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Abstract

The lack of clean images undermines the practicability
of supervised image prior learning methods, of which the
training schemes require a large number of clean images.
To free image prior learning from the image collection bur-
den, a novel Self-Supervised learning method for Gaussian
Mixture Model (SS-GMM) is proposed in this paper. It can
simultaneously achieve the noise level estimation and the
image prior learning directly from only a single noisy im-
age. This work is derived from our study on eigenvalues of
the GMM’s covariance matrix. Through statistical experi-
ments and theoretical analysis, we conclude that (1) covari-
ance eigenvalues for clean images hold the sparsity; and
that (2) those for noisy images contain sufficient informa-
tion for noise estimation. The first conclusion inspires us to
impose a sparsity constraint on covariance eigenvalues dur-
ing the learning process to suppress the influence of noise.
The second conclusion leads to a self-contained noise esti-
mation module of high accuracy in our proposed method.
This module serves to estimate the noise level and auto-
matically determine the specific level of the sparsity con-
straint. Our final derived method requires only minor mod-
ifications to the standard expectation-maximization algo-
rithm. This makes it easy to implement. Very interestingly,
the GMM learned via our proposed self-supervised learn-
ing method can even achieve better image denoising per-
formance than its supervised counterpart, i.e., the EPLL.
Also, it is on par with the state-of-the-art self-supervised
deep learning method, i.e., the Self2Self. Code is available
at https://github.com/HUST-Tan/SS-GMM.

1. Introduction
Image modeling and prior learning play key roles in the

design of an image denoising algorithm. Traditional im-
age modeling methods are generally hand-designed. These
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Figure 1. Average PSNR of image denoising results for three noise
levels σ=15, 25, 50 on Set12 and BSD68. These results are calcu-
lated based on Table 1. Comparison methods include a) the non-
learning method: BM3D [8]; b) GMM-related methods: EPLL
[33], PGPD [30] and NL-Bayes [16]; c) Self-supervised deep
learning methods: N2V [15], DIP [28] and S2S [22]; d) Our pro-
posed self-supervised GMM (SS-GMM).

methods can be classified into two main categories [13], i.e.,
the analysis-based methods and the synthesis-based ones.
The analysis-based methods directly model the image it-
self [26, 4, 5, 17, 18], while synthesis-based methods model
coefficients of an image in a transform-domain [10, 12,
23, 11]. The main drawback of traditional hand-designed
methods is that images in the real world are too complex
to be effectively modeled with simplified assumptions. To
tackle this problem, the data-driven learning method is uti-
lized as an alternative. Some representatives in this branch
include [25, 33, 27, 7, 32]. These methods have indeed
achieved great success in image denoising tasks. However,
their state-of-the-art performances are based on acquiring a
large number of clean images, which are generally unavail-
able in practice. This undermines the practicability of these
methods.

To reduce or even eliminate the image collection bur-
den, the self-supervised learning method, which only re-
quires noisy images themselves during the training process,
has attracted more and more attention. One recent work in
this field is the deep image prior (DIP) [28]. It performs
the self-supervised learning for the generator network with
an early-stopping strategy. Since the early-stopping strat-
egy acts as an implicit constraint on network parameters
[14], an idea coming to our mind is that imposing reason-
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able constraints on parameters might be the key for learn-
ing generative models in a self-supervised way. Motivated
by this idea, we conducted a study on how to achieve self-
supervised learning for the classical generative model, i.e.,
the Gaussian Mixture Model (GMM).

To achieve our goal, we at first did a study on the in-
fluence of noise on GMM’s parameters. A common as-
sumption that the noise follows the i .i .d . Gaussian distri-
bution is adopted in this paper. We observed that, in a sta-
tistical sense, the existence of Gaussian noise only affects
eigenvalues of the GMM’s covariance matrices. Therefore,
we focused our further study on the property of covariance
eigenvalues. Through statistical experiments and theoret-
ical analysis, we obtained two important conclusions: 1)
Covariance eigenvalues for clean images hold the sparsity,
while those for noisy images do not; 2) The degree to which
eigenvalues for noisy images deviate from the sparsity is de-
termined by the noise level. The first conclusion inspires us
to impose a sparsity constraint on covariance eigenvalues
to suppress the influence of noise. The second one further
indicates that the level of this sparsity constraint should be
related to the noise level. Also, it suggests that eigenval-
ues for noisy images contain sufficient information for the
noise estimation, i.e., the degree to which these eigenvalues
deviate from the sparsity.

Based on these conclusions, we newly proposed a Self-
Supervised GMM (SS-GMM) that can learn parameters
from only a single noisy image. As Fig. 2 shows, SS-GMM
at first conducts a coarse estimation of GMM’s parameters.
This estimation is the same as the standard Expectation-
Maximization based GMM learning method (EM-GMM)
[2, 3]. Covariance matrices learned by this method are vul-
nerable to noise. Therefore, a covariance correction mod-
ule, accompanied by a self-contained noise level estimation
module, is further conducted to suppress the influence of
noise. To evaluate the effectiveness of SS-GMM, it is ap-
plied to the image denoising task with the framework pro-
posed in [33]. As Fig. 1 shows, SS-GMM outperforms its
supervised counterpart, i.e., Expected Patch Log Likelihood
(EPLL) [33]. Also, it is on par with the state-of-the-art self-
supervised deep learning method, i.e., Self2Self [22].

In summary, our main contributions are:
• Conducting a detailed study on the influence of Gaus-

sian noise on GMM’s parameters, especially on the co-
variance eigenvalues, through statistical experiments
and theoretical analysis.

• Proposing a self-contained noise level estimation mod-
ule for our proposed self-supervised algorithm to
achieve noise level estimation and to help determine
the level of the sparsity constraint.

• Developing an efficient self-supervised learning algo-
rithm, which is easy to implement, for the GMM to
achieve the image prior learning from only a single
noisy image.

2. Related Work
This section provides a brief comparison of our proposed

method to several highly related works.

2.1. GMM Based Prior Learning Methods
As a classical generative model, GMM has been success-

fully applied to patch based image prior modeling. One
representative is the EPLL [33]. In [30], the Patch Group
based Image Denoising (PGPD) extended the GMM to the
patch group based version to model the image non-local
self-similarity (NSS) prior. These methods both require a
set of clean images as the training data. This undermines
the practical value of these methods. Some existing solu-
tions to this problem require either a suitable parameter ini-
tialization [31] or the search of non-local similar patches,
e.g., Nonlocal Bayes (NL-Bayes) [16]. Besides, all of these
GMM-related methods have to be provided the noise level
as a hyper-parameter in advance, since they do not contain a
noise estimation module. By contrast, our proposed method
does not need any extra information except such necessary
parameters as the patch size, but also achieves comparable
or even better performances than EPLL [33], PGPD [30]
and NL-Bayes [16].

2.2. Self-Supervised Deep Learning Methods
The self-supervised deep learning method aims at

achieving network training directly from the input data. The
Noise2Self (N2S) [1], Noise2Void (N2V) [15], Self2Self
(S2S) [22], and Deep Image Prior (DIP) [28] all belong to
this kind of methods. The former three methods are based
on the blind-spot strategy and the dropout strategy. The key
for these two strategies is to remove part of pixels from the
network receptive field to avoid learning an identity func-
tion. However, recovering the removed pixels itself is an
image inpainting problem. Therefore, these strategies actu-
ally increase the problem complexity. The DIP provides an-
other possibility of realizing self-supervised learning meth-
ods. As introduced above, it regularizes network parameters
with the early stopping strategy. Inspired by DIP, we pro-
pose to impose a sparsity constraint on covariance eigenval-
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ues. Different from the early-stopping, this sparsity con-
straint is supported by strict theoretical analysis. Owing
to this, our proposed method outperforms the DIP with a
large margin, although the iteration number of DIP has been
tuned by hand to achieve the highest PSNR. See Fig. 1 for
an intuitive comparison.

2.3. Noise Estimation Methods

Traditional methods such as [24] can only accurately es-
timate noise levels for images with sufficient flat regions.
Several recently proposed methods [19, 21] overcome this
limitation by taking the smallest covariance eigenvalues of
selected low-rank patches as the noise level. Through the
statistical analysis, Chen et al. [6] demonstrated that these
methods systematically underestimate the noise level, and
proposed to take the mean value of the smallest eigenvalue
to the m-th smallest one as the noise level, where m is a
hyper-parameter that can be automatically determined. In
this paper, we extend the statistical analysis in [6] from a
single Gaussian distribution to the GMM. Our experiments
showed that the histogram of covariance eigenvalues for
GMM holds obvious asymmetry. This violates the theo-
retical basis of [6]. To tackle this problem, we propose
a new method focusing the mean value calculation on the
histogram’s peak region, which is locally symmetrical with
the noise level as the center. More importantly, our work
reveals how the noise level estimation is related to the self-
supervised image prior learning process, i.e., the estimated
noise level can be further used to determine the level of con-
straint imposed on parameters. This is not covered by pre-
vious works in the field of noise level estimation.

3. Method
Theoretically speaking, the GMM can fit any distribu-

tion [3]. It has been successfully used to model the image
patch prior, using a set of clean images as the training set
[33]. However, clean images are unavailable in many appli-
cations. To overcome this problem, a novel self-supervised
learning method is proposed for the GMM in this section.

The GMM is a linear composition of K Gaussian distri-
butions. It can be written as

p(x) =

K∑
k=1

πk · N (x;µk,Σk) , (1)

where x is an S-dimensional vector denoting the image
patch in this paper, πk is the mixing coefficient that adds
up to 1 and satisfies 0 ≤ πk ≤ 1, N (·) is the Gaussian
distribution calculated as

1

(2π)
S/2

1

|Σk|1/2
exp

(
−1

2
(x− µk)

T
Σ−1

k (x− µk)

)
,

(2)

where |·| denotes the determinant operator, µk and Σk are
the mean vector and the covariance matrix, respectively.

According to the Gaussian distribution’s property, if
an image patch x belongs to a GMM with parameters
{πk,µk,Σk}Kk=1, and the noise n is assumed to be the
i .i .d . additive Gaussian noise of noise level1 σ, then the
noisy image patch y will belong to the GMM with param-
eters

{
πk,µk,Σk + σ2 · I

}K
k=1

. Here, I denotes the iden-
tity matrix. As a result, learning from noisy image patches
without any other constraints can only estimate the matrix
Σ̃k = Σk + σ2 · I, where the latent covariance matrix and
noise level are mutually coupled. This is the main challenge
for learning GMM with noisy data.

For each Gaussian component, its covariance matrix
must be positive definite and thus can be decomposed as
Σk = DkΛkD

T
k , where Dk is an orthogonal matrix and

Λk denotes a diagonal matrix with eigenvalues {λks}Ss=1

as the diagonal element. Using this decomposition, Σ̃k can
be written as

Σ̃k = Σk+σ2I = Dk

(
Λk + σ2I

)
DT

k = DkΛ̃kD
T
k , (3)

which is just the eigenvalue decomposition of Σ̃k. This
means that Σk and Σ̃k have the same eigenvectors, and the
difference between eigenvalues of these two matrices is de-
termined by the noise level, i.e., λ̃ks = λks + σ2. Now, the
key problem is how to decouple λks and the noise level σ
from λ̃ks.

3.1. Statistical Property of Covariance Eigenvalues

To tackle this problem, we at first did a study on the sta-
tistical property of covariance eigenvalues. In Fig. 3, his-
tograms of covariance eigenvalues for (a) clean images and
(b) noisy images are plotted. To obtain Fig. 3(a), 400×3600
patches of the size 7×7 are extracted from 400 clean images
of the size 180×180 [7] to train a GMM model of 200 com-
ponents with the EM-GMM algorithm [2, 3]. Then, eigen-
values are calculated and used to plot the histogram. For
Fig. 3(b), images are added with Gaussian noise of σ=15.

Intuitively, most of eigenvalues λks learned from clean
images accumulate around zero, implying that eigenvalues
λks should hold the sparsity. More interestingly, eigenval-
ues λ̃ks learned from noisy images gather around σ2 = 225,
where the peak frequency occurs. This raises a question,
i.e., why does this histogram peak at σ2? To answer this,
the theoretical analysis of Fig. 3 is provided as follows.

In practice, Σk and Σ̃k are not available. We can only
estimate them empirically with the training data. For the
EM-GMM algorithm, Σk is estimated as

ΣE
k =

1

Nk

N∑
n=1

γnk(xn − µk)(xn − µk)
T , (4)

1For convenience, we use σ and σ2 for the noise level interchangeably.
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Figure 3. Histograms of covariance eigenvalues learned by EM-GMM from (a) clean images and (b) images added with Gaussian noise of
the noise level σ = 15.

where N is the number of training patches, γnk denotes the
probability of which the n-th image patch belongs to the k-
th Gaussian component, Nk is the summation of γnk over
n. If the GMM is well trained and it can classify each image
patch with high accuracy, implying γnk ≈ 1 or 0, there is

ΣE
k ≈ 1

Nk

∑
n∈Sk

(xn − µk)(xn − µk)
T , (5)

where Sk denotes the set containing all of the patches that
belong to the k-th Gaussian component, and Nk denotes the
number of patches in Sk.

Based on [6], if Nk is large enough (e.g., Nk > 1000),
the eigenvalue of ΣE

k in Eq. (5) approximately belongs to a
Gaussian distribution, i.e.,

p
(
λE
ks

)
≈ N

(
λE
ks;λks,

2λ2
ks

Nk

)
, (6)

which further means that an eigenvalue λE randomly picked
from {λE

ks}
K,S
k=1,s=1 will belong to a GMM, i.e.,

p
(
λE
)
≈ 1

S ·N

K∑
k=1

S∑
s=1

N
(
λE
ks;λks,

2λ2
ks

Nk

)
. (7)

The histogram shown in Fig. 3(a) is essentially determined
by the probability distribution p(λE). To generate such a
histogram, most of the eigenvalues λks have to be close to
zero, and others will distribute over a wide range. In other
words, eigenvalues for clean images hold the sparsity.

Similarly, if Nk is large enough, for eigenvalues corre-
sponding to noisy images, there is

p
(
λ̃E
)
≈ 1

S ·N

K∑
k=1

S∑
s=1

N

(
λ̃E
ks; λ̃ks,

2λ̃2
ks

Nk

)
. (8)

Since most of λks are close to zero, most of λ̃ks will be
approximate to be σ2, i.e., λ̃ks = λks + σ2 ≈ σ2. That
is to say, a large proportion of components in Eq. (8) are
Gaussian distributions with σ2 as their mean values. Since

a Gaussian distribution peaks at its mean value point, these
components collectively constitute the most significant fea-
ture of p(λ̃E), making its corresponding histogram shown
in Fig. 3(b) peak at σ2. This answers the question men-
tioned above.

Besides components whose mean values are about σ2,
Eq. (8) also includes components whose mean values are
much larger than σ2. As Fig. 3(b) shows, these compo-
nents collectively make the histogram curve fall much more
slowly on the right side than on the left side. This obvious
asymmetry undermines the theoretical basis of applying the
noise level estimation method proposed in [6] to the GMM.
The work [6] is originally designed for a single Gaussian
distribution. Its basic assumption can be regarded as that
there exists a separate point that can divide the histogram
of eigenvalues into a symmetrical part and the other part.
However, it is obvious that such a point does not exist in
Fig. 3(b). To tackle this problem, we proposed to focus
the noise level estimation on the histogram’s peak region,
which is locally symmetrical with λ̃E

ks = σ2 as the sym-
metry axis. This is achieved with the following steps: a)
Divide {λ̃E

ks}
K,S
k=1,s=1 into several bins, and count the num-

ber of λ̃E
ks for each bin; b) Find the bin having the largest

number. Denote this number as cmax; c) Find bins whose
numbers are larger than r · cmax (0 < r < 1), and take
the average value of eigenvalues located in these bins as the
estimated noise level. In this procedure, parameter r is used
to control the peak region’s size. It is set as 0.5 in this paper.

3.2. Self-Supervised Learning Method

The standard parameter learning method for GMM, i.e.,
EM-GMM [2, 3], is to maximize the likelihood function as

max
πk,µk,Σ̃k

1

N

N∑
n=1

ln

(
K∑

k=1

πk · N
(
yn;µk, Σ̃k

))
,

s.t. 0 ≤ πk ≤ 1,

K∑
k=1

πk = 1, (9)
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of which the solution is

πk =
Nk

N
, (10a)

µk =
1

Nk

N∑
n=1

γnk · yn, (10b)

Σ̃E
k =

1

Nk

N∑
n=1

γnk(yn − µk)(yn − µk)
T (10c)

where Nk =
∑N

n=1 γnk and γnk is calculated as

γnk =
πk · N

(
yn;µk, Σ̃k

)
K∑

k=1

πk · N
(
yn;µk, Σ̃k

) . (11)

As shown in Fig. 3(b), covariance estimated by EM-
GMM is vulnerable to noise. To suppress the influence of
noise, we propose to introduce several extra constraints on
covariance matrices into Eq. (9), which leads to

max
θ

1

N

N∑
n=1

ln

(
K∑

k=1

πk · N
(
yn;µk, Σ̃k

))
,

s.t. 0 ≤ πk ≤ 1,

K∑
k=1

πk = 1,

Σ̃k = Dk · Λ̃k ·DT
k , DT

k ·Dk = I,

Λ̃k = Λk + σ2 · I, λks ≥ 0,

K∑
k=1

S∑
s=1

∥λks∥0 ≤ L, (12)

where parameters θ to be optimized here include the noise
level σ2 and GMM parameters {πk,µk,Dk,Λk}Kk=1, λks

is the s-th diagonal element of the diagonal matrix Λk, and
∥·∥0 denotes the l0-norm,

In this newly proposed problem, constraints at the 3-
th line and the 4-th line are obtained from Eq. (3), which
clearly shows how the noise level and covariance eigen-
values are coupled. The constraint at the 5-th line is our
proposed sparsity constraint on covariance eigenvalues. It
is used to decouple the noise level and covariance eigen-
values. The parameter L controls the level of the sparsity
constraint. As we will introduce later, it can be determined
automatically.

Similar to EM-GMM, this new problem can also be ef-
fectively optimized with the EM framework [9], which al-
ternately iterates between the so-called ‘E-Step’ and ‘M-
Step’. For this problem, its corresponding ‘E-Step’ is to
determine γnk. This step is the same as Eq. (11). The ‘M-
Step’ is to maximize the function

Q(θ) =

N∑
n=1

K∑
k=1

γnk

(
lnπk + lnN

(
yn;µk, Σ̃k

))
(13)

Algorithm 1: Self-Supervised GMM (SS-GMM)

Input: Noisy image patches {yn}Nn=1

Output: Noise level σ2,
GMM parameters {πk,µk,Dk,Λk}Kk=1

Initialize parameters with EM-GMM [2, 3];
while not converge do

1). Calculate probability γnk as Eq. (11);
2). Calculate mixing coefficient πk as Eq. (10a);
3). Calculate mean vectors µk as Eq. (10b);
4). Calculate covariance Σ̃E

k as Eq. (10c);
5). Do eigenvalue decomposition for Σ̃E

k ;
6). Estimate noise level as Sec. 3.1 introduces;
7). Determine parameter L by Eq. (19);
8). Calculate eigenvalues λks as Eq. (18);

end

with constraints listed in Eq. (12). This maximization prob-
lem can be further divided into several sub-problems related
to πk, µk, Dk, σ2 and λks (or Λk), respectively. These sub-
problems and their solutions are introduced as follows:

(a). Sub-1: Optimizing πk and µk

Since the extra constraints introduced in Eq. (12) are all
imposed on covariance matrices, the (πk,µk)-related sub-
problems are the same as those corresponding to Eq. (9).
That is to say, the optimization of πk and µk are just the
same as Eq. (10a) and Eq. (10b).

(b). Sub-2: Optimizing Dk

The Dk-related terms in ‘M-Step’ can be written as

min
Dk

Tr
(
Λ̃−1

k DT
k Σ̃

E
k Dk

)
s.t. DT

k ·Dk = I, (14)

where Tr(·) denotes the trace operator and Σ̃E
k is calculated

as Eq. (10c). This is a quadratic optimization problem with
orthogonality constraints. Based on the Lemma 1 proposed
in [29], we proved in the supplementary material that if di-
agonal elements of Λ̃k are sorted in the same order as those
of Λ̃E

k , this problem has an analytical solution as

Dk = D̃E
k , (15)

where D̃E
k is formed from eigenvectors of Σ̃E

k . This is con-
sistent with the conclusions implied by Eq (3) that Σk and
Σ̃k have the same eigenvectors, and that the key problem is
how to decouple λks and noise level σ.

(c). Sub-3: Optimizing λks and σ2
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The (λks, σ
2)-related terms in ‘M-Step’ are

min
σ2, {λks}

ln
∣∣∣Λ̃k

∣∣∣+ Tr
(
Λ̃−1

k DT
k Σ̃

E
k Dk

)
s.t. λ̃ks = λks + σ2, λks ≥ 0,

K∑
k=1

S∑
s=1

∥λks∥0 ≤ L. (16)

Since there is Dk = D̃E
k , the objective function of this

problem can be re-written as

min
σ2, {λks}

K∑
k=1

S∑
s=1

ln
∣∣∣λ̃ks

∣∣∣+ λ̃E
ks

λ̃ks

. (17)

If we denote the L-th largest λ̃E
ks by λ̃E

L , the solution of this
problem can be written as

λks =

{
0, λ̃E

ks < λ̃E
L ,

λ̃E
ks − σ2, λ̃E

ks ≥ λ̃E
L ,

(18)

and

σ2 =

K∑
k=1

S∑
s=1

[
λ̃E
ks < λ̃E

L

]
· λ̃E

L

K∑
k=1

S∑
s=1

[
λ̃E
ks < λ̃E

L

] , (19)

where [·] is the Iverson bracket defined as

[A] =

{
1, if A is true;
0, otherwise.

(20)

Eqs. (18)-(19) clearly demonstrate the necessity of our pro-
posed sparsity constraint. When the sparsity constraint is
invalid (i.e., L = K · S), these two equations will give un-
desirable results σ2 = 0 and λks = λ̃E

ks. Then, how to
set a reasonable L? Note, Eq. (19) provides an estima-
tion of the noise level. Therefore, a reasonable L should be
able to lead to an accurate noise level estimation. This in-
spires us to determine L based on the noise level estimated
as Sec. 3.1 introduces. In our implementation, we decrease
L from KS− 1 till the σ2 calculated by Eq. (19) is equal or
close enough to that estimated as Sec. 3.1 introduces.

In Alg. 1, the whole optimization process of problem
Eq. (12) is summarized. In this algorithm, steps 1-4 are the
same as the standard GMM parameter learning algorithm.
Steps 5-7 are employed by the sparsity constraint. These
steps serve to correct the parameters estimated by steps 1-4
to suppress the influence of noise on them. Since these steps
are not complex, the whole algorithm is easy to implement.

4. Experiments
4.1. Optimization Results

Our proposed self-supervised parameter learning algo-
rithm for GMM, dubbed as SS-GMM, is essentially an op-
timization algorithm designed for the problem presented in
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Figure 6. The 12 widely used test images. From left to right and
from top to bottom: Barbara, Boat, Cameraman, Couple, Straw,
Hill, House, Lena, Man, Monarch, Pepper, Fingerprint.

Eq. (12). To validate the convergence of this algorithm, we
plotted objective function values versus iterations in Fig. 4.
As one can see, our algorithm successfully converges for all
example cases with just a few steps. This fast convergence
rate is related to our selection of the initial point. As our
theoretical analysis indicates, the only differences between
GMM’s parameters for clean images and those for noisy
images are the eigenvalues. Therefore, parameters learned
from noisy images with the EM-GMM algorithm provide a
good initialization of {µk,Dk}Kk=1 for Alg. 1. The subse-
quent optimization of Alg. 1 mainly focuses on the correc-
tion of covariance eigenvalues λks. To illustrate this, his-
tograms of eigenvalues learned by Alg. 1 and those learned
from the clean/noisy ‘couple’ with the EM-GMM algorithm
are plotted in Fig. 5. As this figure shows, the curve ‘Noisy
+ EM’ severely deviates from the curve ‘Clean + EM’. By
contrast, the curve ’Noisy + Alg. 1’ coincides with the curve
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Table 1. Image Denoising Performances on Set12 and BSD68. The best results are highlighted in bold. The results marked with ‘*’ are
quoted from [22]. Comparison methods include BM3D [8], EPLL [33], PGPD [30], NL-Bayes [16], N2V [15], DIP [28], S2S [22] and our
proposed SS-GMM.

Dataset σ BM3D EPLL PGPD NL-Bayes N2V DIP S2S SS-GMM

Set12
15 32.12 31.83 32.13 31.98 30.73 30.90 31.83 32.18
25 29.73 29.38 29.69 29.61 28.86 28.89 29.75 29.68
50 26.49 26.09 26.53 26.35 26.00 25.52 26.38 26.38

BSD68
15 31.08 31.22 31.13 31.14 29.25 29.70 30.26 31.26
25 28.56 28.72 28.62 28.69 27.69 28.00 28.70* 28.73
50 25.62 25.72 25.75 25.66 25.44 25.08 25.92* 25.70

0.6182

0.3565

0.7144

0.1157

0.2592 0.2880

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Chen Ours

Bias Std MSE

Figure 7. Noise level estimation results on Set12. The smaller
these measurements are, the better an estimator is.

‘Clean + EM’ at most places. They are different only at
small eigenvalues, of which the corresponding eigenvectors
generally represent faint features [30, 33]. This clearly in-
dicates that Alg. 1 succeeds in suppressing the influence of
noise on eigenvalues.

4.2. Noise Level Estimation Results

To evaluate the performance of the self-contained noise
level estimation module in Alg. 1, we apply it on 12 gray
images (Set12) shown in Fig. 6. In this test, the patch size
is set as 9×9 and the number of Gaussian components is set
as K = 20 for Alg. 1. The state-of-the-art noise level esti-
mation method proposed by Chen et al. [6] is adopted as the
benchmark. Following [6], the qualities of noise level esti-
mation results are quantified with three measurements, i.e.,
Bias, Std and

√
MSE, which respectively evaluate the accu-

racy, the robustness and the overall performance of an esti-
mator. The smaller these indexes are, the better an estimator
is. The test noise levels include σ = 15, 25, 50. The average
performances of Chen et al. [6] and our proposed method
are summarized in Fig. 7. As this figure shows, our pro-
posed estimator outperforms [6] in all measurements. This
demonstrates that our proposed method succeeds in over-
coming the asymmetry problem as shown in Fig. 3(b) and
thus it can estimate the noise level with high accuracy.

4.3. Image Denoising Results

The effectiveness of our proposed self-supervised prior
learning algorithm is further validated on the image denois-

ing task, which is to recover a latent clean image f from
its noisy observation g. As shown in Fig. 2, the framework
proposed in [33] is adopted to apply the GMM based image
prior learned with Alg. 1 to the image denoising task. Since
[33] is originally designed for the gray image, the Set12
and 68 gray images (BSD68) from the dataset [20] are se-
lected as test images. In our experiments, each test image
is added to i .i .d . Gaussian noise with standard deviations
of σ = 15, 25, 50 to generate noisy images with three noise
levels. The quality of each denoised result is quantified by
the peak signal-to-noise ratio (PSNR). The average PSNR
results of each dataset and noise level are provided in Table
1 for all methods. The results marked with ‘*’ are quoted
from [22]. To allow for visual assessments, several denois-
ing results on cropped regions are shown in Fig. 8.

The comparison methods include a) the non-learning
method: BM3D [8]; b) GMM-related methods: EPLL [33],
PGPD [30] and NL-Bayes [16]; c) self-supervised deep
learning methods: N2V [15], DIP [28] and S2S [22]. All
of these methods are implemented with the source codes
and/or trained models provided by their authors. The im-
plementation details are introduced in the supplementary
material. Their comparisons to our proposed method are
analyzed below.

Comparison to the non-learning method. The BM3D
is widely adopted as the benchmark due to its excellent
performance. The success of BM3D relies on the search
of non-local similar patches. Images from BSD68 usually
have many irregular patterns. As a result, the patch search
task is difficult on these images. Therefore, BM3D’s perfor-
mance is inferior to our proposed SS-GMM about 0.1dB-
0.2dB by average on BSD68. As for Set12 which holds
relatively strong non-local similarity, our proposed method
still outperforms BM3D at the noise level σ=15. This indi-
cates that the prior learned by our proposed method is still
better than the non-local similarity in this case.

Comparison to GMM-related methods. Both EPLL
and PGPD adopt supervised image prior learning methods.
Our proposed SS-GMM is a self-supervised version of the
EPLL. The EPLL requires an extra set of clean images to
train GMM with EM-GMM, while SS-GMM only needs a
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Train

BM3D (30.24dB) EPLL (30.44dB) PGPD (30.38dB) NL-Bayes (30.28dB)

N2V (26.61dB) DIP (28.28dB) S2S (27.93dB) SS-GMM (30.38dB)

Airplane

BM3D (33.39dB) EPLL (32.98dB) PGPD (33.57dB) NL-Bayes (33.74dB)

N2V (32.76dB) DIP (32.95dB) S2S (32.36dB) SS-GMM (33.77dB)

Figure 8. Visual results of comparison algorithms on regions of the image ‘Train’ (σ = 15) and regions of the image ‘Airplane’ (σ = 50).
The inserts shown in the first column are clean GT regions. The whole images for these regions are provided in the supplementary materials.

single noisy image. As Table 1 shows, SS-GMM outper-
forms the EPLL on Set12 by a large margin (over 0.3dB
on average). On the other hand, these two methods’ per-
formances are close on BSD68. Observing that the model
provided by EPLL’s authors [33] is trained on images from
the same dataset as the BSD68, we believe that the compar-
ison between EPLL and SS-GMM reveals the sensitivity of
supervised methods to the training images. The NL-Bayes
is an existing method that can determine GMM’s parame-
ters from noisy images. However, its parameter estimation
process is based on the search of non-local similar patches
and it has to be provided with the noise level in advance.
Compared with NL-Bayes, SS-GMM requires no extra in-
formation except the noisy image itself as the input, but also
achieves better performances for all cases shown in Table 1.

Comparison to self-supervised deep learning meth-
ods. The N2V, S2S, and DIP are all self-supervised deep
learning methods. As Table 1 shows, the performances of
N2V and S2S are very limited at σ=15, while they perform
significantly better at σ=50. By contrast, the best perfor-
mance of our proposed SS-GMM occurs at σ=15. This re-
veals the essential difference between these two kinds of
methods. Strategies adopted by N2V and S2S remove part
of pixels to avoid learning an identity function. Even though
there is no noise, these strategies have to recover the pix-
els removed by themselves. When the noise level gradu-
ally increases, the proportion of this additional complexity
is getting less and less. This explains why these strategies
present limited performances at low noise levels and rela-

tively good performance at high noise levels. By contrast,
SS-GMM is essentially aimed at suppressing the influence
of noise on model parameters, which is easier when σ is
relatively smaller. Therefore, SS-GMM is superior to all of
the other comparison methods at σ=15. In this sense, these
two kinds of methods complement each other. As for DIP, it
is significantly inferior to SS-GMM. The advantage of SS-
GMM over DIP should be owing to our strict analysis on
how to regularize model parameters. Imposing a sparsity
constraint on covariance eigenvalues is much more reason-
able than simply regularizing all of the parameters with the
early-stopping strategy.

5. Conclusion
In this paper, we conducted a detailed study on the sta-

tistical property of GMM’s covariance eigenvalues under
the influence of Gaussian noise. This study finally leads
to a self-supervised learning method incorporating a self-
contained noise level estimation module. With this method,
we successfully achieved image prior learning from a single
noisy image. The effectiveness of the learned prior was fur-
ther validated through image denoising experiments, which
demonstrated that our proposed method holds obvious ad-
vantages over its supervised counterpart EPLL and is on
par with state-of-the-art self-supervised deep learning meth-
ods. In the future, we will try to extend the application of
our proposed method to other noise types and other image
restoration tasks. Also, we will explore how to achieve self-
supervised learning by imposing reasonable constraints on
other generative models.
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