start of the input text sequence, which aggregates infor-
mation from the modalities. The final [CLS] output is then
used to make predictions, such as for image classification.

3.2. Adaptation to Composed Image Retrieval

The task of composed image retrieval can be formally
described as finding the target image in a large corpus of
images IT ∈ D that best matches a query provided by a
reference image-text pair q = ⟨IR, t⟩. Our goal is to learn a
text-image composition module, which maps a given ⟨IR, t⟩
into the same embedding space as, and close to, the corre-
sponding IT. Intuitively speaking, this requires the compo-
sition module to modify IR conditioned on t.

In this work, we employ OSCAR [25], a recently pro-
posed VLP model with state-of-the-art performance as the
composition module to perform the mapping as follows.

Input sequence. We denote the input sequence of OS-
CAR as iVLP = {w,v}, where we initialize OSCAR with-
out the optional object label inputs l. We then follow Li
et al. [25] for processing text sequences, but introduce the
following adaptations on image representations.

Rather than including a set of regional features,
we pre-process images through an ImageNet pre-trained
ResNet [14] model and extract features from before the final
FC-layer. We then process these features through a (newly)
learned FC-layer and ℓ2-normalization to give a single im-
age feature v = {v1} as the input to OSCAR. This same
feature representation is used for the corpus of candidate
target images I ′T ∈ D as shown in Fig. 2.

We choose this relatively simple design for two reasons.
First, recent work (e.g., [16]) has shown the compatibility
between VLP models and non-regional features of images.
Second, we hypothesize that using global image features is
easier to achieve our goal of modifying IR conditioned on t
so as to closely match IT.

Output token. As shown in Fig. 2, contrary to typical
downstream tasks, we do not use the final representation of
the [CLS] token as the text-image joint embedding. In-
stead, we extract the representation corresponding to the
image feature token and treat it as the composed image-
text feature. This resembles the fine-tuning of REF [23], as
well as VLN-BERT [16]. In both cases, tokens other than
[CLS] are used for prediction. For composed image re-
trieval, our design makes sense since the transformer model
includes residual connections between input and output to-
kens. Intuitively, the reference image features are modified
by aggregating the information from other word tokens to
produce the target image features.
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Text 𝒕 –
“A bigger pub with 
more people in it.”

FC + NormalizeResNet

Shared weights

FC + NormalizeResNet

Tokenize

 𝑣𝟏

VLP Multi-layer Transformers

 𝑤𝟐  𝑤𝟑  𝑤𝟒 …  𝑤𝑻ି𝟏  𝑤𝑻 𝑤𝟏

 𝜑𝒊…

 𝜙𝒊
ା

𝓛

Reference image 𝑰𝐑

 𝜑…

 𝑣𝟏 𝑤𝟐  𝑤𝟑  𝑤𝟒 …  𝑤𝑻ି𝟏  𝑤𝑻 𝑤𝟏

𝒘

…

Target image     𝑰𝐓Target image      𝑰𝐓

Figure 2. (Left) Schematic of our model. Given a pair of reference image and text as input, we aim at learning a modified image feature of
the reference image conditioned on the text, such that it matches the feature of the target image. To compare image features of reference
and candidate target images, we extract ResNet features and use a shared FC-layer (with normalization) to project them into the same
domain. (Right) Overview of the image-text composition module using vision-and-language pre-trained (VLP) multi-layer transformers.
Dashed lines (not fully drawn) represent feature aggregation by attention, which learns a language-conditioned image feature modification.

𝑰𝟏
𝑰𝟐

𝒑𝟏𝟐

Similarity Ranking

…   𝑰𝟏   𝑰𝟐
… 

Subset 𝓓
6 Images

  𝑰𝟔xx …  𝑰𝒏x

(a) Form image subset (b) Form image pair

9 Pairs/Subset

(c) Collect (main) annotationற

“Similar angle photograph, with a larger field of 
view depicting decor of bedroom”

Annotation is unique for the given 
pair in subset ∗

Figure 3. Overview of the data collection process. (a) We demonstrate the construction of an image subset. (b) We illustrate how we choose
and form 9 image pairs within one subset, where each arrow suggests the direction from a reference to a target image. (c) † represents
Human Tasks with AMT workers. ∗ indicates the instruction that mitigates the issue of false-negative.

Metric learning. We use soft triplet-based loss with ℓ2-
norm distance as in Vo et al. [40] to bring the composed
image-text feature closer to the feature of the target image
(positive pair), while pulling apart the features of negative
pairs. In essence, given the i-th positive pair ⟨φi, ϕ

+
i ⟩ and

an arbitrary negative ϕ−
i,j among all negatives ϕ−

i , the loss
is computed as:

L = log[1 + exp(κ(φi, ϕ
−
i,j)− κ(φi, ϕ

+
i ))], (1)

where κ is ℓ2-norm distance. In training, we randomly sam-
ple the negative for each pair and average the loss over all
sampled triplets ⟨φi, ϕ

+
i , ϕ

−
i,j⟩.

4. The CIRR Dataset
Existing datasets for composed image retrieval [12, 40]

contain training and testing examples as triplets ⟨IR, q, IT⟩
where q = ⟨IR, t⟩ forms the query and IT is (an example of)
the desired target from a large image corpus D. However,
these existing datasets have two major shortcomings. First,
they lack the sufficient visual complexity to facilitate the
study of one of the major challenges in composed image re-
trieval, which is the subtle reasoning over what aspects are
important and what shall be ignored. Second, since the can-
didate images cannot be extensively labeled for each ⟨IR, t⟩
pair, existing datasets contain many false-negatives. That is,
images I ∈ D that are valid matches for the query but not
labeled as the ground-truth target IT. Indeed, all images in
D\{IR, IT} are considered as negatives. To circumvent this

shortcoming, existing works choose to evaluate models with
Recall@K and set K to larger values (e.g., 10, 50 [12]),
thus accounting for the presence of false-negatives. How-
ever, the issue persists during training. Moreover, by setting
larger K values, these methods are essentially trading in
their ability for learning detailed text-image modifications.

To mitigate these issues, we introduce the Compose Im-
age Retrieval on Real-life images (CIRR) dataset, which
includes over 36,000 annotated query-target pairs, ⟨q =
⟨IR, t⟩, IT⟩. Unlike existing datasets, we collect the mod-
ifying text to distinguish the target from a set of similar im-
ages (addressing the problem of false-negatives) and creat-
ing challenging examples that require careful consideration
of visual and textual cues. Details are as follows.

4.1. Data Collection

We first form image pairs then collect related annotations
by crowd-sourcing. The pairs are drawn from subsets of
images, as described below. This strategy plays a major
role in mitigating the issue of false negatives (see Sec. 5).
Fig. 3 outlines our data collection procedure.

Image source. We use the popular NLVR2 dataset for nat-
ural language visual reasoning [35] as our source of images.
We choose NLVR2 for several reasons. First, it contains
images of real-world entities with reasonable complexity in
ImageNet-type [22]. Second, the setup of our task requires
image in pairs that are similar enough, and NLVR2 is de-
signed to have collections of similar images regarding 1,000
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synsets (e.g., acorn, seawall). Also, Suhr et al. [35] employs
an additional step to manually remove non-interesting im-
ages, thus ensuring the content quality.

Image subset construction. The nature of our task re-
quires collections of negative images with high visual sim-
ilarity, as otherwise, it would be trivial to discriminate be-
tween the reference and target image. Thus, prior to form-
ing reference-target image pairs, we construct multiple sub-
sets of six images that are semantically and visually similar,
denoted as S = {I1, . . . , I6}, shown in Fig. 3(a).

Here, to construct a subset, we randomly pick one im-
age from the large corpus I1 ∈ D. We then sort the re-
maining images in D by their cosine similarity to I1 using
ResNet152 [14] image feature vectors pre-trained on Ima-
geNet [22]. Denote by κi the cosine similarity for image Ii.
We then pick five additional images to produce a similar yet
diverse subset, as follows: First, we filter out images with
κi ≥ 0.94 to avoid near-identical images to I1. Then for
the next top-20 ranked images, we greedily add each image
in turn, skipping an image if its cosine similarity is within
0.002 of the last image added. If a subset of size six cannot
be created, then the entire set is discarded.

Once constructed we further filter the collection subsets
to avoid heavy overlap. We obtain in total 52,732 subsets
from NLVR2, from which we randomly choose 4,351 for
the construction of CIRR.

Image pairing. Within each constructed image subset S,
we draw nine pairs of images, as shown in Fig. 3(b). We
choose these pairs to have (1) consecutive modifications
that will allow future training of a dialogue systems; and
(2) multiple outcomes from the same reference image.

Annotations. We collect a modification sentence for each
pair of reference-target images using Amazon Mechanical
Turk (AMT). To ensure that no false-negatives exist within
the same image subset from which we draw the pair, as il-
lustrated in Fig. 3(c), we show AMT workers the remaining
images from the subset and specifically ask them to write
sentences that can only lead to the true target image.

AMT workers were instructed to avoid subjective de-
scriptions, text mentions, plain side-by-side comparisons,
or simple descriptions that only address the target images.

Following the collection of the modification sentences
for each pair, we additionally collect some auxiliary annota-
tions that more explicitly address the ambiguities associated
with implicit human-agreements. While we believe that
these auxiliary annotations will be useful for future work,
we do not make use them in our current work1.

Data splits. Following convention, we randomly assign
80% of the data for training, 10% for validation and 10%
for test. Detailed statistics are shown in Table 2.

1See supp. mat. and our project website for details on auxiliary anno-
tations.

4.2. Analysis on CIRR

We follow Suhr et al. [35] and analyze coverage of
various semantic concepts by keywords and sentence pat-
terns (see Table 1). Here, we show comparisons with
Fashion-IQ [12], the most popular, comparable human-
labeled dataset. We observe a greater diversity and aver-
age length in the sentences in CIRR, indicating broad cov-
erage and linguistic diversity. Over 40% of the annotations
are compositional, which indicates an appreciable level of
complexity of the sentences. Interestingly, our annotations
should also encourage models to attend to both the refer-
ence and target images by implicitly (rows 1–4) or explicitly
(rows 5–6) referring to the visual contents of both images.

5. Experiments
Datasets. To demonstrate the model’s ability in untiliz-
ing pre-trained V&L knowledge, as well as its generaliz-
ability to images of different domains, we evaluate our pro-
posed model against baselines and state-of-the-art (SoTA)
methods on two datasets, including (1) CIRR, our proposed
dataset on open-domain composed image retrieval, and (2)
Fashion-IQ [12], which contains images of fashion products
among three subtypes (Dress, Shirt, Toptee) with
human-generated annotations. We do not evaluate on other
datasets discussed in Sec. 2, as they either contain synthetic
image/annotation or are domain-wise similar to Fashion-IQ
(e.g., Fashion200k [13]).

Compared methods. For CIRR, we evaluate the follow-
ing methods using publicly available implementations2:

• TIRG [40] is an image-text composition model for
composed image retrieval, which has proven to be ef-
fective on multiple datasets [12, 13, 18, 40]. The
method uses a gating and residual design to encour-
age the learning of cross-modal features. Two setups
for TIRG are available based on whether to inject text
features at the last FC-layer (default), or the last con-
volution layer (LastConv). We test both setups.

• MAAF [8] is specifically designed for composed im-
age retrieval with state-of-the-art performance. By
default, it treats the convolutional spatial image fea-
tures and the learned text embeddings (randomly ini-
tialized with LSTM [15]) as modality-agnostic tokens,
which are passed to a Transformer [39]. We evalu-
ate three design choices that were originally reported
with comparable results: (+BERT) pretrained context-
aware word representations using BERT [7], (-IT) re-
moving the output of text tokens in the last pooling
layer, (-RP) substituting the final resolution-wise pool-
ing with average pooling.

2https://github.com/google/tirg, https://github.
com/yahoo/maaf
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Semantic aspect
Coverage (%)

Example (boldface added here for emphasis)
CIRR Fashion-IQ

1 Cardinality 29.3 – Only one of the boars and the ground is browner.
2 Addition 15.2 15.7 Add human feet and a collar.
3 Negation 11.9 4.0† Remove the chair, make the dog sit in an open box.

4 Direct Addressing 57.4 49.0† Show some lemons with a glass of lemonade.
5 Compare & Change 31.7 3.0 Same computer but different finish and black background.
6 Comparative Statement 51.7 32.0† A bigger pub with more people on it.
7 Statement with Conjunction 43.7 19.0† Remove all but one bird and have it facing right and putting food in its mouth.

8 Spatial Relations & Background 61.4 – Change the sky to blue color.
9 Viewpoint 12.7 – Focus widely on all available cookies package.

Avg. Sentence length (words) 11.3 5.3

1 2 3 4 5 6 7 8 9

Table 1. Analysis of semantic aspects covered by the annotations in CIRR and in Fashion-IQ [12]. We also show average sentence length
(nb. words). † Numbers from [12]. Image pair for each example is shown below with row number (left-right: reference-target).

Nb. image subsets Nb. pairs Nb. pairs per subset Nb. images

Train 3,345 28,225 7.54 16,939
Val. 503 4,184 8.32 2,297
Test 503 4,148 8.25 2,316

Total 4,351 36,554 8.40 21,552

Table 2. Statistics of CIRR. Each reference-target image pair is
associated with one annotation.

For comparison, we also evaluate the following base-
lines, implemented by Vo et al. [40]:

• Random (theoretical): theoretical random guess.
• Random (init. ResNet): pretrained ImageNet [22] fea-

tures, but random weights for others parameters.
• Image and text-only: substituting the combined image-

text feature with the reference image or text feature.
• Random image with text: randomly sampling images

to pair with text during training and validation.
• Concatenation: replacing the image-text composition

layer with a simple concatenation of features followed
by a 2-layer perceptron with ReLU.

For Fashion-IQ, we additionally include published re-
sults from the following methods:

• MRN [21] uses stacked blocks of element-wise prod-
ucts with residual learning to embed V&L jointly.

• FiLM [30] modulates the image feature map condi-
tioned on text features after the layers of CNN.

• Relationship [33] learns the joint embeddings through
relationship features constructed by concatenating the
image and text features followed by FC-layers.

• VAL [5] is specially designed for composed image
retrieval, which adopts the Transformer to compose
multi-level V&L joint representations. For images
with text descriptions as side information, an addi-
tional visual-semantic loss is applied to align visual
features and the corresponding text features.

Metric. We follow previous work to report retrieval per-
formance in Recall within top-K (Recall@K). For CIRR,
we additionally report Recallsubset, which is an extension to
the standard (global) Recall, made possible by the unique
design of our dataset.

As discussed, our input queries q = ⟨IR, t⟩ and target
images IT in our dataset are constructed such that both IR
and IT are sampled from the same image set S (Sec. 4.1).
We formulate Recallsubset task by ranking images in S\{IR}
according to model score. We define Recallsubset@K as the
proportion of (test) examples where the ground-truth target
image IT is ranked within the top-K image in its subset.

Conceptually, Recallsubset can be viewed as Recall while
only considering images within the same subset as the pair.
The benefits are twofold: First, Recallsubset is not affected by
false-negative samples, thanks to our careful design in data
collection procedures. Second, with a selected batch of neg-
ative samples with high visual similarities, Recallsubset can
facilitate analysis on the reasoning ability of the methods
for capturing fine-grained image-text modifications.

Implementation details. All experiments are conducted
on a single NVIDIA RTX3090 with PyTorch. SoTA mod-
els use the default configurations proposed by their authors.
See supp. mat. and our project website for more de-
tails on baseline training. For our proposed model, we use
ResNet152 for image feature extraction. The model is op-
timized with AdamW [27] with an initial learning rate of
10−5. We set a linearly decreasing schedule without warm-
up. The batch size is set to 32 and the network is trained for
300 epochs. Other settings are kept as default by OSCAR.

5.1. Results

Baseline comparison on CIRR. Table 3 (rows 1-13)
compares the retrieval performance of baseline and SoTA
methods for both Recall and RecallSubset@K on CIRR.

For global Recall, we notice that TIRG performs similar
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Recall@K RecallSubset@K (R@5 + RSubset@1)/2
Methods K = 1 K = 5 K = 10 K = 50 K = 1 K = 2 K = 3

B
A

S
E

L
IN

E
S

1 Random (theoretical) 0.02 0.12 0.24 1.20 20.00 40.00 60.00 10.06
2 Random (init. ResNet) 7.18 25.74 36.91 66.68 20.84 41.02 61.65 23.29

3 Image-only 13.73 48.46 65.81 89.94 20.93 42.15 63.26 34.70
4 Text-only 3.90 13.17 20.43 49.16 39.69 62.23 78.52 26.43
5 Random Image+Text 2.99 11.91 19.85 46.97 39.41 62.33 78.71 25.66
6 Image+Text Concatenation 12.44 40.24 57.52 87.29 23.74 45.12 65.50 31.99

7 Human Performance† – – – – 86.09 – – –

S
O

TA

8 TIRG [40] 14.61 48.37 64.08 90.03 22.67 44.97 65.14 35.52
9 TIRG+LastConv [40] 11.04 35.68 51.27 83.29 23.82 45.65 64.55 29.75

10 MAAF [8] 10.31 33.03 48.30 80.06 21.05 41.81 61.60 27.04
11 MAAF+BERT [8] 10.12 33.10 48.01 80.57 22.04 42.41 62.14 27.57
12 MAAF−IT [8] 9.90 32.86 48.83 80.27 21.17 42.04 60.91 27.02
13 MAAF−RP [8] 10.22 33.32 48.68 81.84 21.41 42.17 61.60 27.37

14 Ours (no init.) 15.18 43.36 60.48 87.64 33.81 56.99 75.40 38.59
15 Ours (init. OSCAR) 19.55 52.55 68.39 92.38 39.20 63.03 79.49 45.88

Table 3. Retrieval performance on CIRR. Best (resp. second-best) numbers are in bold-black (resp. blue). † See supplementary material
on our collection details of human performance. We additionally report the average score over R@5 and RSubset@1, which better reveals
the overall performance of models (discussed in Sec. 5.1). Note that R@5 accounts for possible false-negatives in the entire image corpus.
Since RSubset is not affected by such issues (Sec. 5), we consider RSubset@1 to better illustrate the fine-grained reasoning ability of methods.

Dress Shirt Toptee Avg (R@10 + R@50)/2
Methods R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

1 Image-only 4.20 13.29 4.51 14.47 4.13 14.30 4.28 14.20 9.15
2 Image+Text Concatenation 10.52 28.98 13.44 34.60 11.36 30.42 11.77 31.33 21.55
3 TIRG [40] 8.10 23.27 11.06 28.08 7.71 23.44 8.96 24.93 16.95
4 TIRG+Side Information [12] 11.24 32.39 13.73 37.03 13.52 34.73 12.82 34.72 23.77
5 MRN [21] 12.32 32.18 15.88 34.33 18.11 36.33 15.44 34.28 24.86
6 FiLM [30] 14.23 33.34 15.04 34.09 17.30 37.68 15.52 35.04 25.28
7 TIRG [40] 14.87 34.66 18.26 37.89 19.08 39.62 17.40 37.39 27.40
8 Relationship [33] 15.44 38.08 18.33 38.63 21.10 44.77 18.29 40.49 29.39
9 VAL (init. GloVe) [5] 22.53 44.00 22.38 44.15 27.53 51.68 24.15 46.61 35.40
10 MAAF [8] 23.8 48.6 21.3 44.2 27.9 53.6 24.3 48.8 36.6

13 Ours (no init.) 14.38 34.66 13.64 33.56 16.44 38.34 14.82 35.52 25.17
14 Ours (init. OSCAR) 17.45 40.41 17.53 38.81 21.64 45.38 18.87 41.53 30.20

Table 4. Retrieval performance on Fashion-IQ, we follow [12] to report average scores of R@10 and 50. Best numbers for SoTA models
are in bold-black. Rows 1-4 reported by [12], rows 5-9 (shaded) reported by [5]. Rows 9-10 are SoTA methods developed for composed
image retrieval, where we report the originally published numbers of their best configurations. Note that we see multiple scores reported
for TIRG on Fashion-IQ, here we only show the published results from the above two sources. Additional non peer-reviewed methods that
involve ensembles of models or data augmentation are not included.

“Brown dog sits upright on the green grass” “Horse drawn carriage takes people around the city on the pavement”
TIRG

𝑰𝐑 𝑰𝐓

CIRPLANT

𝑰𝐑 𝑰𝐓

𝑰𝐓

𝑰𝐑 𝑰𝐓

CIRPLANT

Figure 4. Qualitative results of image retrieval on CIRR, red/green boxes: reference/target images. Predictions are ranked from left to
right. We show the ranked images within subsets, see Sec. 5 for details on metric. (Left) We compare the retrieval on the same query for
TIRG and CIRPLANT. (Right) We demonstrate the implicit ambiguities within the dataset (in this case, the difficulty in selecting the most
suitable candidate by preserving the breed of the dog across the images, which requires identifying subtle characteristics– e.g. pointy ears).

to the Image-only baseline, suggesting that its multi-modal
composition layers often fail to extract information from the
text. Instead, it relies primarily on visual content. We con-
jecture that CIRR focuses more on the fine-grained changes
that are harder to capture and associate across modalities,

therefore, requires stronger image-text composition layers.
In addition, we note that MAAF (rows 10-13) does not
generalize well to our dataset, even though it outperforms
TIRG and other methods on existing ones [8]. We be-
lieve the choice of forming image tokens by spatial feature
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maps does not generalize to our dataset where the modi-
fication concepts are more diverse and at multiple levels.
Meanwhile, adding the contextual-aware BERT pretrained
weights yields little effects, suggesting a plain initialization
of word embeddings, though contains validated pre-trained
language information, may not help the composition layers.

The RecallSubset results tell a similar story. Here the
performance of all SoTA models is close to the theoret-
ical random guess, indicating that current models fail to
capture fine-grained modifications between similar images.
Interestingly, we discover that the Text-only and Random-
Image+Text baselines (rows 4,5) outperform SoTA models
significantly. We believe this is because the modification
sentences usually contain descriptions of visual content that
is unique to the target image once limited to the smaller re-
trieval set (e.g., “add a leash to the dog” where only the tar-
get image contains the leash). However, as demonstrated by
the low Recall performance, such descriptions are not de-
tailed enough to single out the target image in the entire im-
age corpus. This scenario further demonstrates RecallSubset
reveals behaviors of models on different aspects, and can be
used for more detailed analysis.

In short, the relatively low retrieval performance sug-
gests that our dataset poses a challenge to existing methods
developed and tested on narrow-domain datasets.

Performance of CIRPLANT on CIRR. Results in Ta-
ble 3 (rows 14,15) compares our proposed model with SoTA
methods on CIRR. We notice that on CIRR, CIRPLANT
with no initialization (row 14) performs similarly as TIRG
on Recall, while surpassing all other SoTA methods. This
validates our design choice of using non-regional image fea-
tures for composing image and text through the transformer
architecture. Meanwhile, on RecallSubset our model, even
without initialization, yields much higher scores than oth-
ers, suggesting transformers are better in capturing more
fine-grained visiolinguistic cues when composing image
and text features. Comparing with SoTA methods that
use LSTMs for generating a single language embedding of
the entire sentence, we believe that the key difference lies
within the fact that transformers accept word tokens as in-
put, which can later be attended individually. Our model
outperforms all other methods with OSCAR initialization
(row 15) by a significant margin, demonstrating the benefit
of VLP knowledge on open-domain images.

Performance of CIRPLANT on Fashion-IQ. Table 4
compares the performance of our model with SoTA meth-
ods. We notice that our model with OSCAR initializa-
tion (row 14) outperforms most methods, including generic
multimodal learning methods and TIRG. This strengthens
the benefits of using transformer architecture that lever-
ages VLP models. Additionally, we note that even on
Fashion-IQ, our model still benefits greatly from OSCAR

pre-trained initialization (rows 13,14). Given that the im-
ages in Fashion-IQ differ greatly from the data used for
OSCAR pre-training [25], we believe this further demon-
strates that the pre-trained model can transfer the learned
V&L knowledge and adapt to various contexts.

We note that two recent SoTA methods for composed
image retrieval (VAL and MAAF, rows 9,10) perform better
than our model. Despite the visible improvements brought
by OSCAR initialization, we hypothesize that our model
is still underperformed by the apparent domain shift in im-
ages, as the VLP model is pre-trained on generic ImageNet-
type data. Meanwhile, the low generalizability of MAAF on
CIRR (Table 3 rows 10-13) hints the possibility that current
SoTA methods developed and tested on existing datasets
may have been overly adapted to domain-specific images of
low complexity. Hence, additional open-domain datasets,
such as CIRR, can be beneficial in future research.

5.2. Qualitative Results

Fig. 4 (left) demonstrates the retrieval rankings within
the image subset (see Sec. 5) on the same query for TIRG
and CIRPLANT. Specifically, we show the effectiveness
of pre-training in CIRPLANT when encountering visiolin-
guistic concepts (i.e., pavement) that occur less frequently
in the training data. Additionally, CIRPLANT better cap-
tures fine-grained cues within language (e.g., takes people
around, which implies must have people in the back of the
carriage), thanks to the transformer architecture that ac-
cepts, and attends to individual word tokens.

We show one failure case of CIRPLANT on CIRR in
Fig. 4 (right). Note the implicit requirement of preserving
same breed of dog across the reference and target image.
This requires models to identify the fine-grained visiolin-
guistic cues (i.e., pointy ears in this sample) and retrieve the
most suitable image, bringing more challenge to the task.

6. Conclusion

This work expands the task of composed image retrieval
into more complex, open-domain images. We collect the
CIRR dataset, which addresses shortcomings of existing
datasets by placing more emphasis on distinguishing open-
domain visually similar images. Our publicly available
dataset is designed to facilitate future studies on subtle rea-
soning over visiolinguistic concepts, as well as iterative re-
trieval with dialogue. We also introduce CIRPLANT, a
transformer-based model that leverages V&L pre-training
to compose image and text features. We validate CIR-
PLANT on both CIRR and the existing fashion dataset,
demonstrating the generalizability of our design and the
effectiveness of V&L pre-training. Collectively, we hope
to inspire future work on composed image retrieval on a
broader scope, yet fine-grained level.
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