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Abstract

The application of light field data in salient object de-
tection is becoming increasingly popular recently. The diffi-
culty lies in how to effectively fuse the features within the fo-
cal stack and how to cooperate them with the feature of the
all-focus image. Previous methods usually fuse focal stack
features via convolution or ConvLSTM, which are both less
effective and ill-posed. In this paper, we model the infor-
mation fusion within focal stack via graph networks. They
introduce powerful context propagation from neighbouring
nodes and also avoid ill-posed implementations. On the one
hand, we construct local graph connections thus avoiding
prohibitive computational costs of traditional graph net-
works. On the other hand, instead of processing the two
kinds of data separately, we build a novel dual graph model
to guide the focal stack fusion process using all-focus pat-
terns. To handle the second difficulty, previous methods usu-
ally implement one-shot fusion for focal stack and all-focus
features, hence lacking a thorough exploration of their sup-
plements. We introduce a reciprocative guidance scheme
and enable mutual guidance between these two kinds of in-
formation at multiple steps. As such, both kinds of features
can be enhanced iteratively, finally benefiting the saliency
prediction. Extensive experimental results show that the
proposed models are all beneficial and we achieve signif-
icantly better results than state-of-the-art methods.

1. Introduction
Salient object detection (SOD) methods can be catego-

rized into RGB based ones, RGB-D based ones, and the
recently proposed light field based ones. By only based on
static images, although RGB SOD methods [18, 26, 24, 54]
have achieved excellent performance on many benchmark
datasets, they still can not handle challenging and complex
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Figure 1. (a) and (b) show the comparison of traditional dense
graph models and our proposed local graph model. (c) illustrates
the framework of our model. R© means the reciprocative unit.

scenes. This is because the appearance saliency cues con-
veyed in RGB images are heavily constrained, especially
when the foreground and background appearance are com-
plex or similar. To solve this problem, depth information is
introduced to provide supplementary cues in RGB-D SOD
methods [3, 52, 31, 27]. However, it is not easy to obtain
high-quality depth maps and many current RGB-D SOD
benchmark datasets only have noisy depth maps. On the
contrary, light field data Hence, the light field SOD prob-
lem has much potential to explore.

Besides the focal stack images, light field data also have
an all-focus image that provides the context information.
Thus, light field SOD has two key points, i.e., how to ef-
fectively fuse multiple focal stack features and how to co-
operate the focal stack cues with the all-focus information.
A straightforward way to solve the first problem is to con-
catenate focal stack features and use a convolution layer for
fusion. Such a simple way can not sufficiently explore the
complex interaction within different focal slices, hence may
limit the model performance. It is also an ill-posed solu-
tion since convolution requires a fixed input number, hence
many methods have to randomly pad the input images when
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they are less than the pre-defined number. Adopting ConvL-
STM [43] is another popular solution, where the focal stack
images are processed one by one in a pre-defined sequential
order using the memory mechanism. This also involves an
ill-posed problem setting since there is no meaningful order
among focal stack images. Furthermore, the usage of the
sequential order may cause ConvLSTM to ignore the infor-
mation of the focal slices that are input earlier. As for the
second problem, most previous works [38] simply concate-
nate or sum the focal stack feature with the all-focus fea-
ture and then adopt convolutional fusion only once. Such
a straightforward fusion method heavily limits the explo-
ration of complex supplementary relations between these
two kinds of information.

To solve the first problem, adopting the powerful graph
neural networks (GNNs) [14, 35] is a possible way. GNNs
aggregate the contextual information from neighbouring
nodes and propagate it to the target node, thus can achieve
effective feature fusion. At the same time, it avoids the ill-
posed implementation problem since the graph connection
can be built flexibly and does not depend on a sequential or-
der. A straightforward way is to view each pixel location in
the feature maps of the focal stack as a node and construct
dense edge connections among all locations, as shown in
Figure 1(a). However, this is impractical since light field
SOD requires large feature maps for focal slices to obtain
fine-grained segmentation. Hence, building a densely con-
nected graph involves prohibitive computational costs.

To this end, we propose to build local graphs to effi-
ciently aggregate contexts in different focal slices. We treat
each image pixel location in the focal stack as nodes and
build the graph only within local neighbouring nodes, as
shown in Figure 1(b). As such, the context propagation
within focal slices can be efficiently performed with dramat-
ically reduced edge connections. One can further introduce
multiscale local neighbours, hence incorporating larger con-
text information with acceptable computational costs. Be-
sides building a graph within the focal stack, we also build a
focal-all graph to introduce external guidance from the all-
focus feature for the fusion of focal features, thus resulting
in a novel dual local graph (DLG) network.

To tackle the second key point in light field SOD, we pro-
pose a novel reciprocative guidance architecture, as shown
in Figure 1(c). It introduces multi-step guidance between
the all-focus image feature and the focal stack features. In
each step, the former is first used to guide the fusion of the
latter, and then the fused feature is used to update the for-
mer. We perform such a process in a reciprocative fashion,
where mutual guidance can be conducted recurrently. Fi-
nally, the two kinds of features can be improved with more
discriminability, benefiting the final SOD decision.

Our main contributions can be summarised as:

• We propose a new GNN model named dual local graph

to enable effective context propagation in focal stack
features under the guidance of the all-focus feature and
also avoid high computational costs.

• We propose a novel reciprocative guidance scheme to
make the focal stack and the all-focus features guide
and promote each other at multiple steps, thus gradu-
ally improving the saliency detection performance.

• Extensive experiments illustrate the effectiveness of
our method. It surpasses other light field methods by
a large margin. Moreover, with much less training
data, our method also shows competitive or better per-
formance compared with RGB-D or RGB based SOD
models.

2. Related Work
2.1. Light Field SOD

Although the usage of CNNs has improved RGB SOD
and RGB-D SOD by a large margin [39, 56], there are still
lots of challenges in the SOD task, especially when the vi-
sual scenes are complex. Hence, several works have tried to
leverage the focal cues in light field data to perform SOD.
[21] was the first work to explore SOD with light field data,
and constructed the first benchmark dataset. After that, the
background prior [46], weighted sparse coding [20], and
light field flow [47] are widely used for this new task. More
details about traditional methods can be found in [12].

When it comes to the deep learning era, several deep-
learning methods have promoted the light field SOD perfor-
mance significantly. Zhang et al. [50] inputted the feature
maps of focal slices and the all-focus image into a ConvL-
STM [43] to fuse them one by one. This scheme has the
ill-posed implementation problem. On the other hand, their
method only fuses focal stack and all-focus features once.
Wang et al. [38] and Piao et al. [33] both fused the features
from different focal slices using varying attention weights,
which are inferred at multiple time steps in a ConvLSTM.
As such, they performed feature fusion within focal slices
several times. However, [38] conducted focal stack and all-
focus feature fusion only once, while [33] did not perform
such a fusion. They adopted knowledge distillation [16] to
improve the representation ability of the all-focus branch.

Different from previous works, our proposed DLG net-
work enables efficient context fusion among all focal slice
images. We also introduce the guidance from the all-focus
feature into the focal stack fusion process, and our proposed
reciprocative architecture introduces mutual guidance be-
tween the two kinds of features multiple times. These two
points have never been explored by previous works.

2.2. Grapth Neural Network

Graph neural networks (GNNs) were proposed by [14]
and developed by [35] to model data structures in graph
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Figure 2. Overview of our proposed model. DLG: the proposed dual local graph; FSFA: focal stack feature aggregation; AM: used to
generate the attention matrix A in (11); ⊗: element-wise multiplicationl; ⊕: element-wise addition; GRU: ConvGRU [5]. Due to space
limitation, we only illustrate the reciprocative guidance process at three time steps.

domains. Since GNNs can model the relationships among
nodes, they have been applied in many fields, such as
molecular biology [13], natural language processing [2],
knowledge graph [15], and disease classification [34].

Recently, GNNs have also been widely explored in the
field of computer vision. Wang et al. [41] adopted a graph
convolutional network to build the spatial-temporal rela-
tionships for action recognition. For dense prediction tasks,
Luo et al. [28] used GNNs to construct graphs among fea-
ture maps and learn cross-modality and cross-scale rea-
soning simultaneously for RGB-D SOD. In [40], Wang
et al. proposed an attentive GNN to learn the semantic
and appearance relationships among several video frames
for video object segmentation. Zhang et al. [48] adopted
a graph convolutional network to jointly implement both
intra-saliency detection and inter-image correspondence for
co-saliency detection. Both the latter two works constructed
densely-connected pixel-pixel graphs, which are computa-
tionally expensive and lack scalability, especially for the
light field data that can have more than 10 focal stack im-
ages. On the contrary, we propose a novel graph architec-
ture with local pixel-pixel connections for light field SOD.
We also introduce dilated neighbouring connections to in-
corporate large contexts with computational efficiency. Fur-
thermore, we build two graphs to simultaneously propagate
context interaction among focal stack images and incorpo-
rate the guidance from the all-focus image.

2.3. Reciprocative Models

Reciprocative or recurrent models, including RNN,
LSTM [17], and GRU [6], process temporal sequences us-
ing internal state or memory, and progressively update their
states. There are also many other saliency detection works
or other related tasks using reciprocative models. AGNN
[40] and CAS-GNN [28] used reciprocative models as the
node updating function in GNNs to update graph node em-
beddings. DMRA [31], DLSD [38], ERNet [33], and MoLF
[50] combined attention models with reciprocative models
to refine a given feature or a set of features. R3Net[7] and
RFCN [37] recurrently fused a saliency map with CNN fea-
tures or the input image to refine the saliency map. Different

from them, we use reciprocative models to iteratively up-
date two kinds of features, i.e., the focal stack feature and
the all-focus feature, where the interactions between them
are considered to introduce mutual guidance.

3. Proposed model
In Figure 2, we illustrate the overview of the proposed

model. First, we use two encoders to extract features from
the all-focus image and the corresponding focal slices, re-
spectively. Then, we input them into the proposed DLG
model to propagate contextual features among focal slices,
which are further aggregated by the focal stack feature ag-
gregation model. With the proposed reciprocative guidance
scheme, focal stack and the all-focus features can be fused
with each other several times, hence being improved pro-
gressively. Finally, the fused feature is fused with a low-
level feature to predict the final saliency map.

3.1. General GNNs

GNNs have powerful capability to propagate contexts
from neighbouring nodes for graph-structured data. Given
a specific GNN model G = (V, E), V = {v1, v2, ..., vN}
represents the set of nodes and ei,j ∈ E represents the edge
from vj to vi. Each node vi has a corresponding node em-
bedding as its inital state h0i . We use Ni to represent the
set of neighbouring nodes of vi. GNNs first aggregate con-
textual information from Ni to update the state of vi with
a learned message passing function M , which has specific
formulations in different kinds of GNNs. The general for-
mulation of the message passing process for vi at step k can
be written as:

mk
i =M([hk−11 , hk−12 , ...hk−1j ], [ei,1, ei,2, ...ei,j , ]), (1)

where each vj ∈ Ni. After message passing, a state update
function U can be learned to update the state of vi based on
the aggregated message, which can be defined as:

hk+1
i = U(hki ,m

k
i ). (2)

Finally, after K steps updating, a readout function can be
applied to hKi to get the final output.
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3.2. Feature Encoders

For the problem of light field SOD, we have an all-focus
image Ia and its corresponding focal stack If with N fo-
cal slices {If1 , If2 , ...IfN }, which have different focused
regions. Before defining nodes and their embeddings in the
graph, we first use encoder networks to extract image fea-
tures. As shown in Figure 2, Ia and If are first inputted
into two unshared encoders to extract all-focus image fea-
tures and focal stack features. Similar to previous works
[33, 50], we adopt the VGG-19 [36] network without the
last pooling layer and fully connected layers as the back-
bone of our encoder. We obtain high-level features from the
last three convolutional stages. Then, we fuse them in an
top-down manner [23] and obtain the fused multiscale fea-
tures Fa ∈ R1×C×H×W and Ff ∈ RN×C×H×W at the 1/4
scale, where Ff = {Ff1 , Ff2 , ...FfN } represents the feature
set ofN focal slices,W ,H, andC denote the width, height,
and channel number of the feature maps, respectively.

3.3. Dual Local Graph

We use graph models to fuse the focal stack features Ff
by propagating contexts within the focal slices and also un-
der the guidance from the all-focus feature Fa. The latter
can provide external guidance for the feature update of Ff .

Directly constructing a densely connected graph among
Ff and Fa, which is the case in [40, 48], requires (N +
1)WH × (N + 1)WH edge connections. This scheme
is computationally prohibitive for the message passing pro-
cess when the feature maps have large spatial sizes. The rea-
son for [40, 48] to use densely connected graphs is that the
target objects in video object segmentation and co-saliency
detection are usually located in different spatial locations.
Thus, global context is needed. However, for light field
SOD, each all-focus image and its corresponding focal stack
images are spatially aligned. Hence, using local context
solely is enough. Therefore, in this paper we propose a
novel DLG model that only constructs edge connections
within local neighbouring nodes for light field SOD. We
design two subgraphs, named the focal-focal graph and the
focal-all graph, to propagate contextual information from
focal slices to focal slices and from the all-focus image to
focal slices, respectively. The whole process can be defined
as:

F ′f = DLG(Ff , Fa), (3)

where F ′f ∈ RN×C×H×W represents the updated feature
after context aggregation.

Defination of the surrounding area: Before the intro-
duction of the proposed graph network, we first define a
surrounding area of a location in a feature map. Given the
pixel location (w, h) in a feature map, we have a sampling
window with a size of k × k and dilation d, centering at
(w, h). Then, we can view all sampled locations except the

…

𝐹௙ 𝐹௔ Focal-Focal Graph Focal-All Graph

Figure 3. Structure of the Focal-Focal Graph and the Focal-All
Graph. For each spatial location (w, h) in Ff , we have N target
nodes (orange). For their corresponding surrounding area, we have
N × (k× k− 1) nodes (blue). In Fa, we regard the same location
(w, h) and its surrounding area as the guidance context and obtain
k×k nodes (green). The connections between one target node and
its neighbors in two graphs are shown on the right.

central one, i.e., the location (w, h) itself, as its surrounding
area, as shown as the blue dots in Figure 3. The surrounding
area defines the context in a local region and can be used to
construct local graph connections.

Focal-Focal Graph: First, we build a graph Gfw,h =

(Vfw,h, E
f
w,h) for each spatial location (w, h) only in focal

features. To ease the presentation, we omit the subscript be-
low. Given the extracted focal stack feature map Ff , we can
view it as havingN points fromN focal slices withC chan-
nels for each spatial location. To be specific, for the location
(w, h), we have N target nodes with a C-dimensional em-
bedding, which can be defined as VT . In the surrounding
area of (w, h), we also have N × (k × k − 1) nodes with
a C-dimensional embedding, where we use VS to represent
the set of these nodes. Here we have VT ∪ VS = Vf .

After that, we define edges to link these nodes. We fol-
low two rules: 1) The nodes in VT are our modeling targets.
Hence they are linked to each other, including themselves.
2) The nodes in VS serves as local contexts for the target
nodes. Therefore, they are linked to each node in VT . Ex-
cept for these edges, there are no other connections in the
graph. The two kinds of edges constitute Ef .

Now, we need to define edge embeddings. For simplic-
ity, we use u and v to represent a target node and one of its
neighbours, respectively, i.e., u ∈ VT and v ∈ Vf . Their
states (features) can be written as hu and hv . The edge em-
bedding efu,v represents the relation from v to u. As the two
nodes are both from the focal stack feature map, we use in-
ner product to compute the edge embeddings as:

efu,v = θf (hu)
>
φf (hv), (4)

where θf (∗) and φf (∗) are two linear transformation func-
tions with learnable parameters. They have the same output
dimensions and can be implemented by fully connected lay-
ers. As a result, the computed efu,v is a scalar.

Focal-All Graph: For the target of using the all-focus
feature to guide the updating of focal features, we also build
a graph Ga = (Va, Ea) for focal and all-focus image fea-
tures together at each spatial location (w, h). Again we
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omit the subscript (w, h) for easy presentation. For location
(w, h) in Ff , we have the same target node set VT . Then,
we regard the same location (w, h) in Fa and its surround-
ing area as the guidance context, and obtain a set of k × k
nodes V ′S . Here VT ∪ V ′S = Va.

We connect all nodes in V ′S to each node in VT to incor-
porate the guidance context for all target nodes. Here we
use u and q to represent a target node and one of its neigh-
bours, respectively, i.e., u ∈ VT and q ∈ V ′S . Similarly,
their states are denoted by hu and hq . Since the two nodes
are from two different feature spaces, we use a linear trans-
formation to build the edge embedding from q to u, which
can be defined as:

eau,q = ψ([θa(hu), φ
a(hq)]), (5)

where [, ] denotes the concatenation operation, θa(∗) and
φa(∗) represent two linear transformation functions. The
last linear function ψ projects the input to a scalar.

Message passing: After getting the embedding for each
node and edge, we can define the formulation of the mes-
sage passing process now. For the target node u, we respec-
tively define the message passing in the Focal-Focal Graph
and the Focal-All Graph as:

mf
u =

∑
v∈Vf

αfu,vg
f (hv), (6)

ma
u =

∑
q∈V′

S

αau,qg
a(hq), (7)

where gf (∗) and ga(∗) are two linear transformation func-
tions in the two Graphs, and α∗∗ can be computed by the
Softmax normalization:

αfu,v =
exp(efu,v)∑
j∈Vf exp(e

f
u,j)

, (8)

αau,q =
exp(eau,q)∑

j∈V′
S
exp(eau,j)

. (9)

From (6) and (7), we can aggregate the contexts and
guidance from neighbour nodes by considering the relation-
ships inferred in (4) and (5).

Node Updating: After achieving the messages from
neighbours in the two subgraphs, we can update the state
of u by:

h′u = ϕf (mf
u) + ϕa(ma

u) + hu (10)

where ϕf (∗) and ϕa(∗) are two linear transformation func-
tions in the Focal-Focal Graph and the Focal-All Graph, re-
spectively, to transform the messages to the original node
embedding space.

By adopting the proposed local graph model, the compu-
tational complexity of modeling the context propagation in

light field images is reduced from O(((N + 1)(HW ))2C)
to O(NHWC(N + 1)k2). Considering k2 � HW , our
model shows significant efficiency.

Multiscale surrounding area: With the introduced sur-
rounding area, the proposed two graph networks can aggre-
gate information in a local region, which can reduce compu-
tational costs dramatically. However, only using one sam-
pling window is sensitive to scale variations. Motivated by
ASPP [4], we combine multiple sampling windows with
different dilation rates to incorporate multiscale and larger
contexts, as shown in Figure 3, in which we use two 3 × 3
sampling windows with dilation rates of 1 and 3, respec-
tively.

3.4. Focal Stack Feature Aggregation

After updating each node embedding h′u in the DLG
model, we can obtain the final output focal stack feature
F ′f in (3). The features of different focal slices have com-
municated with each other and received guidance from the
all-focus feature. Now we can tell useful and useless fea-
tures among them and aggregate N feature maps into one.
First, we use a 1×1 convolutional layer to reduce the chan-
nel number of F ′f from C to 1. Then, the Softmax nor-
malization function is used along the first dimension to ob-
tain an attention matrix A ∈ RN×1×H×W , where the N -
dimensional attention weights at each location encode the
usefulness of each focal slice at this location. The final ag-
gregated focal stack feature can be obtained by:

O = FSFA(F ′f ),

=

N∑
i=1

Ai � F ′fi ,
(11)

where O ∈ RC×H×W , � is the element-wise multiplica-
tion, Ai and F ′fi mean the attention map and the feature
map for the ith focal slice, respectively.

3.5. Reciprocative Guidance

Although the aggregated focal stack feature O can be di-
rectly fused with the all-focus feature Fa for predicting the
saliency map, we argue that the single-phase fusion scheme
can not effectively mine complex interactions and supple-
ments between the two kinds of features, which are crucial
for light field SOD. Hence, we propose a reciprocative guid-
ance scheme to make the two kinds of features promote each
other for multiple steps.

Here, to avoid confusion, we redefine the outputs from
the encoders as F 0

f = {F 0
f1, F

0
f2, ...F

0
fN} and F 0

a , where
the superscripts represent the initial reciprocative step.
Then, we define the proposed reciprocative guidance pro-
cess as:
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F t+1
f = DLG(F tf , F

t
a), (12)

Ot+1 = FSFA(F t+1
f ), (13)

F t+1
a = ConvGRU(Ot+1, F ta), (14)

where t ∈ [0, T − 1], ConvGRU is the convolutional gated
recurrent unit model [5].

In each step, the all-focus feature F ta is first used to
guide the feature fusion of the focal features F tf . After the
graph model and the feature aggregation, the aggregated fo-
cal stack feature Ot+1 is further used to enhance F ta for
saliency detection via ConvGRU. At last, ConvGRU can ef-
fectively fuse the two kinds of features, i.e.,Ot+1 and F ta, in
all reciprocative steps using the memory mechanism. As the
reciprocative process goes on, the two features can be im-
proved step by step under the guidance of each other, thus
benefiting the final saliency detection. On the other hand, as
the reciprocative process goes on, the context propagation
in the focal-focal graph can be performed multiple times,
hence also enhancing the feature fusion within F tf .

3.6. Saliency Prediction and Loss Function

Since it has been proved that low-level features can ben-
efit the recovery of object details, we also leverage the low-
level all-focus feature to perform saliency map refinement
after the reciprocative guidance process. Specifically, we
use a skip-connection to incorporate the all-focus feature
from the first stage of the encoder VGG network and sum it
with the upsampled FTa . Then, we perform feature fusion at
the 1/2 scale via three 3×3 convolutional layers with ReLU
activation functions. After that, another 3× 3 convolutional
layer with the Sigmoid activation function is used to obtain
the final saliency map, as shown in Figure 2.

After each reciprocative process, we can obtain an en-
hanced feature F ta. In order to guide our model to gradu-
ally enhance the image features, we add a 1 × 1 convolu-
tional layer with a sigmoid active function on F ta to predict
a saliency map. Then we employ the binary cross-entropy
loss to supervise the training of the t-th reciprocative step.
Finally, the overall loss is the summation of each loss at
each step.

4. Experiments
4.1. Datasets

Our experiments are conducted on three public light field
benchmark datasets: LFSD [21], HFUT [47], and DUTLF-
FS [38]. DUTLF-FS is the largest dataset that contains 1462
light field images and is split into 1000 and 462 images for
training and testing, respectively. HFUT and LFSD are rel-
atively small, containing only 255 and 100 samples, respec-
tively. Each sample includes an all-focus image, several fo-
cal slices, and the corresponding ground-truth saliency map.

4.2. Evaluation Metrics

We follow many previous works to adopt the maximum
F-measure (Fβ) [1], S-measure (Sα) [8], the maximum E-
measure (Eφ) [9], and the Mean Absolute Error (MAE) to
evaluate the performance of different models in a compre-
hensive way.

4.3. Implementation Details

We design two sampling windows with size k = 3 and
dilation rates d = 1, 3 in DLG, and set the reciprocative
step number T as 5 based on experiments. For a fair com-
parison, we use the same training set with [33], which in-
cludes the training set of DUTLF-FS and 100 samples se-
lected from HFUT. We also augment the training data with
random flipping, cropping, and rotation. We use Adam [19]
as the optimization algorithm and set the learning rate to 1e-
4. The minibatch size is set to 1 and our network is trained
for 200,000 steps. The learning rate is multiplied by 0.1 at
the 150,000 and 180,000 steps, respectively. In both train-
ing and testing, we resize images to 256× 256 for easy im-
plementation. The proposed method is implemented using
the Pytorch toolbox [30] and all experiments are conducted
on one RTX 2080Ti GPU. The inference time of our model
averaged on all three datasets is only 0.07s per image. Our
code is publicly available at: https://github.com/
wangbo-zhao/2021ICCV-DLGLRG.

4.4. Comparison with State-of-the-art Methods

Quantitative Comparison: For comprehensive compar-
isons, we compare our method with 19 state-of-the-art mod-
els, including six RGB SOD methods: LDF [42], ITSD
[55], MINet [29], EGNet [53], PoolNet [24] and PiCANet
[25], six RGB-D SOD models: BBS [10], SSF [51], S2MA
[27], ATSA [49], JLDCF [11] and UCNet [44], and seven
light field SOD methods: ERNet [33], MAC [45], MoLF
[50], DLSD [32], LFS [22], WSC [20], and DILF [46].

As shown in Table 1, our method can achieve the best
performance on DUTLF-FS and LFSD compared with all
RGB, RBG-D, and light field methods. When it comes
to the HFUT, our method can surpass other methods in
terms of MAE, but performs worse in terms of the other
three metrics. We argue that this is because many images
in HFUT have uncommon SOD annotations, such as num-
bers and texts, which are rarely related to focus information.
Thus, our model is not good at handling them.

It is noteworthy that on DUTLF-FS and LFSD, our
method significantly outperforms ERNet [33], MoLF [50]
and DLSD [32], which all use ConvLSTM models. This
result demonstrates the superiority of our proposed recip-
rocative scheme. We also note that with only 1100 train-
ing samples, our method can achieve better performance on
DUTLF-FS and LFSD than most deep RGB-D and RGB
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Table 1. Benchmarking results. ↑ & ↓ denote larger and smaller is better, respectively. The best scores in each group are indicated in blue,
and the best scores in all groups are indicated in red. * means we do not compare with this model due to incompatible training/test split.

HFUT [47] DUTLF-FS [38] LFSD [21]
Methods Years Sα ↑ Fβ ↑ Eφ ↑ MAE ↓ Sα ↑ Fβ ↑ Eφ ↑ MAE ↓ Sα ↑ Fβ ↑ Eφ ↑ MAE ↓

Light Field

Ours - 0.766 0.697 0.839 0.071 0.928 0.936 0.959 0.031 0.867 0.870 0.906 0.069
ERNet [33] 2020 0.778 0.722 0.841 0.082 0.899 0.908 0.949 0.039 0.832 0.850 0.886 0.082
MAC [45] 2020 0.731 0.667 0.797 0.107 0.804 0.792 0.863 0.102 0.782 0.776 0.832 0.127

MoLF [50] 2019 0.742 0.662 0.812 0.094 0.887 0.903 0.939 0.051 0.835 0.834 0.888 0.089
DLSD [32] 2019 0.711 0.624 0.784 0.111 * * * * 0.786 0.784 0.859 0.117

LFS [22] 2017 0.565 0.427 0.637 0.221 0.585 0.533 0.711 0.227 0.681 0.744 0.809 0.205
WSC [20] 2015 0.613 0.508 0.695 0.154 0.657 0.621 0.789 0.149 0.700 0.743 0.787 0.151
DILF [46] 2015 0.675 0.595 0.750 0.144 0.654 0.585 0.757 0.165 0.811 0.811 0.861 0.136

RGB-D

BBS [10] 2020 0.751 0.676 0.801 0.073 0.865 0.852 0.900 0.066 0.864 0.858 0.900 0.072
SSF [51] 2020 0.725 0.647 0.816 0.090 0.879 0.887 0.922 0.050 0.859 0.868 0.901 0.067

S2MA [27] 2020 0.729 0.650 0.777 0.112 0.787 0.754 0.839 0.102 0.837 0.835 0.873 0.094
ATSA [49] 2020 0.772 0.729 0.833 0.084 0.901 0.915 0.941 0.041 0.858 0.866 0.902 0.068

JLDCF [11] 2020 0.789 0.727 0.844 0.075 0.877 0.878 0.925 0.058 0.862 0.867 0.902 0.070
UCNet [44] 2020 0.748 0.677 0.804 0.090 0.831 0.816 0.876 0.081 0.858 0.859 0.898 0.072

RGB

LDF [42] 2020 0.780 0.708 0.804 0.093 0.873 0.861 0.898 0.061 0.821 0.803 0.843 0.096
ITSD [55] 2020 0.805 0.759 0.839 0.089 0.899 0.899 0.930 0.052 0.847 0.840 0.879 0.088

MINet [29] 2020 0.792 0.720 0.816 0.086 0.890 0.882 0.916 0.050 0.834 0.828 0.861 0.091
EGNet [53] 2019 0.769 0.676 0.796 0.092 0.886 0.868 0.910 0.053 0.843 0.821 0.872 0.083

PoolNet [24] 2019 0.769 0.676 0.794 0.091 0.883 0.859 0.911 0.051 0.858 0.848 0.894 0.074
PiCANet [25] 2018 0.783 0.715 0.816 0.107 0.876 0.865 0.907 0.072 0.832 0.834 0.866 0.103

Image GT Our S2MA EGNet PoolNet PiCANetERNet MoLF SSF JLDCF UCNet LDF

Image GT Our S2MA EGNet PoolNet PiCANetERNet MoLF SSF JLDCF UCNet LDF

Figure 4. Visual comparison of the saliency maps between our model and state-of-the-art methods.

SOD methods, which are usually trained on much more im-
ages. This indicates that our method can effectively explore
the information conveyed in light field data.
Qualitative Comparison: In Figure 4, we visualize some
representative saliency map comparison cases. We can find
that, compared with other SOTA methods, our model can
not only more accurately localize salient objects, but also
more precisely recover object details.

4.5. Ablation Study

In this section, we conduct ablation experiments on the
largest DUTLF-FS dataset to thoroughly analyze our pro-
posed model.
Effectiveness of Different Model Components. We first
verify the effectiveness of our different model components
in Table 2. For fair comparisons, we keep our feature en-
coders in Section 3.2 unchanged and try different decoder
architectures to fuse the focal stack feature Ff and the all-
focus feature Fa.

We first report the results of two baseline models of fus-
ing Ff and Fa using naive concatenation and LSTM, re-
spectively. For the first one, we follow many previous meth-

Table 2. Quantitative results of using different feature fusion
strategies. “Enc” means our feature encoders in Section 3.2,
“R” denotes our proposed reciprocative guidance scheme, and “r”
means using the low-level all-focus feature to refine the saliency
map. Blue indicates the best performance.

Settings DUTLF-FS
Sα ↑ Fβ ↑ Eφ ↑ MAE ↓

Enc-concat 0.891 0.898 0.934 0.062
Enc-lstm 0.900 0.909 0.940 0.047
Enc-DLG 0.907 0.911 0.944 0.044
Enc-DLG-R 0.923 0.932 0.957 0.035
Enc-DLG-R-r 0.928 0.936 0.959 0.031

ods to randomly replicate focal slices in each focal stack to
12 images, then Ff ∈ R12×C×H×W . Next, we concatenate
Ff with Fa and use convolution to fuse these 13 feature
maps. We denote this strategy as “Enc-concat”. For the
second one, we use a ConvLSTM to directly fuse the N +1
feature maps in Ff and Fa, which is denoted as “Enc-lstm”.
We find that using LSTM performs better for fusing the two
kinds of features.

Next, we progressively adopt our proposed DLG model,
the reciprocative guidance scheme, and the refinement de-
coder using the low-level all-focus feature. These three
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(a) (b) (c) (e)(d)

Figure 5. Comparison of models with and without using the pro-
posed DLG model in terms of both feature maps and saliency
maps. (a): Images. (b): Feature maps w/o using DLG. (c): Fea-
ture maps w using DLG. (d): Saliency maps w/o using DLG. (e):
Saliency maps w using DLG.

models are denoted as “Enc-DLG”, “Enc-DLG-R”, and
“Enc-DLG-R-r”, respectively. From Table 2, we can see
that the three models can progressively improve the light
field SOD performance, finally outperforming the two base-
line models by a large margin. Using the DLG model
achieves better results than using naive concatenation and
LSTM, and also avoids their ill-posed implementation prob-
lem. We also try to use a densely connected graph network
to fuse the N +1 feature maps, but only to obtain the out of
memory error. This result proves the efficiency of our DLG
model. Furthermore, we find that the reciprocative guid-
ance scheme brings the largest model improvement, clearly
demonstrating its powerful capacity. We believe this strat-
egy can also benefit future light field SOD research a lot.

We also show the comparison of the feature maps and
saliency maps with and without using the DLG model in
Figure 5. We can see that by using DLG, the feature maps
can filter out distractions in backgrounds and focus more on
the salient objects, hence resulting in better SOD results.
DLG Settings. Since we build multiscale local neighbours
in DLG to introduce larger contexts with acceptable compu-
tational costs, we also explore different multiscale settings
in DLG in Table 3. Specifically, we test different settings of
the sampling window size k and the dilation rates d in the
“Enc-DLG-R” model. We start from the naive setting with
1 × 1 sampling window. From Table 3, we can find that,
when we use more and larger windows, the performance of
our model can be gradually improved. However, the perfor-
mance is saturated when using two 3×3 sampling windows
with dilation rates of 1 and 3. Further using one more win-
dow with d = 5 only brings little improvement. Consider-
ing the computational costs, we choose k = 3 and d = 1, 3
as our final setting.

To verify the effectiveness of simultaneously using the
focal-focal graph Gf and the focal-all graph Ga, we try to
use them separately and report the results in the last two
rows in Table 3. We find that using them separately will de-
grade the model performance, hence verifying the necessity
of our proposed dual graph scheme.
Reciprocative Steps. We conduct experiments to choose
the optimal reciprocative step number T in Table 4. Note

Table 3. Comparison of using different DLG Settings.
Settings DUTLF-FS

k d Gf Ga Sα ↑ Fβ ↑ Eφ ↑ MAE ↓
1 1 3 3 0.914 0.919 0.946 0.042
3 1 3 3 0.915 0.919 0.950 0.038
3 1,3 3 3 0.923 0.932 0.957 0.035
3 1,3,5 3 3 0.924 0.933 0.960 0.035
3 1,3 3 7 0.917 0.929 0.953 0.038
3 1,3 7 3 0.919 0.927 0.952 0.037

Table 4. Comparison of using different reciprocative step numbers.

T
DUTLF-FS

Sα ↑ Fβ ↑ Eφ ↑ MAE ↓
1 0.907 0.911 0.944 0.044
3 0.917 0.924 0.952 0.040
5 0.923 0.932 0.957 0.035

Image GT t=1 t=2 t=3 t=4 t=5

Figure 6. Visualization of the saliency maps at different reciproca-
tive steps.

that, when T = 1, the model downgrades to the “Enc-DLG”
model. We find that, as we increase T from 1 to 5, the
performance can be improved progressively. When T > 5,
we observe that the performance has been saturated and the
model will exceed the GPU memory. Hence, we take T = 5
as the final setting for our reciprocative guidance scheme.

We also visualize two representative samples to show the
improvements of the saliency maps obtained at different re-
ciprocative steps in Figure 6. We can find that, along with
the reciprocative guidance learning, false-positive high-
lights can be gradually suppressed and the SOD results can
be steadily improved.

5. Conclusion

In this paper, we propose a novel dual local graph neural
network and a reciprocative guidance architecture for light
field SOD. Our DLG model efficiently aggregates contexts
in focal stack images under the guidance of the all-focus im-
age. The reciprocative guidance scheme introduces iterative
guidance between the two kinds of features, making them
promote each other at multiple steps. Experimental results
show that our method achieves superior performance over
state-of-the-art RGB, RGB-D, and light field based SOD
methods on most datasets.
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