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Figure 1. Perpetual View Generation. Using a collection of aerial videos of nature scenes for training (left), our method learns to take a
single image and perpetually generate novel views for a camera trajectory covering a long distance (right). Our method can successfully
generate hundreds of frames of an aerial video from a single input image (up to 500 shown here).

Abstract
We introduce the problem of perpetual view generation—

long-range generation of novel views corresponding to an
arbitrarily long camera trajectory given a single image. This
is a challenging problem that goes far beyond the capabili-
ties of current view synthesis methods, which quickly degen-
erate when presented with large camera motions. Methods
for video generation also have limited ability to produce
long sequences and are often agnostic to scene geometry. We
take a hybrid approach that integrates both geometry and
image synthesis in an iterative ‘render, refine and repeat’
framework, allowing for long-range generation that cover
large distances after hundreds of frames. Our approach can
be trained from a set of monocular video sequences. We pro-
pose a dataset of aerial footage of coastal scenes, and com-
pare our method with recent view synthesis and conditional
video generation baselines, showing that it can generate
plausible scenes for much longer time horizons over large
camera trajectories compared to existing methods.
Project page at https://infinite-nature.github.io.

1. Introduction
Consider the input image of a coastline in Fig. 1. Imag-

ine flying through this scene as a bird. Initially, we would
see objects grow in our field of view as we approach them.

* indicates equal contribution

Beyond, we might find a wide ocean or new islands. At the
shore, we might see cliffs or beaches, while inland there
could be mountains or forests. As humans, we are adept at
imagining a plausible world from a single picture, based on
our own experience.

How can we emulate this ability on a computer? One ap-
proach would be to attempt to generate an entire 3D planet
with high-resolution detail from a single image. However,
this would be extremely expensive and far beyond the cur-
rent state of the art. So, we pose the more tractable problem
of perpetual view generation: given a single image of scene,
the task is to synthesize a video corresponding to an arbi-
trary camera trajectory. Solving this problem can have ap-
plications in content creation, novel photo interactions, and
methods that use learned world models like model-based
reinforcement learning.

Perpetual view generation, though simple to state, is an
extremely challenging task. As the viewpoint moves, we
must extrapolate new content in unseen regions and also
synthesize new detail in existing regions that are now closer
to the camera. Two active areas of research, video synthesis
and view synthesis, both fail to scale to this problem for
different reasons.

Recent video synthesis methods apply developments in
image synthesis [20] to the temporal domain, or rely on
recurrent models [10]. But they can generate only limited
numbers of novel frames (e.g., 25 [41] or 48 frames [9]).
Additionally, such methods often neglect an important el-
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ement of the video’s structure—they model neither scene
geometry nor camera movement. In contrast, many view
synthesis methods do take advantage of geometry to synthe-
size high-quality novel views. However, these approaches
can only operate within a limited range of camera motion.
As shown in Figure 6, once the camera moves outside this
range, such methods fail catastrophically.

We propose a hybrid framework that takes advantage
of both geometry and image synthesis techniques to ad-
dress these challenges. We use disparity maps to represent
a scene’s geometry, and decompose the perpetual view gen-
eration task into the framework of render-refine-and-repeat.
First, we render the current frame from a new viewpoint,
using disparity to ensure that scene content moves in a geo-
metrically correct manner. Then, we refine the resulting
image and geometry. This step adds detail and synthesizes
new content in areas that require inpainting or outpainting.
Because we refine both the image and disparity, the whole
process can be repeated in an recurrent manner, allowing
for perpetual generation with arbitrary trajectories.

To train our system, we curated a large dataset of drone
footage of nature and coastal scenes from over 700 videos,
spanning 2 million frames. We run a structure from motion
pipeline to recover 3D camera trajectories, and refer to this
as the Aerial Coastline Imagery Dataset (ACID). Our trained
model can generate sequences of hundreds of frames while
maintaining the aesthetic feel of an aerial coastal video,
even though after just a few frames, the camera has moved
beyond the limits of the scene depicted in the initial view.

Our experiments show that our novel render-refine-repeat
framework, with propagation of geometry via disparity
maps, is key to tackling this problem. Compared to recent
view synthesis and video generation baselines, our approach
can produce plausible frames for much longer time horizons.
This work represents a significant step towards perpetual
view generation, though it has limitations such as a lack of
global consistency in the hallucinated world. We believe our
method and dataset will lead to further advances in genera-
tive methods for large-scale scenes.

2. Related Work
Image extrapolation. Our work is inspired by the seminal
work of Kaneva et al. [19], which proposed a non-parametric
approach for generating ‘infinite’ images through stitching
2D-transformed images, and by patch-based non-parametric
approaches for image extension [29, 1]. We revisit the ‘in-
finite images’ concept in a learning framework that also
reasons about the 3D geometry behind each image. Also
related to our work are recent deep learning approaches to
the problem of outpainting, i.e., inferring unseen content
outside image boundaries [44, 46, 36], as well as inpaint-
ing, the task of filling in missing content within an image
[15, 50]. These approaches use adversarial frameworks and

semantic information for in/outpainting. Our problem also
incorporates aspects of super-resolution [14, 22]. Image-
specific GAN methods also demonstrate a form of image
extrapolation and super-resolution of textures and natural
images [53, 34, 30, 33]. In contrast to the above methods,
we reason about the 3D geometry behind each image and
study image extrapolation in the context of temporal image
sequence generation.

View synthesis. Many view synthesis methods operate by
interpolating between multiple views of a scene [23, 3, 24,
12, 7], although recent work can generate new views from
just a single input image, as in our work [5, 39, 25, 38, 31, 6].
However, in both settings, most methods only allow for a
very limited range of output viewpoints. Even methods that
explicitly allow for view extrapolation (not just interpola-
tion) typically restrict the camera motion to small regions
around a reference view [52, 35, 8].

One factor that limits camera motion is that many meth-
ods construct a static scene representation, such as a layered
depth image [39, 32], multiplane image [52, 38], point cloud
[25, 45], or radiance field [48, 37], and inpaint disoccluded
regions. Such representations can allow for fast rendering,
but the range of viable camera positions is limited by the
finite bounds of the scene representation. Some methods
augment this scene representation paradigm, enabling a lim-
ited increase in the range of output views. Niklaus et al.
perform inpainting after rendering [25], while SynSin uses
a post-rendering refinement network to produce realistic
images from feature point-clouds [45]. We take inspiration
from these methods by rendering and then refining our out-
put. In contrast, however, our system does not construct a
single 3D representation of a scene. Instead we proceed iter-
atively, generating each output view from the previous one,
and producing a geometric scene representation in the form
of a disparity map for each frame.

Some methods use video as training data. Monocular
depth can be learned from 3D movie left-right camera pairs
[27] or from video sequences analysed with structure-from-
motion techniques [4]. Video can also be directly used for
view synthesis [38, 45]. These methods use pairs of images,
whereas our model is trained on sequences of several widely-
spaced frames since we want to generate long-range video.

Video synthesis. Our work is related to methods that gen-
erate a video sequence from one or more images [42, 11,
43, 10, 40, 47]. Many such approaches have focused on pre-
dicting the future of dynamic objects with a static camera,
often using simple videos of humans walking [2] or robot
arms [11]. In contrast, we focus on mostly static scenes with
a moving camera, using real aerial videos of nature. Some
recent research addresses video synthesis from in-the-wild
videos with moving cameras [9, 41], but without taking ge-
ometry explicitly into account, and with strict limits on the
the length of the generated video. In contrast, in our work
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Figure 2. Overview. We first render an input image to a new camera view using the disparity. We then refine the image, synthesizing and
super-resolving missing content. As we output both RGB and geometry, this process can be repeated for perpetual view generation.

the movement of pixels from camera motion is explicitly
modeled using 3D geometry.

3. Perpetual View Generation

Given an RGB image I0 and a camera trajectory
(P0, P1, P2, . . . ) of arbitrary length, our task is to output
a new image sequence (I0, I1, I2, . . . ) that forms a video
depicting a flythrough of the scene captured by the ini-
tial view. The trajectory is a series of 3D camera poses
Pt =

(
R3×3 t3×1

0 1

)
, where R and t are 3D rotations and

translations, respectively. In addition, each camera has an
intrinsic matrix K. At training time camera data is obtained
from video clips via structure-from-motion as in [52]. At
test time, the camera trajectory may be pre-specified, gen-
erated by an auto-pilot algorithm, or controlled via a user
interface.

3.1. Approach: Render, Refine, Repeat

Our framework applies established techniques (3D ren-
dering, image-to-image translation, auto-regressive training)
in a novel combination. We decompose perpetual view gen-
eration into the three steps, as illustrated in Figure 2:

1. Render a new view from an old view, by warping the
image according to a disparity map using a differen-
tiable renderer,

2. Refine the rendered view and geometry to fill in miss-
ing content and add detail where necessary,

3. Repeat this process, propagating both image and dis-
parity to generate each new view from the one before.

Our approach has several desirable characteristics. Repre-
senting geometry with a disparity map allows much of the
heavy lifting of moving pixels from one frame to the next
to be handled by differentiable rendering, ensuring local
temporal consistency. The synthesis task then becomes one
of image refinement, which comprises: 1) inpainting disoc-
cluded regions 2) outpainting of new image regions and 3)
super-resolving image content. Because every step is fully
differentiable, we can train our refinement network by back-
propagating through several view synthesis iterations. Our
auto-regressive framework means that novel views may be
infinitely generated with explicit view control, even though

training data is finite in length.
Formally, for an image It with pose Pt we have an asso-

ciated disparity (i.e., inverse depth) map Dt ∈ RH×W , and
we compute the next frame It+1 and its disparity Dt+1 as

Ît+1, D̂t+1, M̂t+1 = R(It, Dt, Pt, Pt+1), (1)

It+1, Dt+1 = gθ(Ît+1, D̂t+1, M̂t+1). (2)

Here, Ît+1 and D̂t+1 are the result of rendering the image
It and disparity Dt from the new camera Pt+1, using a
differentiable renderer R [13]. This function also returns
a mask M̂t+1 indicating which regions of the image are
missing and need to be filled in. The refinement network
gθ then inpaints, outpaints and super-resolves these inputs
to produce the next frame It+1 and its disparity Dt+1. The
process is repeated iteratively for T steps during training,
and at test time for an arbitrarily long camera trajectory.
Next we discuss each step in detail.
Geometry and Rendering. Our render step R uses a dif-
ferentiable mesh renderer [13]. First, we convert each pixel
coordinate (u, v) in It and its corresponding disparity d
in Dt into a 3D point in the camera coordinate system:
(x, y, z) = K−1(u, v, 1)/d. We then convert the image into
a 3D triangular mesh where each pixel is treated as a vertex
connected to its neighbors, ready for rendering.

To avoid stretched triangle artifacts at depth disconti-
nuities and aid our refinement network by identifying re-
gions to be inpainted, we compute a per-pixel binary mask
Mt ∈ RH×W by thresholding the gradient of the disparity
image ∇D̂t, computed with a a Sobel filter:

Mt =

{
0 where ||∇D̂t|| > α,

1 otherwise.
(3)

We use the 3D mesh to render both image and mask from the
new view Pt+1, and multiply the rendered image element-
wise by the rendered mask to give Ît+1. The renderer also
outputs a depth map as seen from the new camera, which
we invert and multiply by the rendered mask to obtain D̂t+1.
This use of the mask ensures that any regions in Ît+1 and
D̂t+1 that were occluded in It are masked out and set to zero
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Figure 3. Illustration of the rendering and refinement steps. Left: Our differentiable rendering stage takes a paired RGB image and
disparity map from viewpoint P0 and creates a textured mesh representation, which we render from a new viewpoint P1, warping the
textures, adjusting disparities, and returning a binary mask representing regions to fill in. Right: The refinement stage takes the output of the
renderer and uses a deep network to fill in holes and add details. The output is a new RGB image and disparity map that can be supervised
with reconstruction and adversarial losses.

(along with regions that were outside the field of view of the
previous camera). These areas are ones that the refinement
step will have to inpaint (or outpaint). See Figures 2 and 3
for examples of missing regions shown in pink.

Refinement and Synthesis. Given the rendered image Ît+1,
its disparity D̂t+1 and its mask M̂t+1, our next task is to
refine this image, which includes blurry regions and missing
pixels. In contrast to prior inpainting work [49, 36], the
refinement network also has to perform super-resolution
and thus we cannot use a compositing operation in refining
the rendered image. Instead we view the refinement step as
a generative image-to-image translation task, and adopt the
state-of-the-art SPADE network architecture [26] for our gθ,
which directly outputs It+1, Dt+1. We encode I0 to provide
the additional GAN noise input required by this architecture.
See the supplementary materials for more details.

Rinse and Repeat. The previous steps allow us to generate
a single novel view. A crucial aspect of our approach is that
we refine not only RGB but also disparity, so that scene ge-
ometry is propagated between frames. With this setup, we
can use the refined image and disparity as the next input
to train in an auto-regressive manner, with losses backprop-
agated over multiple steps. Other view synthesis methods,
although not designed in this manner, may also be trained
and evaluated in a recurrent setting, although naively repeat-
ing these methods without propagating the geometry as we
do requires the geometry to be re-inferred from scratch in
every step. As we show in Section 6, training and evaluat-
ing these baselines with a repeat step is still insufficient for
perpetual view generation.

Geometric Grounding to Prevent Drift. A key challenge
in generating long sequences is dealing with the accumula-
tion of errors [28]. In a system where the current prediction
affects future outputs, small errors in each iteration can com-
pound, eventually generating predictions outside the distri-
bution seen during training and causing unexpected behav-

iors. Repeating the generation loop in the training process
and feeding the network with its own output ameliorates
drift and improves visual quality as shown in our ablation
study (Section 6.2). However, we notice that the disparity in
particular can still drift at test time, especially over time hori-
zons far longer than seen during training. Therefore we add
an explicit geometric re-grounding of the disparity maps.

Specifically, we take advantage of the fact that the ren-
dering process provides the correct range of disparity from
a new viewpoint D̂t+1 for visible regions of the previous
frame. The refinement network may modify these values as
it refines the holes and blurry regions, which can lead to drift
as the overall disparity becomes gradually larger or smaller
than expected. However, we can geometrically correct this
by rescaling the refined disparity map to the correct range
by computing a scale factor γ via solving

min
γ

||M ⊙ (log(γDt+1)− log(D̂t+1))|| (4)

By scaling the refined disparity by γ, our approach ensures
that the disparity map stays at a consistent scale, which sig-
nificantly reduces drift at test time as shown in Section 6.3.

4. Aerial Coastline Imagery Dataset
Learning to generate long sequences requires real image

sequences for training. Many existing datasets for view syn-
thesis do not use sequences, but only a set of views from
slightly different camera positions. Those that do have se-
quences are limited in length: RealEstate10K, for example,
has primarily indoor scenes with limited camera movement
[52]. To obtain long sequences with a moving camera and
few dynamic objects, we turn to aerial footage of beautiful
nature scenes available on the Internet. Nature scenes are a
good starting point for our challenging problem, as GANs
have shown promising results on nature textures [30, 33].
We collected 765 videos using keywords such as ‘coastal’
and ‘aerial footage’, and processed these videos with SLAM
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Figure 4. Processing video for ACID. We run structure from mo-
tion on coastline drone footage collected from YouTube to create
the Aerial Coastline Imagery Dataset (ACID). See Section 4.

and structure from motion following the approach of Zhou
et al. [52], yielding over 13,000 sequences with a total of 2.1
million frames. We have released the list of videos and SfM
camera trajectories. See Fig. 4 for an illustrative example of
our SfM pipeline running on a coastline video.

To obtain disparity maps for every frame, we use the off-
the-shelf MiDaS single-view depth prediction method [27].
We find that MiDaS is quite robust and produces sufficiently
accurate disparity maps for our method. Because MiDaS
disparity is only predicted up to scale and shift, it must first
be rescaled to match our data. To achieve this, we use the
sparse point-cloud computed for each scene during structure
from motion. For each frame we consider only the points
that were tracked in that frame, and use least-squares to com-
pute the scale and shift that minimize the disparity error on
these points. We apply this scale and shift to the MiDaS out-
put to obtain disparity maps (Di) that are scale-consistent
with the SfM camera trajectories (Pi) for each sequence.

Due to the difference in camera motions between videos,
we strategically sub-sample frames to ensure consistent cam-
era speed in training sequences. See more details in the sup-
plementary materials.

5. Experimental Setup

Losses. We train our approach on a collection of image se-
quences {It}Tt=0 with corresponding camera poses {Pt}Tt=0

and disparity maps for each frame {Dt}Tt=0. Following the
literature on conditional generative models, we use an L1
reconstruction loss on RGB and disparity, a VGG percep-
tual loss on RGB [18] and a hinge-based adversarial loss
with a discriminator (and feature matching loss) [26] for
the T frames that we synthesize during training. We also
use a KL-divergence loss [21] on our initial image encoder
LKLD = DKL(q(z|x)||N (0, 1)). Our complete loss function

is

L = Lreconst +Lperceptual +Ladv +Lfeat matching +LKLD (5)

The loss is computed over all iterations and over all samples
in the mini-batch.
Metrics. Evaluating the quality of the generated images in
a way that correlates with human judgement is a challenge.
We use the Fréchet inception distance (FID), a common
metric used in evaluating generative models of images. FID
computes the difference between the mean and covariance
of the embedding of real and fake images through a pre-
trained Inception network [17] to measure the realism of
the generated images as well as their diversity. We precom-
pute real statistics using 20k real image samples from our
dataset. To measure changes in generated quality over time,
we report FID over a sliding window: we write FID-w at
t to indicate a FID value computed over all image outputs
within a window of width w centered at time t, i.e. {Ii}
for t − w/2 < i ≤ t + w/2. For short-range trajectories
where ground truth images are available, we also report
mean squared error (MSE) and LPIPS [51], a perceptual
similarity metric that correlates better with human percep-
tual judgments than traditional metrics such as PSNR and
SSIM.
Implementation Details. We train our model with T = 5
steps of render-refine-repeat at an image resolution of 160
× 256 (as most aerial videos have a 16:9 aspect ratio). The
choice of T is limited by both memory and available training
sequence lengths. The refinement network architecture is
the same as that of SPADE generator in [26], and we also
employ the same multi-scale discriminator. We implement
our models in TensorFlow, and train with a batch size of 4
over 10 GPUs for 7M iterations, which takes about 8 days.
We then identify the model checkpoint with the best FID
score over a validation set.

6. Evaluation
We compare our approach with three recent state-of-the-

art single-image view synthesis methods—the 3D Photogra-
phy method (henceforward ‘3D Photos’) [32], SynSin [45],
and single-view MPIs [38]—as well as the SVG-LP video
synthesis method [10]. We retrain each method on our ACID
training data, with the exception of 3D Photos which is
trained on in-the-wild imagery and, like our method, takes
MiDaS disparity as an input. SynSin and single-view MPI
were trained at a resolution of 256×256. SVG-LP takes two
input frames for context, and operates at a lower resolution
of 128× 128.

The view synthesis baseline methods were not designed
for long camera trajectories; every new frame they generate
comes from the initial frame I0 even though after enough
camera movement there may be very little overlap between
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Over frames 1–10 Over frames 1–50

Method LPIPS ↓ MSE ↓ FID ↓
Baseline methods
SVG-LP [10] 0.60 0.020 135.9
SynSin [45] 0.32 0.018 98.1
MPI [38] 0.35 0.019 65.0
3D Photos [32] 0.30 0.020 123.6

Applied iteratively at test time
SynSin–Iterated 0.40 0.021 143.6
MPI–Iterated 0.47 0.020 201.2

Trained with repeat (T = 5)
SynSin–Repeat 0.44 0.036 153.3
MPI–Repeat 0.55 0.020 203.0

Ours 0.32 0.020 50.6

Table 1. Quantitative evaluation. We compute
LPIPS and MSE against ten frames of ground truth,
and FID-50 over 50 frames generated from an input
test image. See Section 6.1.

Figure 5. FID over time. Left: FID-20 over time for 50 frames generated by
each method. Right: FID-50 over 500 frames generated by our method via
autopilot. For comparison, we plot FID-50 for the baselines on the first 50 steps.
Despite generating sequences an order of magnitude longer, our FID-50 is still
lower than that of the baselines. See Sec. 6.1, 6.3.

the two. Therefore we also compare against two variants of
each of these methods. First, variants with iterated evalu-
ation (Synsin–Iterated, MPI–Iterated): these methods use
the same trained models as their baseline counterparts, but
we apply them iteratively at test time to generate each new
frame from the previous frame rather than the initial one.
Second, variants trained with repeat (Synsin–Repeat, MPI–
Repeat): these methods are trained autoregressively, with
losses backpropagated across T = 5 steps, as in our full
model. (We omit these variations for the 3D Photos method,
which was unfortunately too slow to allow us to apply it
iteratively, and which we are not able to retrain.)

6.1. Short-to-medium range view synthesis

To evaluate short-to-medium-range synthesis, we select
ACID test sequences with an input frame and 10 subsequent
ground truth frames (subsampling as described in the sup-
plementary), with the camera moving forwards at an angle
of up to 45◦. Although our method is trained on all types of
camera motions, this forward motion is appropriate for com-
parison with view synthesis methods which are not designed
to handle extreme camera movements.

We then extrapolate the camera motion from the last
two frames of each sequence to extend the trajectory for an
additional 40 frames. To avoid the camera colliding with
the scene, we check the final camera position against the
disparity map of the last ground-truth frame, and discard
sequences in which it is outside the image or at a depth large
enough to be occluded by the scene.

This yields a set of 279 sequences with camera trajecto-
ries of 50 steps and ground truth images for the first 10 steps.
For short-range evaluation, we compare to ground truth on
the first 10 steps. For medium-range evaluation, we compute
FID scores over all 50 frames.

We apply each method to these sequences to generate
novel views corresponding to the camera poses in each se-

quence (SVG-LP is the exception in that it does not take ac-
count of camera pose). See results in Table 1. While our goal
is perpetual view generation, we find that our approach is
competitive with recent view synthesis approaches for short-
range synthesis on LPIPS and MSE metrics. For mid-range
evaluation, we report FID-50 over 50 generated frames. Our
approach has a dramatically lower FID-50 score than other
methods, reflecting the more naturalistic look of its output.
To quantify the degradation of each method over time, we
report a sliding window FID-20 computed from t = 10 to
40. As shown in Fig. 5 (left), the image quality (measured by
FID-20) of the baseline methods deteriorates more rapidly
with increasing t compared to our approach.

Qualitative comparisons of these methods are shown in
Fig. 6 and our supplementary video, which illustrates how
the quality of each method’s output changes over time. No-
table here are SVG-LP’s blurriness and inability to predict
any camera motion at all; the increasingly stretched textures
of 3D Photos’ output; and the way the MPI-based method’s
individual layers become noticeable. SynSin does the best
job of generating plausible texture, but still produces holes
after a while and does not add new detail.

The –Iterated and –Repeat variants are consistently worse
than the original SynSin and MPI methods, which suggests
that simply applying an existing method iteratively, or re-
training it autoregressively, is insufficient to deal with large
camera movement. These variants show more drifting ar-
tifacts than their original versions, likely because (unlike
our method), they do not propagate geometry from step to
step. The MPI methods additionally become very blurry on
repeated application, as they have no ability to add detail,
lacking our refinement step.

In summary, our thoughtful combination of render-refine-
repeat shows better results than these existing methods and
variations. Figure 7 shows additional qualitative results from
generating 15 and 30 frames using on a variety of inputs.
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Figure 6. Qualitative comparison over time. We show a generated sequence for each method at different time steps. Note that we only
have ground truth images for 10 frames; the subsequent frames are generated using an extrapolated trajectory. Pink region in Ours no-refine
indicate missing content uncovered by the moving camera.

Figure 7. Qualitative comparison. We show the diversity and quality of many generated results for each method on the t=15 and 30 frame
generation. Competing approaches result in missing or unrealistic frames. Our approach is able to generate plausible views of the scene.

6.2. Ablations

We investigate the benefit of training over multiple iter-
ations of our render-refine-repeat loop by also training our
model with T = 1 (‘No repeat’). As shown in in Table 2,
the performance on short-range generation, as measured in
LPIPS and MSE, is similar to our full model, but when we
look at FID, we observe that this method generates lower
quality images and that they get substantially worse with
increasing t (see Fig. 5, left). This shows the importance of
using a recurrent training setup to our method.

We next consider the refine step. Omitting this step com-
pletely results in a larger and larger portion of the image be-
ing completely missing as t increases: examples are shown
as ‘Ours (no refine)’ in Fig. 6, where for clarity the miss-

ing pixels are highlighted in pink. In our full model, these
regions are inpainted or outpainted by the refinement net-
work at each step. Note also that even non-masked areas
of the image are much blurrier when the refinement step is
omitted, showing the benefit of the refinement network in
super-resolving image content.

Table 2 also shows results on two further variations of
our refinement step. First, replacing our refinement network
with a simpler U-Net architecture yields substantially worse
results (‘U-Net refinement’). Second, disabling geometric
grounding (Section 3.1) also leads to slightly lower quality
on this short-to-medium range view synthesis task (‘No re-
grounding’).
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Figure 8. Long trajectory generation. From a single image, our approach can generate 500 frames of video without suffering visually.
Please see the supplementary video for the full effect.

Ablations LPIPS ↓ MSE ↓ FID-50 ↓
Full Model 0.32 0.020 50.6
No repeat (T = 1) 0.30 0.022 95.4
U-net Refinement 0.54 0.052 183.0
No re-grounding 0.34 0.022 64.3

Table 2. Ablations. We ablate aspects of our model to understand
their contribution to the overall performance. See Section 6.2.

6.3. Perpetual view generation

We also evaluate the ability of our model to perform
perpetual view generation by synthesizing videos of 500
frames, using an auto-pilot algorithm to create an online
camera trajectory that avoids flying directly into the ground,
sky or obstacles such as mountains. This algorithm works
iteratively in tandem with image generation to control the
camera based on heuristics which measure the proportion
of sky and of foreground obstacles in the scene. See the
supplementary materials for details.

We note that this task is exceptionally challenging and
completely outside the capabilities of current generative and
view synthesis methods. To further frame the difficulty, our
refinement network has only seen videos of length 5 during
training, yet we generate 500 frames for each of our test
sequences. As shown in Fig. 5 (right), our FID-50 score
over generated frames is remarkably robust: even after 500
frames, the FID is lower than that of all the baseline methods
over 50 frames. Fig. 5 also shows the benefit of our proposed
geometric grounding: when it is omitted, the image quality
gradually deteriorates, indicating that resolving drift is an
important contribution.

Fig. 8 shows a qualitative example of long sequence
generation. In spite of the intrinsic difficulty of generating
frames over large distances, our approach retains something
of the aesthetic look of coastline, generating new islands,
rocks, beaches, and waves as it flies through the world. The
auto-pilot algorithm can receive additional inputs (such as
a user-specified trajectory or random elements), allowing
us to generate diverse videos from a single image. Please

see the supplementary video for more examples and the full
effect of these generated fly-through videos.

6.4. User-controlled video generation

Because our rendering step takes camera poses as an
input, we can render frames for arbitrary camera trajectories
at test time, including trajectories controlled by a user in
the loop. We have built a HTML interface that allows the
user to steer our auto-pilot algorithm as it flies through this
imaginary world. This demo runs over the internet and is
capable of generating a few frames per second. Please see
the supplementary video for a demonstration.

7. Discussion
We introduce the new problem of perpetual view gen-

eration and present a novel framework that combines both
geometric and generative techniques as a first step in tack-
ling it. Our system can generate video sequences spanning
hundreds of frames, which to our knowledge has not been
shown for prior video or view synthesis methods. The re-
sults indicate that our hybrid approach is a promising step.
Nevertheless, many challenges remain.

First, our render-refine-repeat loop is by design memory-
less, an intentional choice which allows us to train on finite
length videos yet generate arbitrarily long output using a fi-
nite memory and compute budget. As a consequence it aims
for local consistency between nearby frames, but does not di-
rectly tackle questions of long-term consistency or a global
representation. How to incorporate long-term memory in
such a system is an exciting question for future work. Sec-
ond, our refinement network, like other GANs, can produce
images that seem realistic but not recognizable [16]. Fur-
ther advancements in image and video synthesis generation
methods that incorporate geometry would be an interesting
future direction. Last, we do not model dynamic scenes:
combining our geometry-aware approach with methods that
can reason about object dynamics could be another fruitful
direction.
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