
Improving Neural Network Efficiency via Post-training Quantization with
Adaptive Floating-Point

Fangxin Liu1,2, Wenbo Zhao1,2, Zhezhi He1, Yanzhi Wang3, Zongwu Wang1, Changzhi Dai4

Xiaoyao Liang1, and Li Jiang1,2*

1. Shanghai Jiao Tong University 2. Shanghai Qi Zhi Institute
3. Northeastern University 4. DeepBlue Technology (Shanghai) Co., Ltd.

{liufangxin, zhaowenbo, zhezhi.he, ljiang cs}@sjtu.edu.cn

Abstract

Model quantization has emerged as a mandatory tech-
nique for efficient inference with advanced Deep Neural
Networks (DNN) by representing model parameters with
fewer bits. Nevertheless, prior model quantization ei-
ther suffers from the inefficient data encoding method thus
leading to noncompetitive model compression rate, or re-
quires time-consuming quantization aware training pro-
cess. In this work, we propose a novel Adaptive Floating-
Point (AFP) as a variant of standard IEEE-754 floating-
point format, with flexible configuration of exponent and
mantissa segments. Leveraging the AFP for model quanti-
zation (i.e., encoding the parameter) could significantly en-
hance the model compression rate without accuracy degra-
dation and model re-training. We also want to highlight
that our proposed AFP could effectively eliminate the com-
putationally intensive de-quantization step existing in the
dynamic quantization technique adopted by the famous ma-
chine learning frameworks (e.g., pytorch, tensorRT, etc.).
Moreover, we develop a framework to automatically opti-
mize and choose the adequate AFP configuration for each
layer, thus maximizing the compression efficacy. Our exper-
iments indicate that AFP-encoded ResNet-50/MobileNet-v2
only has ∼0.04/0.6% accuracy degradation w.r.t its full-
precision counterpart. It outperforms the state-of-the-art
works by 1.1% in accuracy using the same bit-width while
reducing the energy consumption by 11.2×, which is quite
impressive for inference. Code is released at: https:
//github.com/MXHX7199/ICCV_2021_AFP

1. Introduction

The great success of deep learning depends on the avail-

ability of data and the continuous growth of deep learning

systems’ computing capability. However, deploying DNN

*Corresponding author: Li Jiang.

Hardware Cost

Ac
cu

ra
cy

HighLow

INT8

LQ-NetAPT

PACT

Data format
INT

Data format
based on FP

 Biscaled-FXP

LSQ
ADMM

High

Kmeans

Data format
Floating-point

Data format
Fixed-point

Need De-quantization
& Re-quantization

Our Method

Figure 1: Hardware cost versus prediction accuracy, using

various DNN quantization methods. The blue [9] and or-

anges represent quantization methods [8, 17, 4, 13, 14, 35],

using floating-point format or fixed-point format, though

with high prediction accuracy, have relatively high compu-

tation cost. In contrast, the green represents quantization

method [12] using the integer data format, with relatively

low accuracy but low-cost. The square indicates that the

quantization method requires retraining or fine-tune, while

the triangle and ours are not.

on edge devices, such as Internet-of-Things devices or mo-

bile phones, is challenging because of the limited comput-

ing and storage resources and the energy budget provided by

these edge devices. These result in the large latency, which

is the main concern during the inference. For instance, it

takes 16 seconds on mobile to complete an image recogni-

tion using VGG16 [25], which is intolerable for most appli-

cations [18]. Therefore, it is essential to compress the DNN

for lower storage requirements and simpler arithmetic oper-

ations to improve hardware efficiency.

Among various compression techniques, DNN quanti-

zation techniques map the continuous weights into discrete

space. Thus weights can be encoded with lower bit-width

5281

binary string, significantly reducing the model size. Follow-

ing this idea, various quantization methods [8, 4, 12, 9, 17]

have been proposed. These quantization methods can be

generally separated into non-uniform methods, and uniform

methods—the representative prior works should be aligned

with those in Fig. 1. The non-uniform quantization method,

represented by the deep compression [9], uses k-means to

cluster the weights, and the quantized values are denoted

as indexes. The uniform quantization method, represented

by INT8 [12], maps the weight values into uniformly dis-

tributed integers. Meanwhile, power-of-two based quanti-

zation (e.g., INQ [35], APT [17]) maps the weight values to

the exponential space, then simplify the expensive multipli-

cation operation into shift operation.

In addition, for low-bit quantization, retraining DNN

models is needed to mitigate the introduced quantization er-

ror (the square in Fig. 1). Since many users are incapable

of retraining DNN due to the lack of computing-resource

or retraining data, quantization without retraining becomes

the most popular compression method in many real-world

scenarios [20]. In most non-uniform quantization methods,

the operands involved in the calculation belong to 32-bit

Floating-Point format (FP32), while uniform quantization

is generally in the integer format (INT). Moreover, from the

hardware deployment perspective, FP32-based quantization

methods have sufficient representation range and precision

to make quantization errors small, but they are hardware-

intensive [3] compared to INT-based quantization [10].

During inference, the main concerns include latency and

energy consumption: low latency is critical for real-time in-

teractions, while low energy consumption can help compa-

nies reduce cost in data-centers and improve the endurance

of edge devices. Dynamic quantization allows lower energy

math operations on hardware platforms and faster inference

with only a small drop in accuracy. The key idea of the dy-

namic quantization is that we will dynamically determine

the scaling factor for activation based on the range of data

observed at runtime [20]. This means the scaling factor is

“tuned” to retain as much information as possible for the

activations of each layer. However, most dynamic quantiza-

tion methods [12, 17, 4, 33, 13, 28] have to perform the de-

quantization and re-quantization process to rescale param-

eters with the aim of ensuring accuracy, as TensorRT does.

This adds the complex quantizer after each layer, leading

to higher energy consumption and longer latency, thereby

diminishing the efficiency improvements of quantization.

As the trade-off of prior quantization methods in terms of

data format precision (i.e., quantization accuracy) and hard-

ware efficiency, we develop a floating-point representation

variant, named Adaptive Floating-Point (AFP). In contrast

to the conventional 32-bit floating-point representation with

fixed data format (i.e., the sign bit, exponent bits, and man-

tissa bits) and bit-widths for each segment, we inherit its

data format but make the bit-width of AFP segments con-

figurable. Therefore, to minimize the quantization-caused

accuracy degradation and hardware-efficiency, the AFP rep-

resentation can be optimized w.r.t specific target DNN. Our

contribution in this work can be summarized as:

• We propose a novel Adaptive Floating-Point (AFP)

representation whose segmentation (i.e., bit-widths of

exponent and mantissa part) are fully configurable.

Such AFP format is utilized to encode (i.e., quantize)

DNN weights and activations for negligible accuracy

degradation, while significantly reducing the compu-

tation cost. Meanwhile, we fuse dynamic quantization

to improve performance by combining de-quantization

and re-quantization with AFP format, where all of the

calculations are done in AFP without having to convert

to FP32, so there is less hardware overhead.

• To leverage the proposed AFP format for DNN quanti-

zation, we develop a comprehensive framework to au-

tomatically tune the AFP configuration (i.e., bit-widths

of exponent and mantissa), using Bayesian optimiza-

tion as the solver. Given a DNN to be quantized, our

framework can provide the optimal setting in terms of

the accuracy and computation cost.

• To demonstrate the efficacy of our proposed quanti-

zation method and corresponding framework, we con-

duct comprehensive experiments on the large-scale

ImageNet dataset, with popular MobileNet-v2 and

ResNet-50. The experiments show that our method

outperforms prior ones. To be specific, the decrease

in Top-1 accuracy of quantized ResNet-50 is 0.04%,

MobileNet is 0.6% on ImageNet with 5-bit on average,

exceeding state-of-the-art accuracy.

range: ~1e to ~3e-38 -38

TF32

range: ~1e to ~3e-38 -38

BF16

range: ~5.9e to ~6.5e-8 4

FP16

exceeding sta
range: ~1e to ~3e-38 -38

FP32

range: -127 to 128

INT8

sign 8-bit exponent 23-bit mantissa

10-bit mantissasign 5-bit exponent

7-bit mantissasign 8-bit exponent

sign 8-bit exponent 10-bit mantissa

sign 7-bit integer

Figure 2: Comparison numeric format with INT8, FP32/16,

BFP16 and TF32.

2. Background and Prior Works
2.1. Data Representation

There are five common precision formats in the do-

main of inference/training of neural networks: INT8 [12],

FP32 [15], FP16 [15], BFP16 [16] and TF32 [22]. As de-

picted in Fig. 2, INT8 represents a signed integer number

stored with 8-bit and the others follow the floating-point

5282

INT
0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Q
Q
Q
Q
Q
Q
Q
Q

Q
ua

nt
iz

ed
 d

at
a

Uniform

(a)
Index

0 x1

Non-uniform

(b)

1

2

3

4

5

6

Q
Q

Q

Q
Q
Q

C
en

tro
id

s

x2 x3 x4 x5 x6 20 232221
Exponent

0

Non-uniform (logarithmic)

(c)

1

2

3

4

Q
Q

Q

Q

Q
ua

nt
iz

ed
 d

at
a

0

2120+ 22+
2120+ 2221+

3 6 7

AFP-N (Ours)

(d)

1

2

3

4

5

6

7

Q
Q
Q
Q

Q
Q
Q

Q
ua

nt
iz

ed
 d

at
a

20 232221

Figure 3: The Comparison of quantization methods: (a) uniform quantization, (b) and (c) are the non-uniform quantizations, (d) describes

that AFP eliminates the above errors. (a) (e.g., INT8) rounds the weights up/down to the evenly distributed integers. (b) with the index for

variable and adaptive representing resolution and (c) shows the quantized number in logarithmic quantization is distributed exponentially.

Both uniform and non-uniform quantizations will cause massive quantization errors with lower bit-width.

format. Floating-point format [15] divides the bit string into

three parts: the sign bit S, the exponent bits E whose bit-

width is nexp bits and the mantissa bits M whose length is

nman bits. Specifically, FP32 format has an 8-bit exponent

and 23-bit mantissa, FP16 has a 5-bit exponent and 10-bit

mantissa, BF16 [16] has an 8-bit exponent and 7-bit man-

tissa, and TF32 has an 8-bit exponent and 10-bit mantissa.

Consider the IEEE-754 [15] 32-bit floating-point repre-

sentation bfp32 ∈ {0, 1}32×1, which can be written as:

bfp32 = { b31︸︷︷︸
Sign

, b30, ..., b23︸ ︷︷ ︸
Exponent

, b22, ..., b0︸ ︷︷ ︸
Mantissa

}; bi ∈ {0, 1} (1)

The value represented by binary string can be mathemati-

cally expressed as:

g(bfp32) = (−1)b31︸ ︷︷ ︸
Sign

× 2
∑30

i=23 2i−23·bi−Bbias︸ ︷︷ ︸
Exponent

×

(
1 +

22∑
i=0

2i−23 · bi
)

︸ ︷︷ ︸
Mantissa

(2)

where the bias term k = 127 is the default setting for IEEE-

754 FP32. Note that, the IEEE-754 floating-point (bfp32)

can handle several special cases, including Not a Number

(NaN), infinity (±∞) and etc, which will not be specified

here due to the space constraint. Besides, compared with

floating-point, integer data format has a smaller hardware

cost, as shown in Table 1.

2.2. Quantization

From the perspectives of quantizer adopted, prior works

can be categorized in twofold: uniform and non-uniform

counterparts.

Uniform Quantization and Encoding. Uniform quan-

tization methods [2, 1, 8, 14, 32] define a range [min,max]
and quantize weights in the range by first projecting data

to the closest discrete level (integer). For example, all the

Table 1: The comparison of energy- and area-cost of adder and

multiplier for INT and FP data formats with different bit-width.

Blue and orange bar show the relative cost for the energy and area,

respectively, which are all normalized to INT8 adder [3].
OP DataFormat Bit-Width Energy(pJ) RelativeCosts Area(μm2) RelativeCosts

INT 8-bit 0.03 1 36 1
INT 16-bit 0.05 2 67 2
INT 32-bit 0.1 3 137 4
FP 16-bit 0.4 13 1360 38
FP 32-bit 0.9 30 4184 116

INT 8-bit 0.2 7 282 8
INT 32-bit 3.1 103 3495 97
FP 16-bit 1.1 37 1640 46
FP 32-bit 3.7 123 7700 214

Adder

Multiplier

floating-point weights are quantized to an integer in the

range [−128, 127] in INT8 quantization [12]. However,

there is an inborn shortage of uniform quantization. The

distribution of the weights in a convolution layer is anal-

ogous to a Gaussian distribution, which means that few

have a large absolute value. A majority of them aggregates

near “0”. This will lead to a large amount of small quan-

tization errors for the weights with small absolute value.

These small quantization errors are accumulated and con-

sequently result in a significant accuracy drop [7]. Mean-

while, the quantized value generated by uniform quantiza-

tion usually corresponds to the INT or fixed-point data for-

mat (i.e., INT8 [12], Biscaled-FxP [13], QIL [14], etc).

Non-uniform Quantization and Encoding. Non-

uniform quantization methods [9, 35, 19, 17] usually has

variable distribution intervals, making quantization more

selective for significant data or more extensive dynamic

ranges. Deep Compression [9] is a clustering-based quan-

tization that aims to find some “centers” (i.e., the average

value) that can represent the majority of the weight values

in the original weight distribution. INQ [35] and APT [17]

quantize weights in the form of exponents, allowing the dis-

tribution intervals to increases exponentially, giving a wide

range with a low bit-width. Nevertheless, the above meth-

ods are very time-consuming, since they require retraining

(or fine-tuning) to restore accuracy. For example, LSQ [14],

LQ-Net [33] spent nearly 100 epochs for retraining, while

PACT [4] costs 200 epochs to learn threshold parameters

for the quantization. In the data format sense, after non-

5283

uniform quantization, the computation data still belongs to

FP32, which is more expensive than the INT data format.

Limitations of previous works. Compared to uniform

quantization in Fig. 3(a), which pursues even distribution

intervals, non-uniform quantization is concerned with vari-

able distribution intervals, resulting in smaller quantiza-

tion errors within a limited bit-width, but introduces the in-

dex. In Fig. 3, quantization with 2-bit values can represent

the range [20, 23], but when the exponent is large, coarse-

grained distribution intervals appear, and the quantization

error is large. Therefore previous works are difficult to per-

form low bit-wide quantization without retraining. Mean-

while, most previous methods (BFP16 [16] is concerned

with the training phase) for inference do not consider that

the computation process during inference combined with

encoding can only reduce the storage, while arithmetic and

activation quantization on the fly still need to be optimized.

3. Approach
In this section, we present a floating-point representation

variant, named AFP that realizes lower bit-width with ac-

ceptable accuracy loss of the quantized DNN system. AFP

is designed to identify those redundant DNN parameters so

that it can minimize the accuracy degradation with mini-

mum bit-width. It is worth noting that our work focuses

on hardware friendly encoding (i.e., quantization) on DNN

with less resource-consuming computing units (adders or

even shifters) instead of general multipliers.

3.1. Problem Definition

Consider a DNN consists of L parametric layer (i.e.,

convolutional/fully-connected layers), given the vectorized

input x and corresponding ground-truth label t, the neural

network inference loss can be described as:

L(f(x, {Wfp
l }Ll=1); t

)
(3)

where Wfp
l ∈ R denotes the full precision (i.e., FP32)

weights of l-th layer. To quantize the model weights thus

compressing the model size, our objective function can be

expressed as:

min
Q(Wfp)

L(x, {Wquan
l }Ll=1); t

)− L(x, {Wfp
l }Ll=1); t

)
s.t. Wquan

l = Q(Wfp
l)

(4)

where Q(·) is the quantization function, and Wquan
l is the

post-quantization weight tensor of l-th layer. To mini-

mize the difference of inference loss between the full pre-

cision model and quantized one (parameterized by {Wfp}
and {Wquan} respectively), the quantization function Q is

required to be optimized.

3.2. Quantization with Adaptive Floating-Point

To solve the optimization problem defined in Eq. (4), we

specify our proposed Adaptive Floating-Point (AFP) data

representation first. It is noteworthy that, when applying

AFP to represent a conventional 32-bit floating-point value

(FP32), the quantization process is applied intrinsically.

Adaptive Floating-Point To encode the DNN parame-

ters in a more hardware-friendly and efficient manner, we

propose a novel data format called AFP, which is a variant

of conventional floating-point presentation (e.g., IEEE-754

32-bit floating-point as described in Eq. (1) and Eq. (2)).

Its binary data encoding bAFP and represented value can be

correspondingly expressed as follows:

bAFP = {bnexp+nman︸ ︷︷ ︸
1-bit Sign

, b(nexp+nman−1), ..., bnman︸ ︷︷ ︸
nexp-bit Exponent

,

bnman−1, ..., b0︸ ︷︷ ︸
nman-bit Mantissa

} (5)

g(bAFP) = (−1)bnexp+nman︸ ︷︷ ︸
Sign

×

2
∑nexp+nman−1

i=nman
2i−nman ·bi−k︸ ︷︷ ︸

Exponent

×
(
1 +

nman∑
i=0

2(i−nman) · bi
)

︸ ︷︷ ︸
Mantissa

(6)

where our proposed AFP data format shares the similar

segmentation ({sign, exponent, mantissa}) of IEEE-754

FP32 [15], but differs from it in the following perspective:

• AFP owns varying bitwidth for exponent and mantissa

parts (nexp and nman), where the bit-width are chosen

w.r.t the target application (i.e., DNN in our case).

• In contrast to the fixed bias term adopted by the FP32

(i.e., k = 127), we make such a bias term a tun-able as

well; thus, g(bAFP) can still approximate the FP32 in

terms of the absolute value. More details will be given

in the following sections.

Approximate the FP32 value with AFP This work aims

at finding the optimal AFP configuration (i.e., bit-widths of

exponent and mantissa part) of weights to minimize the in-

ference loss of DNN by the quantized parameters. We first

propose two assumptions that help us solve the problem.

Assumption 1 the weights of l-th layer are ap-
proximately following Gaussian distribution (i.e.,WFP

l ∼
N (

μl, σ
2
l

)
, where μl and σl are the calculated mean and

standard deviation of the distribution of weight WFP
l .

Assumption 2 the smaller the quantization error is (e.g.,
minimize the KL-divergence between WFP

l and WAFP
l), the

smaller the accuracy loss of the quantized network [24] is.
Such assumptions are the key to incorporate the quan-

tization based on the data format into DNN inference.

Then we introduce KL-divergence to describe the conver-

sion error caused by the misfit of between the full-precision

5284

weights and quantized ones [11, 27], the optimization can

be written as:

min
QAFP

L∑
l=1

DKL(WFP
l ‖WAFP

l)

where WAFP
l = QAFP(WFP

l ; kl, nl
exp, n

l
man)

∀l = 1, 2, · · · , L

(7)

where Q(·) is the quantization with bit-width parameter of

the exponent nl
exp, mantissa nl

man, and flexible exponent bias

kl for each layer.

4. Algorithm Overview
In this section, we propose a quantization methodology

with AFP for efficient inference. Then, to further improve

the accuracy and computation efficiency, we adaptively se-

lect the configuration of quantization (Section 4.1) in the

solver using Bayesian Optimization (BO) [29, 26] to re-

move the redundant bit-width, which can reduce the com-

putation and storage. We support fine-grained choices re-

garding the bit-width of the exponent and mantissa part.

4.1. Layer-wise Quantization with AFP

The conversion from FP32 to our proposed AFP format

(described by QAFP) can be viewed as a data quantization or

approximation process. Given the l-th layer of the network,

the weights represented in floating-point data wfp ∈ WFP
l

to be converted to minimize the error introduced within the

conversion process.

The problem we inevitably face in this work is how to

adaptively choose the quantization bit-width and the alloca-

tion of the bit-width, which can be regarded as the problem

of quantization parameter selection. BO has been applied

to hyperparameter search in machine learning, but is begin-

ning to be explored for NN compression techniques. To

combine BO to implement adaptive parameter selection to

improve search efficiency, we first need to define the objec-

tive and the quantization parameters to be optimized.

As the problem stated in Eq. (7) requires jointly opti-

mizing n1:L
exp , n1:L

man and k1:L, which can be solved by BO.

We minimize Eq. (7) by constructing a probabilistic model

to determine the most promising candidate quantization pa-

rameters for the next step’s evaluation. That is, the candi-

date quantization parameters is chosen by acquisition func-

tions in each process of iteration of BO and then evaluated.

The result of evaluation and parameters is used to update

the probabilistic model.

We first determine the three quantities: the exponential

bias k1:L, the bit-width n1:L
exp determine the quantized ex-

ponent E and the bit-width n1:L
man determine the quantized

mantissa M.

1. Determine k. The bias k is chosen to allow the max-

imum value of quantized weights WAFP
l and the max-

imum value of weights WFP
l to be consistent, and the

range of quantization can cover as much of the distri-

bution of weights as possible.

k = round
(
log2(max |WFP

l |)
)

(8)

2. Determine the bit-width of exponent nexp. The nexp

should be determined to enable that the range of expo-

nent part E can adequately cover the distribution of the

weights WFP
l .

E = 2k
nexp+nman∑
i=nman

bi (9)

3. Determine the bit-width of mantissa nman. The man-

tissa is a component of a finite floating-point number,

with the radix point immediately following the first

digit. Here, we try to optimize the quantization preci-

sion and minimize the quantization error by choosing

an appropriate exponential offset and treat the mantissa

M as the form of power-of-two.

M = round

[(
wfp/2

k

2nexp
− 1

)
· 2nman

]
(10)

4.2. Search AFP Configuration

The bit-width determines the perturbation introduced by

quantization. With the larger bit-width closer to the orig-

inal value, the KL-divergence is smaller. Therefore, tak-

ing into considerations the hardware cost and the use of

lower bit-width quantization, we introduce a penalty term

defined in [30, 28] and reformulate it by combining bit-

width, which is used to measure the number of bit oper-

ations needed by the multiplication of two operands. This

considers both the number of operation and the bit-widths of

operand, which can describe computation workloads more

accurately. Therefore, we redefine the optimization prob-

lem, which consists of two components, entropy and cost,

formalized as:

min
{QAFP

l }L
l=1

L({WFP
l }Ll=1, {WAFP

l }Ll=1

)
s.t. {WAFP

l }Ll=1 =
{
QAFP

({WFP
l }, {k, nexp, nman}

)}L
l=1
(11)

L(WFP
l ,WAFP

l

)
= Entropy × Costλl

= DKL(WFP
l ||WAFP

l)× C(Nq
l , n

exp
l)λl

(12)

where C(·) denotes the cost of a candidate AFP data format

and DKL(·||·) represents the KL-divergence that character-

izes the distance between two distributions. λl is a coef-

ficient of the layer l to balance the entropy and cost term.

Here, we limit the search range to less than 8-bit so that the

loss of Eq.(12) to 0 will not occur.

DKL(WFP
l ,WAFP

l) =
∑

WFP
l log

WFP
l

WAFP
l

(13)

5285

Algorithm 1 AFP Quantization Algorithm

Input: the full-precision weight matrix {WFP
l }Ll=1 of a

model, number of sampling data n , number of steps N
Output: The quantization parameters θ∗ =
{k, nexp, nman}Ll=1, which contains the flexible expo-

nent bias k, the bit-width nexp and nman of exponent and

mantissa part for each layer, and the quantized value

{WAFP
l }Ll=1

1: Initiate sampling data Dn =
{(

θi,L(θi)
)
, i =

1, · · · , n}
2: Initiate maximum iteration N .

3: Initiate best result J = +∞
4: while iteration < N and result does not converge do
5: θ∗ ← argmax

Θ
α(Θ,Dn) � Determine the

most promising compression hyperparameter θ∗ =
{k′, e′, p′} based on the acquisition function α[29].

6: Nq ′ ← 1 + e′ + p′

7: Wscaled
l ← WFP

l /2k
′
l � Scale weights

8: WAFP
l ← QAFP

l

(
Wscaled

l ; e′, p′
)

� Quantize weight

9: DKL ←
L∑

l=1

KL(WFP
l ||WAFP

l)

10: C ← C(Nq ′, e′) � Eq.(14)

11: Jnew ← DKL · Cλl � Evaluate L(θ∗)
12: Dn+1 ← {Dn, (θ

∗,Jnew)
}

� Augment data

13: GPnew ← Update(GP,Dn+1) � Update Gaussian

process model

14: if Jnew < J then
15: J ← Update(Jnew)
16: end if
17: end while

In addition, we formlate the cost C (Nq, nexp) in a bit op-

eration manner: multiplying a floating-point number needs

nexp + (1+ nman)
2-bit OPs and adding them together in the

vector multiplication needs a adder with 2nexp + nman bit-

width. Therefore, we define the cost function as:

C(Nq, nexp) = nexp + (1 + nman)
2 + 2nexp + nman (14)

We model the optimization problem Eq. (12) as a Gaus-

sian process, let L ∼ GP(μ(θ),K(θ,Θ)). Where θ is a

set of the quantization parameters, μ(θ) and K(θ,Θ) indi-

cates the mean function and kernel of the GP model eval-

uated at θ, respectively. Given Θ = {θ1, θ2, · · · , θn}, and

the evaluation results L = {L(θ1)1,L2(θ2), · · · ,Ln(θn)}.

The overview is described in Algorithm 1.

4.3. Overall Inference Process

AFP is a number format that aims to reduce the en-

ergy consumption with minimum quantization error, com-

pared to others, by adaptively tuning the configuration

of bit-width and changing the process by which the val-

ues are quantized. After obtaining AFP-encoded model

{WAFP
l }Ll=1, the overall inference process takes the follow-

ing steps: (1) quantize inputs Xl with QAFP; (2) obtain

the output {Yl} by performing the convolution operation

with XAFP
l and WAFP

l ; (3) when the output is obtained, the

de-quantization and re-quantization steps after convolution

are conducted dynamically, resulting in an overall AFP-

encoded neural network. For the dynamic quantization, we

have to dynamically determine the AFP configuration on the

fly and encode the activations to AFP, just before doing the

computation. The network will thus be more accurate but

will also introduce higher energy-consumption. To improve

inference efficiency, based on the AFP configuration (nx
exp

and nx
man) for each layer is obtained by static quantization

(specifically, this is done by record activation distributions

of different layers and perform AFP quantization based on

these distributions), we simplify the quantizer as following:

• The shared exponent offset kx of the layer is deter-

mined by comparing the exponent part of the output

feature map.

• According to the AFP format, the length of the man-

tissa part Mx determines the computation’s complex-

ity, so we prioritize by reducing the mantissa part. Sup-

pose the truncation position of the mantissa part is i.
Then, if ‘1’ exists at i + 1, the mantissa part performs

the carry operation and then truncates the excess part

(≥ i + 1) to enable the length of the mantissa part is

nx
man; otherwise, it is truncated directly.

• For the exponent part Ex, after adjusting according to

kx, the part exceeding the bit-width nx
man is truncated

directly.

Inspired by calibration of INT8 static quantization in the in-

dustry, we use a batch of data to identify the appropriate

AFP in which the allocation of bit-width allows adaptive

precision adjustment for each layer. Thanks to adaptive for-

mat conversion and simplifying quantizer, the parameters

and activations in the model can be stored with AFP format

representation in N-bit format. This means that our quanti-

zation process, which requires only addition and truncation,

is much more efficient than other quantization methods.

5. Experiments
In this section, we evaluate our AFP-based DNN quanti-

zation method on ImageNet datasets [6].

5.1. Comparison with Competing Methods

Performance with AFP on ImageNet Dataset. Before

the ablation studies we first conduct the experiment on a

large scale ImageNet dataset with ResNet-50/MobileNet-

v2 networks. The experimental results with competing

5286

Table 2: Validation accuracy (top1%) of ResNet-

50/MobileNet-v2 on ImageNet using various quantization

methods on weights and activations.
ImageNet-ILSVRC 2012

Quan.

scheme

Bit

width

First

layer

Last

layer

Acc.

Top-1(%)

Acc. loss

Top-1(%)

Quan.

type

No

retrain

Data

format

ResNet-50

Full precision 32 32 32 76.13 - - - -

INT8 [12] 8 8 8 74.9 -1.5 Uniform � INT

V-Q [23] 7 7 7 75.89 -0.27 Uniform × FP

Biscaled-FxP [13] 6 6 6 70.46 -5.67 Non-uni. � INT

ADMM [31] 6 6 6 75.93 -0.2 Non-uni. × FP

INQ [35] 5 32 32 74.81 -1.59 Non-uni. × FP

Focused-C. [34] 5 5 5 75.86 -1.54 Non-uni. × FP

APT [17] 4 32 32 75.95 -0.18 Non-uni. × FP

UNIQ [2] 4 4 4 74.84 -1.29 Non-uni. × FP

this work(dynamic) 4.8 5 5 76.09 -0.04 Non-uni. � FP
this work(dynamic) 3.9 4 4 75.27 -0.86 Non-uni. � FP

this work (static) 4.8 5 5 76.00 -0.13 Non-uni. � FP
this work (static) 3.9 4 4 75.11 -1.02 Non-uni. � FP

MobileNet-v2

Full precision 32 32 32 71.88 - - - -

INT8 [12] 8 8 8 70.9 -0.9 Uniform � INT

DFQ [21] 8 8 8 71.2 -0.6 Uniform × INT

INQ [35] 5 32 32 69.17 -2.71 Non-uni. × FP

LQ-Net [33] 5 32 32 70.67 -1.21 Non-uni. × FP

Deep-Comp. [9] 5 5 5 70.15 -1.73 Non-uni. × FP

HAQ (linear) [28] 5 flex. flex. 69.45 -2.43 Uniform × INT

PACT [5] 5 5 5 68.84 -3.04 Non-uni. × FP

HAQ (Kmeans) [28] 4 flex. flex. 71.37 -0.51 Non-uni. × FP

this work(dynamic) 5.7 6 6 71.59 -0.29 Non-uni. � FP
this work(dynamic) 4.8 5 5 71.11 -0.77 Non-uni. � FP

this work (static) 5.7 6 6 71.47 -0.41 Non-uni. � FP
this work (static) 4.8 5 5 70.91 -0.97 Non-uni. � FP

methods are listed in Table 2, together with the methods

adopted in related works. The results show that our method

can achieve state-of-the-art results with quantized networks.

Specifically, for ResNet-50, We quantize the weights and

activations to 4.7 and 4.8-bit on average with dynamic quan-

tization, respectively, achieving 0.04% accuracy loss, where

the maximum bit-width of all layers is 5-bit. The results

of the static quantization use the method described in Sec-

tion 4.3, and those with dynamic quantization means that

the AFP configuration are calculated during inference.

5.2. Ablation studies

The ablation studies were performed with MobileNet-v2

and ResNet-50 on the ImageNet dataset, where the differ-

ences were significant enough to indicate the validity.

KL-divergence with accuracy. We evaluate the effec-

tiveness of our assumption on different quantization meth-

ods, which as a validation. We compare the accuracy curve

versus the KL-divergence with various bit-width. As shown

in Fig. 4, the KL-divergence curve is consistent with the

accuracy curve trend under different quantization methods.

This proves experimentally that Assumption 2 is (men-

tioned in Section 4.2) valid and that we can measure the

change in precision by quantifying the resulting loss.

AFP versus other format-based quantization. We

chose two classical quantization methods, INT8, a uniform

quantization method based on INT format, and Kmeans, a

non-uniform quantization based on FP format, for valida-

tion. From Fig. 4, we can see that AFP represents weights

that cause less loss (in response to the KL-divergence) than

the INT-based quantization methods; our approach gives

a significant advantage in KL-divergence at all bit-width.

(a) ResNet-50 (b) MobileNet-v2

Figure 4: The accuracy (Top1) and KL-divergence curve ver-

sus the bit-with under quantization methods (AFP, INT8 [12],

KMeans [9]), for ResNet-50/MobileNet-v2 on ImageNet dataset.

Compared to the quantization method based on FP format,

our method has some slight differences with the FP format

method at low bit-width (less than 6-bit). However, from

a computational perspective, the FP format’s quantization

method still needs to be converted to the floating-point when

participating in the computation. It does not reduce the

computational overhead, which cannot be solved by the FP

format-based quantization methods but can be effectively

solved by our method, which will be discussed later.

Search time versus enumeration. In this section, we

argue the necessity for a search algorithm. Performing enu-

meration is time-consuming and not convincing when find-

ing the optimal solution (i.e., bit-widths of exponent and

mantissa part) for each layer. The enumeration consumes

35 iterations to go through all the possibilities less than 8-

bit for one layer. Only after that can the solution be chosen.

The time to complete an iteration relies on model size, and

enumeration is unacceptable if future model size increases.

In Fig. 5, it can be seen that the BO algorithm’s combination

requires only 18 iterations on average for MobileNet-v2 and

ResNet-50, reducing the time by 48.8%.

Batch size with accuracy. We compare the accuracy

curve versus the batch size with various bit-width. For static

quantization, we use a batch of images for calibration as in

TensorRT, Pytorch. As shown in Fig. 6, as the batch size

increases, the accuracy curve tends to go up, but when the

batch size reaches a certain level (batch size = 32), the ac-

Figure 5: On ImageNet dataset, the loss of AFP-encoded model of

MobileNet-v2 and ResNet-50 with bayesian optimization versus

λ. Regions in shadow indicates the error band w.r.t 5 trials.

5287

Figure 6: On ImageNet dataset, the accuracy of the AFP-encoded

models versus batch size. Regions in shadow indicate the error

band w.r.t 5 trials. Here, W5-A5 represents that the rounded bit-

width of weights and activations is encoded to 5-bit on average.

curacy stabilizes and does not change anymore.

Hardware cost with the sweet-spot. We limit the

search process in conjunction with the hardware cost. As

shown in Fig. 5, gradually increasing λ will increase the

portion of hardware cost in the loss function, leading to the

loss curve converging more quickly to complete the search

process to find the sweet points. When λ = 0.50, the most

beneficial is bit-width Nq = 5 and nexp = 3, the time spent

is more significant than λ = 0.25 with bit-width Nq = 7
and nexp = 3; With the similar accuracy, the smaller the λ,

the smaller the impact of hardware loss on overall loss. It is

more difficult to find an optimal solution where the quanti-

zation loss is very small, and the alternatives are very close.

To exam the influence of the selection of the parameter λ on

the search results, we set the parameter as λ ∈ [0, 1]. The

results reported in Fig. 7 show that the choice of λ plays an

essential role in the search. λ determines the share of hard-

ware cost in the overall loss, and the hardware cost is more

decisive when the quantization errors are very close. We

also report the loss for each bit-width configuration when λ
is equal to 0.5, and we can see that the sweet spot is where

the bit-width Nq is equal to 5 and exponent part nexp = 3,

which matches the searched result.

Hardware efficiency. We modeled the behavior of the

processing elements containing multiply-accumulator and

quantizer in Verilog and synthesized it using Synopsys De-

sign Compile with 90 nm technology node. In contrast to

Figure 7: On ImageNet dataset, (a) the best solution of AFP-

encoded model of MobileNet-v2 under our quantization with

bayesian optimization algorithm versus λ. (b) Losses for each bit-

width configuration with λ equal to 0.5.

Figure 8: The energy breakdown of (a) ResNet-50 and (b)

MobileNet-v2 for MAC and quantization (Q) operation.

the quantization based on FP format, which requires the

conversion of bit-word stored in bit-width (e.g., index, etc.)

to the floating-point value before computation. AFP directly

“multiplies” two exponents composing the weight with the

input in parallel by shift operations, whose results are added

to the output. AFP is hardware friendly because the expen-

sive multiplication operation is replaced by the simple bit

shift and add operations. We also compare the quantiza-

tion operation, processing each layer’s activations during

the inference, where the general quantization scheme re-

quires two steps, dequantization and re-quantization, which

consume much energy. Simplifying this process by calibra-

tion has become the mainstream, as INT8 inference done in

Pytorch and TensorRT. Compared to these, our AFP largely

keeps the NN accuracy and saves power through low bit-

width integer addition, shifting, and some logic circuits. Be-

sides, the impletation of MAC and quantization operations

have been achieved as well. As shown in Fig. 8, we found

that the AFP-encoded model saves power 9.3× for MAC

and 13.2× on average for quantizer with calibration, which

dramatically reduces the hardware cost.

6. Conclusion
In this paper, we introduced a novel quantization frame-

work called AFP. It combines the compromise between the

stringent resource constraint and the accuracy tolerance for

NNs. Therefore, it can automatically find an optimal bit-

width allocation scheme that makes the range and precision

not redundant, but sufficient. This method can quantize both

the activation and weight of a pre-trained model to low bit-

width (less than 8-bit) without accuracy loss. Notably, the

AFP is hardware-friendly. The evaluation show that our

method has comprehensive advantages over existing solu-

tions and is superior in terms of accuracy and power.

Acknowledgment
This work was partially supported by Deep-

Blue Technology (Shanghai) Co., Ltd., the Na-
tional Natural Science Foundation of China (Grant
No.61834006) and National Key Reserch and De-
velopment Program of China (2018YFB1403400).

5288

References
[1] Chaim Baskin, Natan Liss, Yoav Chai, Evgenii Zheltonozh-

skii, Eli Schwartz, Raja Giryes, Avi Mendelson, and Alexan-

der M Bronstein. Nice: Noise injection and clamping es-

timation for neural network quantization. arXiv preprint
arXiv:1810.00162, 2018. 3

[2] Chaim Baskin, Eli Schwartz, Evgenii Zheltonozhskii, Natan

Liss, Raja Giryes, Alex M Bronstein, and Avi Mendelson.

Uniq: Uniform noise injection for non-uniform quantization

of neural networks. arXiv preprint arXiv:1804.10969, 2018.

3, 7

[3] Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao

Xu, Qi Tian, and Chang Xu. Addernet: Do we really

need multiplications in deep learning? In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1468–1477, 2020. 2, 3

[4] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,

Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash

Gopalakrishnan. Pact: Parameterized clipping activa-

tion for quantized neural networks. arXiv preprint
arXiv:1805.06085, 2018. 1, 2, 3

[5] Yoni Choukroun, Eli Kravchik, and Pavel Kisilev. Low-bit

quantization of neural networks for efficient inference. arXiv
preprint arXiv:1902.06822, 2019. 7

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition (CVPR), pages 248–255. Ieee, 2009. 6

[7] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie.

Model compression and hardware acceleration for neural

networks: A comprehensive survey. Proceedings of the
IEEE, 108(4):485–532, 2020. 3

[8] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,

Rathinakumar Appuswamy, and Dharmendra S Modha.

Learned step size quantization. arXiv preprint
arXiv:1902.08153, 2019. 1, 2, 3

[9] Song Han, Huizi Mao, and William J. Dally. Deep com-

pression: Compressing deep neural network with pruning,

trained quantization and huffman coding. In 4th Inter-
national Conference on Learning Representations (ICLR),
2016. 1, 2, 3, 7

[10] Zhezhi He and Deliang Fan. Simultaneously optimizing

weight and quantizer of ternary neural network using trun-

cated gaussian approximation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,

pages 11438–11446, 2019. 2

[11] Geoffrey E Hinton and Drew Van Camp. Keeping the neural

networks simple by minimizing the description length of the

weights. In Proceedings of the sixth annual conference on
Computational learning theory, pages 5–13, 1993. 5

[12] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2704–2713, 2018. 1, 2, 3, 7

[13] Shubham Jain, Swagath Venkataramani, Vijayalakshmi

Srinivasan, Jungwook Choi, Kailash Gopalakrishnan, and

Leland Chang. Biscaled-dnn: Quantizing long-tailed datas-

tructures with two scale factors for deep neural networks.

In 2019 56th ACM/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2019. 1, 2, 3, 7

[14] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,

Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and

Changkyu Choi. Learning to quantize deep networks by op-

timizing quantization intervals with task loss. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4350–4359, 2019. 1, 3

[15] William Kahan. Ieee standard 754 for binary floating-point

arithmetic. Lecture Notes on the Status of IEEE, 754(94720-

1776):11, 1996. 2, 3, 4

[16] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellem-

pudi, Dipankar Das, Kunal Banerjee, Sasikanth Avan-

cha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu

Huang, Hector Yuen, et al. A study of bfloat16 for deep

learning training. arXiv preprint arXiv:1905.12322, 2019.

2, 3, 4

[17] Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-

two quantization: An efficient non-uniform discretization for

neural networks. In International Conference on Learning
Representations, 2019. 1, 2, 3, 7

[18] Jiachen Mao, Xiang Chen, Kent W Nixon, Christopher

Krieger, and Yiran Chen. Modnn: Local distributed mobile

computing system for deep neural network. In Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE),
2017, pages 1396–1401. IEEE, 2017. 1

[19] Bradley McDanel, Sai Qian Zhang, HT Kung, and Xin Dong.

Full-stack optimization for accelerating cnns using powers-

of-two weights with fpga validation. In Proceedings of the
ACM International Conference on Supercomputing (ICS),
pages 449–460. ACM, 2019. 3

[20] Szymon Migacz. 8-bit inference with tensorrt. In GPU tech-
nology conference, volume 2, page 5, 2017. 2

[21] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and

Max Welling. Data-free quantization through weight equal-

ization and bias correction. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV), pages

1325–1334, 2019. 7

[22] NVIDIA. NVIDIA A100 tensor core GPU architecture,

2020. whitepaper v1.0. 2

[23] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware

quantization for training and inference of neural networks.

In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 580–595, 2018. 7

[24] John G Proakis, Masoud Salehi, Ning Zhou, and Xiaofeng

Li. Communication systems engineering, volume 2. Prentice

Hall New Jersey, 1994. 4

[25] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1

[26] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.

Practical bayesian optimization of machine learning algo-

rithms. Advances in neural information processing systems,

25:2951–2959, 2012. 5

5289

[27] Karen Ullrich, Edward Meeds, and Max Welling. Soft

weight-sharing for neural network compression. arXiv
preprint arXiv:1702.04008, 2017. 5

[28] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.

Haq: Hardware-aware automated quantization with mixed

precision. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition(CVPR), pages 8612–

8620, 2019. 2, 5, 7

[29] Christopher KI Williams and Carl Edward Rasmussen.

Gaussian processes for machine learning, volume 2. MIT

press Cambridge, MA, 2006. 5, 6

[30] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian,

Peter Vajda, and Kurt Keutzer. Mixed precision quantiza-

tion of convnets via differentiable neural architecture search.

arXiv preprint arXiv:1812.00090, 2018. 5

[31] Shaokai Ye, Xiaoyu Feng, Tianyun Zhang, Xiaolong Ma,

Sheng Lin, Zhengang Li, Kaidi Xu, Wujie Wen, Sijia Liu,

Jian Tang, et al. Progressive dnn compression: A key to

achieve ultra-high weight pruning and quantization rates us-

ing admm. arXiv preprint arXiv:1903.09769, 2019. 7

[32] Shaokai Ye, Tianyun Zhang, Kaiqi Zhang, Jiayu Li, Ji-

aming Xie, Yun Liang, Sijia Liu, Xue Lin, and Yanzhi

Wang. A unified framework of dnn weight pruning and

weight clustering/quantization using admm. arXiv preprint
arXiv:1811.01907, 2018. 3

[33] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang

Hua. Lq-nets: Learned quantization for highly accurate and

compact deep neural networks. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages 365–

382, 2018. 2, 3, 7

[34] Yiren Zhao, Xitong Gao, Daniel Bates, Robert Mullins, and

Cheng-Zhong Xu. Focused quantization for sparse cnns. In

Advances in Neural Information Processing Systems (NIPS),
pages 5585–5594, 2019. 7

[35] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong

Chen. Incremental network quantization: Towards lossless

cnns with low-precision weights. In 5th International Con-
ference on Learning Representations (ICLR), 2017. 1, 2, 3,

7

5290

