
Recursively Conditional Gaussian for Ordinal Unsupervised Domain Adaptation

Xiaofeng Liu1†∗, Site Li2†, Yubin Ge3, Pengyi Ye1, Jane You4, Jun Lu5

1Harvard University, Cambridge, MA, USA.
2Carnegie Mellon University, Pittsburgh, PA, USA.

3Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
4Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong.

5Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
†Contribute Equally, ∗Corresponding Author: liuxiaofengcmu@gmail.com

Abstract

The unsupervised domain adaptation (UDA) has been
widely adopted to alleviate the data scalability issue, while
the existing works usually focus on classifying independently
discrete labels. However, in many tasks (e.g., medical diag-
nosis), the labels are discrete and successively distributed.
The UDA for ordinal classification requires inducing non-
trivial ordinal distribution prior to the latent space. Tar-
get for this, the partially ordered set (poset) is defined for
constraining the latent vector. Instead of the typically i.i.d.
Gaussian latent prior, in this work, a recursively conditional
Gaussian (RCG) set is adapted for ordered constraint mod-
eling, which admits a tractable joint distribution prior. Fur-
thermore, we are able to control the density of content vector
that violates the poset constraints by a simple “three-sigma
rule”. We explicitly disentangle the cross-domain images
into a shared ordinal prior induced ordinal content space
and two separate source/target ordinal-unrelated spaces,
and the self-training is worked on the shared space exclu-
sively for ordinal-aware domain alignment. Extensive exper-
iments on UDA medical diagnoses and facial age estimation
demonstrate its effectiveness.

1. Introduction

Deep learning is typically data-starved and relies on the
i.i.d assumption of training and testing sets [5, 32]. How-
ever, the real-world deployment of target tasks is usually
significantly diverse, and massive labeling of the target do-
main data can be expensive or even prohibitive [29]. To
address this, the unsupervised domain adaptation (UDA) is
developed, which proposes to learn from both labeled source
domain and unlabeled target domain [12, 40, 39].

The existing UDA works [37, 61, 33, 17, 40] usually fo-

Figure 1. (Left) Illustration of 4-class latent vectors (points) aligned
in a poset formation in R2. For a vector ck, its adjoined horizontal
and vertical lines specify the feasible quadrant where its superiors
ck+i for i > 0 can be positioned. (Right) Conditional spacing
model p(c1, c2, c3) = p(c1)p(c2|c1)p(c3|c2) for 3-class. The
adopted Gaussian conditional densities (4–7) and the constraints
(8) enforces the sample from p(c1, c2, . . . , cK) satisfy c1 ≤ c2 ≤
· · · ≤ cK with high probability [48, 10, 23].

cus on the classification or segmentation tasks without con-
sidering the inter-class correlations. However, tasks with dis-
crete and successively labels are commonly seen in the real
world. For instance, the Diabetic Retinopathy (DR) has five
labels corresponding to different severity levels: 0→normal,
1→mild, 2→moderate, 3→severe, and 4→proliferative DR.
In ordinal setting, class y = 1 is closer to y = 2 than y = 4.
The misclassification of y = 1 to y = 2 or y = 4 may lead to
different severity of misdiagnosis. The ordinal labeling sys-
tem is widely adopted in medical diagnose, face age groups,
and facial expression intensity, etc. Limited by the collecting
cost, the UDA has great potential in the medical area, while
the UDA for the ordinal label is under-presented.

A promising solution for UDA is to jointly learn the
disentanglement of class-related/unrelated factors and the
adaptation on the class-relevant latent space exclusively [60].
The well-performed model is expected to extract the class la-
bel informative and domain invariant features [61]. However,
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the disentanglement and adaptation of ordinal factors can be
challenging [2]. The i.i.d. Gaussian distribution sets are usu-
ally adopted as the prior of both disentangled class-related
and unrelated latent space [2], which inherently postulates
that the class is independently categorical.

In contrast to the i.i.d. categorical assumption in the con-
ventional disentanglement framework MLVAE [2] with the
vanilla Gaussian prior in VAEs [24], we propose a different
setting that the extracted class-related factor c is also ordinal-
valued w.r.t. the corresponding ordinal label y. In other
words, the value of class-related factor c are also ordered.

We note that if y is an ordinal class label, i.e., y ∈ {1 <
2 < · · ·K}, we would expect embed this ordinal structure
to form the ordinal class-related latent space. Specifically,
for two instances whose class labels are close to each other,
their respective extracted ordinal class-related latent vectors
c1 and c2 are expected to be approximate, and vice versa
[23]. For the triplet y1 < y2 < y3, we have:

||c1 − c3|| > max{||c1 − c2||, ||c2 − c3||}, (1)

which aligns the class-related latent vectors and the ordinal
class labels, thus yielding a model following the true data
causal inference.

However, it is non-trivial to induce the ordinal inter-class
correlation to the disentangled class-related latent space.
Actually, directly enforcing the triplet-constraints in Eq. 1
as regularization-term for the variational lower bound of
disentanglement framework is almost intractable. For the
D-dimensional c, there is O(D2) inequalities for every pair
of (ci, cj), and for each inequality, we may have to intro-
duce a slack variable to be optimized [23]. Moreover, this
heuristic regularization cannot guarantee Eq. 1 is satisfied in
the embedded latent space.

Motivated by the aforementioned insights, we adopted
an effective and principled manner for ordinal class-related
factor modeling by constructing an appropriate prior for the
extracted class-related latent space. Rather than the i.i.d.
standard Gaussian prior [24] to the non-ordinal disentangle-
ment methods [2], our prior is constructed by a recursively
conditional Gaussian (RCG) set, which explicitly imposes
a restrictive partially ordered set (poset) [48, 10, 23] con-
straint. Since the joint prior is Gaussian, although with a full
covariance, inheriting the closed form of the KL divergence
term in the variational objective. Moreover, the prior can
be fully factorized over the latent dimensions, which make
the framework computational tractable. Furthermore, the
number of parameters in the adapted prior needed to enforce
the constraint for all of the pairs in a K class task can be
O(D ·K), further reinforcing the model’s scalability [23].
This prior is able to assign negligible density that violates
the poset constraint by a simple “three-sigma rule”. For the
noisy labeled dataset, the confidence interval can be flexibly
adjusted to achieve more conservative ordinal modeling.

Our contributions are summarized as follows:
•We propose to investigate the UDA of ordinal classifi-

cation in a joint disentanglement and adaptation framework.
• An effective and principled ordinal prior for class-

related latent space is constructed by a recursively condi-
tional Gaussian (RCG) set [48, 10, 23]. More appealingly,
we can adjust the ratio of poset violation to adapt the noise of
the ordinal label. The closed form of the KL divergence with
our adapted prior is computationally tractable for large-scale
tasks.
•We extensively evaluate our method on both medical di-

agnosis (i.e., DR and CHD) and age estimation, and observe
a significant improvement over the previous non-ordinal
approaches in UDA.

2. Related works
Ordinal classification/regression can be processed as ei-
ther multi-class classification task [14] or metric regression
task [11]. The former regards the categorizes as irrelevant
to each other, which ignores the inherent ordering corre-
lation among the classes [1, 45]. The latter assumes the
neighboring classes are equally distant, which can violate
the non-stationary properties and easily leading to over-
fitting [4]. The threshold-based method proposes to de-
fine K − 1 binary decision boundaries [43]. Recently, the
Wasserstein loss is adopted as an alternative to conventional
cross-entropy loss to incorporate the inter-class correlations
[30, 38, 16, 34, 31, 41, 13]. The restrictive partially ordered
set (poset) has also been used to enforce the ordinal latent
representation [10, 23]. The application of UDA for ordinal
data is even more promising than the conventional task since
the ordinal data is usually hard to label [43]. Our method is
also orthogonal to the recent ordinal classification loss [30].
Unsupervised domain adaptation is aimed at improving
the performance in an unlabeled target domain with the
help of a labeled source domain [26]. The typical meth-
ods can be mainly grouped into statistic moment matching
[47], domain style transfer [57, 18], feature-level adversar-
ial learning [12, 58, 42] and self-training [61, 33, 39]. A
well-performed solution is disentangling the input to class-
related/unrelated factors and only aligns the class-related
factor across domains [60, 3]. Moreover, the adaptation is
achieved by self-training [61], which infers the pseudo-label
for target samples in each iteration to gradually reduce the
cross-domain variations.

However, it can be challenging to induce the ordinal prior
in the disentangled latent space [30, 28, 10, 23]. We propose
a joint disentangling and adaptation framework based on
VAEs and tailors the prior for ordinal class-related factor
(RCG) and class-unrelated factors (Gaussian).

We also tried the combination of Wasserstein loss [30]
with self-training [61, 60], while the ordinal property of the
to be transferred feature can not be explicitly enforced. More-
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over, it is commonly challenging to combine loss-related
UDA methods [50] with the ordinal loss [30].
Disentangled representation. Learning the representations
that are informative to the label and robust to the other annoy-
ing variations is a primary target of representation learning
[27, 36, 35, 44]. Although some works [8, 21, 7] shown that
unsupervised disentanglement can be achieved by augment-
ing the loss of VAEs [25] also to enforce the marginal inde-
pendence of the prior imposed by the encoders. While it is
shown that besides sufficient inductive bias or regularity con-
straint is induced, the unsupervised disentanglement suffers
from unidentifiability [46]. Actually, in a self-training-based
UDA setting, we have the ground truth class label of source
domain data, and the pseudo-label of target domain data is
inferred. The group-level MLVAE model [2] is an extension
of VAEs [25], which assumes a sample x from class y = k
is a generation result of a pair of latent vectors ck and u for
content and instance-specific style, respectively. Therefore,
all of the samples x from class y = k should have the same
ck for content, while u summarizes the other complementary
variations of each sample. In contrast to MLVAE [2], we
target the ordinal-valued ck, in which the values of content
factors are ordered rather than categorical. Moreover, the
ordinal prior induced VAEs is further incorporated in an
adaptation framework.

Several recent VAE studies attempt to process the ordinal
labeled data, while their objectives and setups, on the other
hand, fundamentally differ from our framework. [6] assumes
the ordinal paired samples are accessible for training, which
is different from the ordinal classification task [43]. The
variational posterior of the ordinal class is introduced in [22].
[15] utilizes the video-level label in the target domain and
does not require the extracted latent vectors are able to align
the ordinal constraint.

3. Methodology
In ordinal UDA, given a source domain p(xs, y) and a

target domain p(xt, y), a labeled set DS is drawn i.i.d from
p(xs, y), and an unlabeled set DT is drawn i.i.d from the
marginal distribution p(xt). The goal of UDA is to build
a good classifier in the target domain with the training on
DS and DT . y ∈ {1, 2, . . . ,K} is the discrete and ordinal
class label. In self-training UDA [61], we infer the pseudo-
label ŷ for target samples in each iteration. Given a group of
source and target images, we assume there is a ordinal prior
induced shared space for the class-related factors and two
domain-specific class-unrelated spaces, and the self-training
[61] is applied on the shared ordinal class-related space.

For a group of source images {xn
s }

Ns
n=1 with y = k and

target images {xn
t }

Nt
n=1 with ŷ = k, where n indicates a

group of cross-domain data instance, Ns and Nt denote the
source and target domain sample numbers. Our proposed
framework, is built with the VAEs [24, 2] backbones to

Figure 2. Graphical model representation of the proposed frame-
work for ordinal UDA. The gray-shaded circles indicate the ob-
served variables of the sample x and its ordinal label y.

encode a sample xn
s or xn

t to the latent representation pair
of (cn,un

s ) or (cn,un
t ), where cn is responsible for ordinal

class-related and all of the other variations are considered as
class-unrelated feature un

s or un
t for source or target domains

respectively. The change of cn is expected to exclusively
affect the ordinal class-related aspect and, conversely, the
class-unrelated un

s or un
t is independent of cn. We note that

the class-unrelated factors are not labeled [36].

3.1. Cross-domain Ordinal Graphical Model

By the definition of class-related cn, we expect the cn

extracted from the samples within the same class should be
similar or identical. Therefore, it is reasonable to calculate
a representative feature ck based on a group of cn from the
same class k as in [2]. Practically, we can use the average or
the simple product-of-expert rule adopted in MLVAE [2].

For the well disentangled and adapted features, the ob-
served data instance in source domain xn

s with yn = k (or
target domain xn

t with ŷn = k) can be regarded as a gen-
eration result based on a pair of latent vectors (ck,un

s ) (or
(ck,u

n
t )), respectively. We note that the ordinal label y or

the pseudo label ŷ predicted by the self-training is always
available in each iteration. This differentiates cn from un

s ,
un
t in that there is one ck that governs all cross-domain in-

stances with the same ordinal class y = k. However, each
instance xn

s (or xn
t ) have different random variable un

s (or
un
t ), which usually contains the source/target domain exclu-

sive information and is more reasonable to configure two
domain-specific VAEs.

We provide the graphical model with plate notation in
Fig. 2. p(xn

s |ck,un
s ) and p(xn

t |ck,un
t ) are the source and

target decoders, which generate images from the class-wise
ordinal-related and domain-wise ordinal-unrelated latent.

3.2. Latent Priors

We configure three encoders Enccs,t = qcs,t(c
n|xn

s,t),
Encus = qus (u

n
s |xn

s ) and Encut = qut (u
n
t |xn

t ) for latent
space inference, and two domain-specific decoders Decus =
ps(x

n
s |ck,un

s ), Decut = pt(x
n
t |ck,un

t ) to generate the im-
age with sampled latent pairs as shown in Fig. 3.
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Figure 3. Our proposed ordinal UDA framework with a Recursively
Conditional Gaussian (RCG) induced disentangled ordinal-related
latent space. Only Enccs,t and Cls are used in testing.

For the prior of class-unrelated factors, a natural choice
is the i.i.d. standard Gaussian N (0, I). Specifically, we can
set p({un

s }
Ns
n=1) =

∏Ns

n=1N (un
s ;0, I) and p({un

t }
Nt
n=1) =∏Nt

n=1N (un
t ;0, I) following vanilla VAEs [24]. As for the

class-related reference vectors, a possible choice is following
the MLVAE [2] to use fully factorized standard Gaussian
distributions, p(c1, . . . , cK) =

∏K
k=1N (ck;0, I). It should

be noted that MLVAE’s i.i.d. prior modeling of the different
class is meaningful only if the label values are categorical
(i.e., discrete and independent).

Moreover, for the ordinal label, where the approximate or-
dinal classes are expected to be encoded. However, the i.i.d.
Gaussian prior can be suboptimal, since it can not maintain
the ordinal feature. Target for a more reasonable ordinal
content prior model, we expect the triplet ordering constraint
in Eq. 1 can be imposed. A possible manner of introducing
this constraint is to simply adopt it as a regularization term.
However, this heuristic design can not guarantee the inequity
in Eq. 1, and not be scalable to a large dataset.

Following [10, 23], we propose to induce this constraint
by having a partially ordered set (poset) [48] for the ordinal
class-related latent. For each dimension d ∈ {1, · · · , D},
we propose to order the dth element in the latent vectors, i.e.,
[c1]d < [c2]d < · · · < [cK ]d, where [ck]d is the d-th entry
of the vector ck (i.e., ck = [[ck]1, [ck]2, . . . , [ck]d]

⊤). These
vectors align in a poset and satisfy the ordinal class related
latent-distance constraints in Eq. 1. The case of D = 2-dim
latent space is shown in Fig. 1 left.

For imposing the poset constraints in the prior, we resort
to the recursively conditional Gaussian (RCG) set [10, 23].
The framework imposes a joint Gaussian distribution over
the K vectors, fully correlated for k ∈ {1, · · · ,K}, and
fully factorized for dimensions d ∈ {1, · · · , D}, enables the
variational inferences to be tractable for computation. It is
possible to effectively place negligible RCG densities that

not meet the poset constraints. Specifically, we consider a
dimension-wise independent distribution,

p(c1, . . . , cK) =

D∏
d=1

pd([c1]d, . . . , [cK ]d), (2)

where pd is the density over K variables from d-th dimen-
sion of the latent vectors. We model pd by a product of
predecessor-conditioned Gaussians. For simplicity, we drop
the subscript d in notation, and abuse ck to denote [ck]d,
p(c1, . . . , cK) to refer to pd([c1]d, . . . , [cK ]d). Following
[48, 10, 23], the framework can be formulated as:

p(c1, . . . , cK) = p(c1)p(c2|c1) · · · p(cK |cK−1), (3)

where the conditionals are defined as:

p(c1) = N (c1;µ1, σ
2
1) (4)

p(c2|c1) = N (c2; c1 +∆2︸ ︷︷ ︸
:=µ2

, σ2
2) (5)

p(c3|c2) = N (c3; c2 +∆3︸ ︷︷ ︸
:=µ3

, σ2
3) (6)

...

p(cK |cK−1) = N (cK ; cK−1 +∆K︸ ︷︷ ︸
:=µK

, σ2
K). (7)

We define p(ck|ck−1) as a Gaussian centered at µk := ck−1+
∆k with variance σ2

k. That is, ∆k (> 0) is the spread between
the predecessor sample ck−1 and the mean µk as shown in
Fig. 1 right. We consider {σk,∆k}Kk=1 and µ1 to be the free
parameters of the framework that can be learned from data.

To efficiently approximate (in other words, roughly to
guarantee) the poset constraint, we make each conditional
distribution (pillar) separated from its adjacent neighbors
through the following “three-sigma” constraint:

∆k ≥ 3σk, (8)

which has > 99.7% probability as near certainty [53]. With
Eq. 81, the likelihood that ck ≤ ck−1 is negligible enforc-
ing the desired ordering c1 < c2 < · · · < cK . We note
that the label noise is usually significant in many ordinal
dataset, and the unimodal label-smoothing is widely used
to achieve conservative prediction [30]. Instead of sophis-
ticated ordinal noise modeling [28], we can simply adapt
to “one/two-sigma” constraint (i.e., ∆k ≥ 2σk) to toler-
ate the noise, which also provides more than 68% or 95%
confidence interval [53].

1The inequality constraints (8) can be easily incorporated in the conven-
tional unconstrained optimizer modules such as PyTorch and TensorFlow
through trivial reparametrizations [23], e.g., σk := ∆k

3
sigmoid(σk) and

∆k := exp(∆k), where ∆k and σk are the unconstrained optimization
variables, and sigmoid(x) = 1/(1 + exp(−x)). Furthermore, we fix
σ1 = 1 to make the optimization numerically more stable.
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The joint density for Eq. 4–7 has a closed-form. Basically,
given that all of them are Gaussian, yet linear, we have
the joint density p(c1, c2, . . . , cK) as Gaussian. Therefore,
we can formulate the mean and covariance of the full joint
Gaussian model as [48, 10, 23]:

E[ck] = µ1 +∆2 + · · ·+∆k (for k ≥ 2) (9)

Cov(ci, cj) = σ2
1 + · · ·+ σ2

min(i,j) (10)

The joint distribution p(c1, c2, c3) For K = 3 is:

N

( µ1

µ1 +∆2

µ1 +∆2 +∆3


︸ ︷︷ ︸

:=a

,

σ2
1 σ2

1 σ2
1

σ2
1 σ2

1 + σ2
2 σ2

1 + σ2
2

σ2
1 σ2

1 + σ2
2 σ2

1 + σ2
2 + σ2

3


︸ ︷︷ ︸

:=C

)
,

(11)
where a and C are the mean vector and covariance matrix of
the joint Gaussian. Plugging this back in our original prior
model Eq. 2, we have:

p(c1, . . . , cK) =

D∏
d=1

N ([c]d;ad,Cd), (12)

where [c]d :=
[
[c1]d, . . . , [cK ]d

]⊤
is the K-dim vector col-

lecting d-th dim elements from ck. Also, ad and Cd, for
each d = 1, . . . , D, are defined by Eq. 9–11 with their own
free parameters, denoted as:

(
µd
1, {∆d

k, σ
d
k}Kk=1

)
[23]. The

covariance Cd is not diagonal. However, the model is factor-
ized over d = 1, . . . , D, the fact exploited in the next section
is able to make the variational inference tractable.

3.3. Variational Inference

Given the ordinal data {(xn
s , y

n)}Ns
n=1, {(xn

t , ŷ
n)}Nt

n=1,
we approximate the posterior by the following variational
density, decomposed into the ordinal class-related and un-
related latents. The ordinal class-related posterior is further
factorized over the ordinal class levels y = 1, . . . ,K,

qs
(
{ck}Kk=1, {un

s }
Ns
n=1

)
=

K∏
k=1

qcs,t(ck|Gk)

Ns∏
n=1

qus
(
un
s |xn

s

)
,

qt
(
{ck}Kk=1, {un

t }
Nt
n=1

)
=

K∏
k=1

qcs,t(ck|Gk)

Nt∏
n=1

qut
(
un
t |xn

t

)
,

(13)

where qcs,t(ck|Gk) is short notation of qcs,t
(
ck|{xn

s,t}n∈Gk

)
and Gk = {{xn

s }
Ns
n=1, {xn

t }
Nt
n=1} is the set of source and

target training instances with ordinal class label y = k or
ŷ = k. For the encoders, we adopt deep networks that
take an input sample and output the means and variances of
the Gaussian-distributed latents following the reparameter-
ization trick in vanilla VAEs [24]. However, since Enccs,t
requires a group of samples {xn

s,t}n∈Gk
as its input, instead

Algorithm 1 Adaption process of our RCG induced UDA.
Initialize parameters of encoders, decoders and classifier.
repeat

Sample Gk = {{xn
s }

Ns
n=1, {xn

t }
Nt
n=1} with y/ŷ = k.

Compute {cn}Ns
n=1, {cn}Nt

n=1, {un
k}Ns

n=1, {un
k}Nt

n=1.
Classify {cn}Ns

n=1, {cn}Nt
n=1 with Cls.

Calculate the loss functions: LKL
s,t , LKL

s , LKL
t , LW

s,t.
Construct ck with {cn}Ns

n=1, {cn}Nt
n=1 using Eq. 15.

Decode {x̃n
s }Ns

n=1,{x̃n
t }Nt

n=1 and calculate L1
s, L1

t .

//Update parameters according to gradients:
Enccs,t ← LW

s,t+αLKL
s,t +βL1

s+βL1
t+γLadv

s +γLadv
t ;

Encus ← L1
s + λLKL

s + θLadv
s ;Decus ← L1

s + θLadv
s ;

Encut ← L1
t + λLKL

t + θLadv
t ;Decut ← L1

t + θLadv
t ;

Cls← LW
s,t; Diss ← −Ladv

s ; Dist ← −Ladv
t .

until deadline

of adopting a complex group encoder such as the neural
statisticians [9, 20], we use a simple product-of-expert rule
adopted in MLVAE [2, 23]:

qcs,t(ck|Gk) ∝
∏

n∈Gk

qcs,t(c
n|xn

s,t). (14)

Since each qcs,t(c
n|xn

s,t) is Gaussian, the product in Eq. 14
follows a Gaussian, and it can be shown that the evidence
lower bound (ELBO) can be formulated as:

K∑
k=1

Eqcs,t(ck|Gk)

∑
n∈Gk

Equs (u
n
s |xn

s )

[
log p(xn

s |ck,un
s )
]

+

K∑
k=1

Eqcs,t(ck|Gk)

∑
n∈Gk

Equt (u
n
t |xn

t )

[
log p(xn

t |ck,un
t )
]

−
Ns∑
n=1

KL
(
qus
(
un
s |xn

s

)∥∥p(un
s )
)

−
Nt∑
n=1

KL
(
qut
(
un
t |xn

t

)∥∥p(un
t )
)

− KL
( K∏
k=1

qcs,t(ck|Gk)

∥∥∥∥p(c1, . . . , cK)
)
. (15)

where p(un
s ), p(u

n
t ) ∼ N (0, I) as vanilla VAEs [24],

while p(c1, . . . , cK) is the ordinal-constrained prior given
in Eq. 12. Moreover, the first two terms are the cross-
domain reconstructions, which is optimized with the L1 loss
L1
s = |xn

s − x̃n
s |, L1

t = |xn
t − x̃n

t | for all samples, and the
two class-unrelated KL divergences LKL

s , LKL
t follow the

two domain versions of MLVAE [2], with the key difference
in the last term LKL

s,t with induced ordinal prior RCG.
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Figure 4. The distributions of average predictions on the target testset of DR UDA task. The RCG prior (orange) usually predicts more
concentrated output distribution around the ground-truth label than Gaussian prior UDA (green). Best viewed in color.

Tractable ordinal latent KL-term. Despite all distri-
butions in the KL term are Gaussians, the full dependency
of ck’s over k ∈ {1, · · · ,K} in p(c1, . . . , cK) can be ill-
posed if both D and K are large [48, 10, 23]. For the
D · K dimension input distribution, the Cholesky decom-
position of (D · K × D · K) covariance matrix, required
for computing the KL divergence, might be prohibitive if
D and/or K are large. While along the latent dimensions
d = 1, . . . , D, the prior distribution p(c1, . . . , cK) is factor-
ized as in Eq. 12. Therefore for a dimension-wise factorized
encoder model, qcs,t(ck|Gk) =

∏D
d=1 q

c
s,t([ck]d|Gk), a typi-

cal setting for VAEs, we are able to reduce the complexity
from O((D ·K)3) to O(D ·K3) [48, 10, 23]. The formal
last term in Eq. 15 can be:

D∑
d=1

KL

(
K∏

k=1

qcs,t([ck]d|Gk)

∥∥∥∥pd([c1]d, . . . , [cK ]d)

)
.

(16)
We denote

∏K
k=1 q

c
s,t([ck]d|Gk) as N (md,Sd), with Sd di-

agonal by definition. Each summand in Eq. 16 is a KL
divergence between Gaussians and can be written as:

1

2

(
Tr(C−1

d Sd) + (ad −md)
⊤C−1

d (ad −md) + log
|Cd|
|Sd|

)
,

(17)

The computation of inverse and determinant of Cd are
tractable2 as K is usually not a large value3.

3.4. Training processing

The pseudo-labels {ŷn}Nt
n=1 in target domain are itera-

tively selected from the reliable ordinal level predictions
[61]. Then the model is refined using the pseudo-labeled
target images. Specifically, we sample k-class samples from
both source domain (y = k) and target domain (ŷ = k)
as a group Gk. We apply the conventional cross-entropy
classification loss LCE

s,t or the well-performed Wasserstein
loss LW

s,t [30] for the ordinal classifier prediction and the
ground truth label or pseudo-label. It usually plays the
most important role since we are focusing on the discrim-
inative ordinal classification. We explicitly enforce the la-
tent features to approaching a prior distribution as VAEs.

2The inverse() and cholesky() functions in PyTorch is used,
which also allow auto-differentiations.

3E.g., K = 5 for DR labeling system.

Specifically, we minimize the KL divergence LKL
s,t between

{cn}Ns
n=1, {cn}Nt

n=1 and RCG, and LKL
s or LKL

s between
{un

k}Ns
n=1 or {un

k}Nt
n=1 with Gaussian. The cross domain

cycle reconstruction is utilized to enforce the disentangle-
ment of class-related/unrelated factors, and the consistent
of ck across domains. The L1 loss (L1

s or L1
s) and ad-

versarial loss (Ladv
s = E[logDiss(x

n
s ) + logDiss(x̃

n
s )] or

Ladv
t = E[logDist(x

n
t ) + logDist(x̃

n
t )]) are minimized to

enforce the generated images to be similar as the real images
in source or target domain, respectively [60, 3].

The training processing is detailed in Algorithm 1. Over-
all, our disentangled adaptation with self-training encour-
ages the shared encoder Enccs,t to extract discriminative and
domain-invariant representations, which can generalize and
facilitate ordinal classification in the target domain.

4. Experiments
We evaluate on real-world Diabetic Retinopathy (DR) and

congenital heart disease (CHD) diagnosis tasks and demon-
strate its generalizability for facial age estimation tasks. We
use the convolutional layers and the first fully-connected
layer of the backbone network as our feature extractors, and
the remaining fully-connected layers are adopted as the clas-
sifier. The decoder has the mirror structure as encoders.
We implement our methods on a V100 GPU using the Py-
Torch and set α, λ, θ = 1, β, γ = 0.5 for both tasks. In
our experiments, the performance is not sensitive to these
hyperparameters for a relatively large range.

We use +LW
s,t to denote the solutions using the Wasser-

stein loss [30] rather than the cross-entropy loss, while
−Ladv

s,t indicates the ablation of the adversarial loss. 2σ
or 3σ indicates the ”two-sigma rule” or ”three-sigma rule”
version of RCG, respectively. For the supervised setting,
we use pre-train the model with the labeled source domain,
and fine-tune the model with labeled target samples as the
LzyUCNN [52].

4.1. Diabetic Retinopathy Diagnosis

Two public available ordinal DR datasets are adopted for
DNN implementations. The Kaggle Diabetic Retinopathy
(KDR)4 is utilized as our source domain, and the recent In-

4https://www.kaggle.com/c/
diabetic-retinopathy-detection
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Method Accuracy (%) ↑ QWK ↑ MAE ↓
Source only 48.6±0.03 45.8±0.02 0.61±0.01
CRST [61] 56.5±0.01 53.2±0.01 0.50±0.02
TPN [50] 56.8±0.02 52.7±0.01 0.52±0.01
DMRL [59] 57.3±0.01 53.0±0.03 0.50±0.02
DG-Net++ [60] 57.0±0.02 53.6±0.02 0.51±0.03
CRST [61]+LW

s,t [30] 58.8±0.03 54.2±0.01 0.47±0.02
DG-Net++ [60]+LW

s,t 59.3±0.02 54.5±0.02 0.48±0.02
RCGUDA:2σ 61.8±0.01 56.4±0.01 0.41±0.02
RCGUDA:3σ 61.6±0.03 56.2±0.02 0.43±0.01
RCGUDA:2σ-Ladv

s,t 61.5±0.02 56.1±0.02 0.42±0.02
RCGUDA:2σ+LW

s,t 62.3±0.02 56.9±0.01 0.40±0.01
Supervised [52] 63.1±0.02 58.7±0.02 0.38±0.01

Table 1. Experimental results for DR UDA task. ↑ larger is better.

dian Diabetic Retinopathy Image Dataset (IDRiD) dataset
[51] is used as our target domain. In both datasets, the dia-
betic retinal images are grouped following the International
Clinical Diabetic Retinopathy Scale, where level 0 to 4 repre-
senting the No DR, Mild DR, Moderate DR, Severe DR, and
Proliferative DR, respectively. The macular edema severity
are labeled according to the occurrences of hard exudates
near to macula center region.

The KDR consists of 88,702 left or right fundus (i.e.,
interior surface at the back of the eye) images from 17,563
patients with the size varies from 433×289 to 3888×2592.
Although its large scale, there is no standard field-of-view
(FOV) and camera type. The images in IDRiD have the
unified size (4288×2848), FOV (50), and use the same Kowa
VX-10α camera. More importantly, the IDRiD is the first
dataset of Indians which has a significant shift between KDR
w.r.t. population.

In the standard setting of IDRiD5, there are 413 images for
training and 103 images for testing. We set its 413 training
images as our unlabeled target domain, while the 103 testing
images are only used for UDA testing. We preprocess and
resized the image to 896 × 896 as [52]. The ResNet [19]
model in LzyUNCC [52] has been adopted as our backbone.
Of note, LzyUNCC [52] uses both labeled KDR and labeled
IDRiD for supervised training, which can be regard as the
“upper bound”.

The results of the DR task are shown in Tab. 1. Other than
the accuracy and Mean Absolute Error (MAE), we also re-
port the quadratic weighted kappa (QWK)6. QWK can reflect
the misclassification proportional to the distance between
the prediction and ground-truth [30, 28]. Several recent
UDA methods are compared, e.g., self-training based CRST
[61], Prototypical Network (TPN) [50], disentangle-based
adversarial and self-training method (DG-Net++) [60], dual

5https://ieee-dataport.org/open-access/
indian-diabetic-retinopathy-image-dataset-idrid

6https://www.kaggle.com/c/
diabetic-retinopathy-detection/overview/
evaluation
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Figure 5. t-SNE visualization of the features on CHD UDA task
extracted by Enccs,t. Best viewed in color.

mixup regularized learning (DMRL) [59]. Although these
methods have demonstrated their effectiveness in categorical
classification based UDA, they do not take the inter-class
correlation into account. A possible solution is applying
[61, 60] on top of the Wasserstein loss [30]. We note that
[50] itself is the improvement of the loss function, which is
not directly compatible with the Wasserstein loss [30].

Our proposed RCGUDA outperforms these solutions con-
sistently. Our improvements w.r.t. QWK and MAE are
even more appealing. We note that QWK and MAE can
be the more reasonable measure for ordinal data [43], since
it considers the severity of different misclassification. In
Fig. 4, we illustrated that RCGUDA could provide a more
concentrated averaged prediction distribution for the target
testing samples. The 2σ version can be slightly better than
3σ version, considering the label noise. We also provide the
ablation study of adversarial loss, which not only improves
the performance but also speeds up the convergence of about
1.2 times. Furthermore, our framework is also orthogonal
to the advanced ordinal classification loss, e.g., [30]. With
the help of Wasserstein loss [30], the UDA performance can
approach the previously supervised LzyNUCC [52].

4.2. Real-world CHD Transfer

Congenital heart disease (CHD) is the most prevalent
congenital disability and the primary cause of death in new-
borns. The clinical diagnosis is usually based on the selected
keyframes from the five-view echocardiogram videos. We
collect a multi-center dataset of five-view echocardiograms
of 1,600 labeled source subjects (L0-L4 levels) from Beijing
Children’s Hospital and 800 unlabeled target subjects from
the Harvard Medical School. To quantify the severity levels,
each subject is confirmed by either at least two senior ultra-
sound doctors or final intraoperative diagnosis. Note that
there are discrepancies w.r.t. imaging devices (PHILIPS iE
33 vs. EPIQ 7C), patient populations, and the echocardio-
gram imaging experience of clinical doctors.

We adopt the standard multi-channel network for five-
view echocardiogram processing. We use 80% and 20%
target subjects for training and testing, respectively. For com-
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Method Accuracy (%) ↑ QWK ↑ MAE ↓
Source only 66.2±0.02 60.3±0.01 0.42±0.02
CRST [61]+LW

s,t [30] 72.5±0.01 69.9±0.02 0.36±0.02
DG-Net++ [60]+LW

s,t 72.4±0.01 70.2±0.01 0.35±0.02
RCGUDA:2σ 74.6±0.02 71.8±0.01 0.33±0.01
RCGUDA:3σ 75.0±0.03 72.1±0.02 0.32±0.03
RCGUDA:3σ-Ladv

s,t 74.5±0.01 71.9±0.03 0.33±0.01
RCGUDA:3σ+LW

s,t 75.6±0.03 72.5±0.02 0.31±0.01
Supervised+LW

s,t [30] 78.4±0.02 74.6±0.01 0.28±0.02
Table 2. Experimental results for CHD UDA task. ↑ larger is better.

parison, we re-implement the recent state-of-the-art methods
with the same backbone and experiment setting. The results
are shown in Tab. 2. The improvements over the previous
state-of-the-art are consistent with the DR UDA task. The 3σ
performs better than 2σ, since the relatively accurate label.

In Fig. 5 left, we can see that the CHD samples tend
to be distributed unordered. With our RCG prior, both the
samples are ordinally grouped into the high-density region
w.r.t. severity level in Fig. 5 right. The ordinal prior can be
effectively induced into the latent space features.

4.3. Face age estimation

Although our framework has great potentials for medical
image analysis, it can be generalized to the facial age esti-
mation, which also has an ordinal label. We use MORPH
Album II [54] as our labeled source domain, and choose
IMDB-WIKI [55, 56] as unlabeled source domain.

MORPH Album II [54] is a widely used dataset for esti-
mating face age. It collects 55,134 RGB images from 13,617
people. The age is labeled between 16 to 77. Besides White
or Black, the proportion of the other ethnicity is relatively
low (4%). IMDB-WIKI dataset7 is consisted of the celebrity
faces from the IMDB and Wikipedia. Each image is labeled
as the difference between the published data and the birthday
of the account. In summary, the age is ranged from 5 to
90 years old. There are both gray and RGB images, and
stamp portraits, which lead to the age label can be quite
noisy and biased. Following the evaluation protocol, the face
detector is applied to crop the face region for subsequent
processing, and the multi-face images are dropped. Then,
we have 224,418 images out of the original 523,051 images.
We divide the IMDB-WIKI dataset following the subject ID-
independent manner and use 50% for the unlabeled target
domain training data and 50% for testing.

We configure the age as the expected ordinal content fac-
tor. To unify the age groups in two datasets, we partition age
values into 6 age-range classes. A age-range class involves
10 years interval,i.e., 16-25, 26-35, 36-45, 46-55, 56-65, 66-
75. We note that the variations other than age, e.g., pose,
illumination and facial expression, are regarded as ordinal-

7https://data.vision.ee.ethz.ch/cvl/rrothe/
imdb-wiki/

Method Accuracy (%) ↑ QWK ↑ MAE ↓
Source only 48.7±0.01 42.8±0.02 0.46±0.01
CRST [61]+LW

s,t [30] 61.3±0.02 60.1±0.02 0.39±0.02
DG-Net++ [60]+LW

s,t 62.4±0.02 60.7±0.01 0.39±0.01
RCGUDA:3σ 67.8±0.02 63.2±0.02 0.36±0.01
RCGUDA:2σ 68.1±0.02 64.5±0.03 0.35±0.02
RCGUDA:2σ-Ladv

s,t 67.7±0.03 63.0±0.03 0.36±0.01
RCGUDA:2σ+LW

s,t 68.3±0.02 64.8±0.01 0.34±0.02
Supervised+LW

s,t [30] 72.6±0.03 70.4±0.02 0.32±0.01
Table 3. Experimental results for age UDA task. ↑ larger is better.

class unrelated (unlabeled). Following [49, 28], we choose
the VGG16 as our backbone. The batch size was set to 64
for VGG16. In addition, the initial learning rate is 0.001. We
reduce the learning rate by multiplying 0.1 per 15 epochs.

The results are shown in Tab. 3. The improvement of our
RCGUDA is consistent with the medical tasks. We note that
the age group in IMDB-WIKI is significantly noisier than
the medical data, and demonstrates large inner-class varia-
tions. Therefore, the ”two-sigma rule” version of RCG can
perform better than its ”three-sigma rule” version. Actually,
we can also choose the decimal factor to sigma, while the
performance can be stable for a large range and have the
same QWK from 1.8σ to 2.4σ version of RCG.

5. Conclusions

This paper targets to explicitly induce the ordinal prior
for ordinal classification UDA. We propose to meet the or-
dinal constraint by defining a partially ordered set (poset).
Specifically, we developed a recursively conditional Gaus-
sian (RCG) for ordered constraint modeling, which admits a
tractable joint distribution prior. By enforcing RCG as the
prior distribution of our joint disentanglement and adaptation
framework rather than the conventional Gaussian, the perfor-
mance on DR and CHD diagnosis and facial age estimation
tasks can be significantly improved. The three/two-sigma set-
ting of RCG can flexibly fit for the different degrees of label
noise without the sophisticated ordinal noisy modeling. It is
also orthogonal to the recently developed ordinal classifica-
tion loss, which can be simply added to our RCGUDA. Our
experiments evidenced that our RCG can be a powerful and
versatile unsupervised solution for ordinal UDA. For future
work, we plan to explore the task with a more sophisticated
ordinal label, e.g., pathology level segmentation.
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