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Abstract

Optimizing the K-class hyperplanes in the latent space
has become the standard paradigm for efficient represen-
tation learning. However, it’s almost impossible to find an
optimal K-class hyperplane to accurately describe the la-
tent space of massive noisy data. For this potential problem,
we constructively propose a new method, named Switch-
able K-class Hyperplanes (SKH), to sufficiently describe
the latent space by the mixture of K-class hyperplanes. It
can directly replace the conventional single K-class hyper-
plane optimization as the new paradigm for noise-robust
representation learning. When collaborated with the pop-
ular ArcFace on million-level data representation learn-
ing, we found that the switchable manner in SKH can ef-
fectively eliminate the gradient conflict generated by real-
world label noise on a single K-class hyperplane. More-
over, combined with the margin-based loss functions (e.g.
ArcFace), we propose a simple Posterior Data Clean strat-
egy to reduce the model optimization deviation on clean
dataset caused by the reduction of valid categories in each
K-class hyperplane. Extensive experiments demonstrate
that the proposed SKH easily achieves new state-of-the-art
on IJB-B and IJB-C by encouraging noise-robust represen-
tation learning. Our code will be available at https:
//github.com/liubx07/SKH.git.

1. Introduction
Optimizing the K-class hyperplane in the latent space

to encourage intra-class compactness and inter-class dis-
crepancy has become the standard paradigm for efficient
∗Equally-contributed.
†Corresponding author.
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Figure 1. Illustration of the 3-class hyperplane in latent space of
noisy data. (a) Conventional single 3-class hyperplane. (b) Try
to find another 3-class hyperplane. (C) The proposed Switchable
3-class hyperplanes.

representation learning. Benefit from it, million-level face
recognition has achieved remarkable improvement in recent
years [21, 17, 26, 6, 25]. From the early CASIA-WebFace
[31] to more recent MegaFace [15], MSCeleb-1M [11] and
Celeb500K [3], the growing scale of training dataset intro-
duces more complex data distribution and also inevitably
introduces real-world noise. This leads to that it’s almost
impossible to find an optimal K-class hyperplane to accu-
rately describe the latent space with massive noisy data.
We explore this potential problem by a latent space with
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3 categories as shown in Fig. 1(a). Optimizing a single
3-class hyperplane in this latent space is extremely diffi-
cult and the gradient conflict generated by the local training
samples collapses the hyperplane optimization. Fig. 1(b)
attempts to optimize some local outliers but biases other
samples. For this potential problem, we constructively pro-
pose a new method, named Switchable K-class Hyperplanes
(SKH), to sufficiently describe the latent space with mas-
sive noisy data. We introduce the mixture of K-class hy-
perplanes and optimize them by a switchable manner as
shown in Fig. 1(c). To sufficiently describe the latent space
in Fig. 1(c), we can adopt a simple greedy mechanism based
on loss value to perform K-class hyperplane switch.

According to the aforementioned analysis, given a ran-
dom latent space, we can always describe it better than
traditional training paradigm by assigning multiple K-class
hyperplanes. We found that directly replacing the con-
ventional K-class hyperplane by SKH can be effective for
noise-robust representation learning. There are two types
of conflict caused by label noise, intra-class conflict (dif-
ferent identities with same label ID) and inter-class conflict
(same identity with different label IDs). In latent space, the
intra-class compactness and inter-class discrepancy is sig-
nificant to improve the robustness of representation. We
take the conventional single K-class hyperplane to demon-
strate the influence of label noise on latent space optimiza-
tion. For different identities with same ID in intra-class
conflict, we optimize the latent space by maximizing the
inner product of its feature and a single class center. It’s
hard to provide the efficient hyperplane to compact them as
shown in Fig. 1(a). For same identity with different IDs in
inter-class conflict, we will minimize the inner product of
features in one ID and class center of the other ID. How-
ever, they represent a same identity and forcing them apart
makes the hyperplane unreliable.

Although the presence of label noise complicates latent
space, the proposed Switchable K-class Hyperplanes can ef-
ficiently alleviate this issue. It encourages different identi-
fies with the same ID to select different K-class hyperplanes
to avoid intra-class conflict. Also, the inter-class conflict
can be eliminated by assigning samples of different IDs (ac-
tually the same identity) to optimize different hyperplanes.
This makes them independent of each other and avoids gen-
erating gradient conflict on the same hyperplane as shown
in Fig. 1(c). Extensive experimental results demonstrate
that the proposed SKH provides a new state-of-the-art for
noise-robust representation learning. Moreover, for noise-
robust representation learning, we can further clean the
training data by dropping intra high-confident noise sam-
ples and merging inter samples with high-similar centers
in different K-class hyperplanes. After this, we can effec-
tively improve intra-class compactness and inter-class dis-
crepancy, and achieve comparable performance compared

to the model trained on the manually cleaned dataset.
To sum up, the contribution of this papers is threefold:
(1) A novel Switchable K-class Hyperplanes - We in-

troduce a mixture of K-class hyperplanes with a switch-
able manner to better describe the latent space with com-
plex noisy data. It can effectively improve the robustness of
noisy data training.

(2) A posterior data clean strategy - We can further clean
the training data jointly considering intra-class noise and
inter-class noise. This process is easy to perform and effec-
tively improves performance.

(3) Superior performance on noise-robust representation
learning in face recognition - We apply SKH to different
types of label noise and conduct extensive experiments to
thoroughly evaluate its superiority to other methods. It pro-
vides a new state-of-the-art for noise-robust representation
learning.

2. Related Works
Datasets for Face recognition. The training of the mod-
ern face recognition model heavily relies on large-scale
datasets. Many existing studies [24, 11, 3, 1, 31, 4] confirm
that the performance of face recognition model improves
with the growth of the training dataset scale. MS1M [11]
is the first million-scale public face recognition dataset.
It consists of 10M faces of 100K celebrities. Celeb-
500K [3] is another large-scale face dataset, containing over
500K identities. However, most of those face recognition
datasets are scratched from the Internet by a pre-collected
celebrity list, and they tend to be noisy [24, 6]. For ex-
ample, the noise-rate of MS1M is around 50%. Many
works [30, 24, 1] explore recursive training and cleaning
processes to build noise-controlled datasets. However re-
cursive process is time-consuming and it is proven that there
still exists noise [6, 5]. While some works rely on human
labors to clean datasets [24], however, it is not realistic for
datasets with tens of millions of samples.

Loss functions for Face recognition. The core problem
for building an excellent face recognition model is to make
the model generate discriminative features, which means
intra-class compactness and inter-class separation. Many
popular works [26, 6, 17, 21, 23, 17] tend to utilize well-
designed loss functions to help the model to form discrim-
inate feature. Contrastive loss [23] and triplet loss [21] are
proposed to increase Euclidean margin for more discrimi-
native feature embeddings. Specifically, they force the Eu-
clidean distance between instances from different classes
larger than those from the same class by a large margin.
However, the number of tuple and triplet grows exponen-
tially as the dataset becomes larger.

Liu et al. [17] brings about a new perspective to this
problem. They pioneer A-softmax which considers the last
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fully connected layer inner product as a space project op-
eration and the weight of the linear transformation matrix
could represent the corresponding class anchor. Then a mul-
tiplicative angular margin penalty is proposed to encourage
intra-class compactness. Deng et al. [6] directly adds an ad-
ditive margin penalty in the angular space, which has a clear
geometric interpretation and easy to be implemented. Even
though these margin-based loss functions have achieved re-
markable success, they all rely on clean training datasets,
which is unpractical in reality. Designing more effective
loss functions to handle datasets with noise has recently
drawn much attention in face recognition.

Face recognition with noise. Learning from imperfect
annotations [2, 20, 16, 28, 9, 10] has become an important
research area when facing massive data. As for face recog-
nition, there are several works focus on alleviating the nega-
tive impact of noisy data [32, 27, 5, 13, 8]. Zhong et al. [32]
design a noise-resistant loss function that combines original
labels and predicted labels of current model to form a hypo-
thetical training labels. However, the quality of hypothetical
labels is heavily limited by the performance of the initial
model. Wang et al. [27] introduces a co-mining strategy
which trains two networks simultaneously and uses the loss
value to re-weight the training examples. The twin-network
design avoids error accumulation. However, the co-mining
is unpractical for training with huge networks on large-scale
datasets since it doubles the training cost. Deng et al. [5]
introduces multiple centers for each class to alleviate the
intra-class noise conflict, while the inter-class conflict still
limits the model performance. In this paper, multiple K-
class hyperplane with a greedy switching mechanism and
a practical data clean strategy are introduced to handle the
intra-class and inter-class noise simultaneously.

3. Preliminary Understanding
3.1. A Unified Formulation of Loss Functions

In face recognition tasks, we can formulate a unified
equation to represent variant loss functions as:

L(~xi) = −logPi,yi = −log
ef̂i,yi

ef̂i,yi +
∑
j 6=yi e

fi,j
, (1)

where i is the index of samples in the current batch data and
yi represents the label ID of sample Ii. Assuming that the
vector ~xi denotes the feature representation of a face image
Ii and ~Wj indicates the j-th class center. The logit f̂i,yi and
fi,j can be formulated as:

f̂i,yi = s · [m1 · cos(θi,yi +m2)−m3], (2)

fi,j = s · cos(θi,j), (3)
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Figure 2. Illustration of the label noise conflict in latent space.
∂ cos θ∗,yi
∂ ~Wyi

is the gradient in the direction of the tangent line. The

intra-class conflict and inter-class conflict disrupt the optimization
of the model.

cos θi,j =

〈
~xi, ~Wj

〉
‖~xi‖2

∥∥∥ ~Wj

∥∥∥
2

, (4)

where s,m1,m2,m3 are hyperparameters. ArcFace can be
obtained by assigned m1 = 1,m3 = 0 and m2 = 0.5. In
order to improve the intra-class compactness and inter-class
discrepancy, the model needs to enlarge Pi,yi , i.e., enlarge
f̂i,yi and reduce fi,j .

3.2. Analysis of Intra-class and Inter-class Conflict

To make the analysis clear, we take ArcFace as a ba-
sic loss function to explore the influence of label noise on
model optimization.

At the backward propagation stage, the gradient of ~Wyi

in ArcFace is calculated as

∂L(~xi)
∂ ~Wyi

= (Pi,yi − 1)Ocos θi,yi
f̂i,yi ·

∂ cos θi,yi

∂ ~Wyi

. (5)

As Ocos θi,yi
f̂i,yi and (Pi,yi−1) are always scalars, the gra-

dient of ~Wyi follows the same direction of ∂ cos θi,yi
∂ ~Wyi

, and

∂ cos θi,yi

∂ ~Wyi

=
1∥∥∥ ~Wyi

∥∥∥
2

(xi − cos θi,yi ·Wyi), (6)

where xi and Wyi means normalized vectors. Thus, the di-
rection of gradient is perpendicular to the direction of Wyi .
Similarly, we have that the gradient ∂L(~xi)

∂ ~Wj
, j 6= yi, is per-

pendicular to Wj .
According to the aforementioned derivation, we can eas-

ily understand the effect of intra-class conflict and inter-
class conflict on model optimization as shown in Fig. 2. For
intra-class noise, we consider two samples ~xk and ~xn be-
longing to different identities but with the same ID. The gra-
dients of class center Wyi generated by samples ~xk and ~xn
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are contradictory in the direction of the tangent line (perpen-
dicular to the direction of Wyi ), and so are for inter-class
noise. This makes the training process unstable and easy to
collapse the K-class hyperplane in latent space. In order to
eliminate the effects of label noise, we need to jointly elim-
inate the both intra-class conflict and inter-class conflict to
conduct a noise-robust training method.

4. The Proposed Approach
In this paper, we are committed to eliminating the label

noise conflict via a simple and effective manner that can
be directly plugged into any loss functions. The switchable
manner ensures stability and will significantly improve their
robustness to label noise.

Inspired by the observation stated in the previous sec-
tion, we propose a novel learning mechanism Switchable
K-class Hyperplanes (SKH) to wisely avoid intra-class con-
flict and inter-class conflict. We will first introduce our pro-
posed Switchable K-class Hyperplanes and then give a deep
analysis to better understand its effectiveness and robust-
ness. Finally, we conduct extensive experiments to evaluate
its performance on real-world noise and variant synthetic
noise.

4.1. Switchable K-class Hyperplanes

Let the K-class hyperplane represents the final classifi-
cation layer. At the training stage, we construct M K-class
hyperplanes F = {fm|m ∈ {1, . . . ,M}} at the end of the
backbone. We initialize the weight matrix Wm ∈ RD×C
for each anchor fm independently. D,C indicates the fea-
ture dimension and identity number. In one training step, let
~xi denotes the feature vector of sample Ii, and Lm(~xi) indi-
cates the loss of sample Ii calculated with anchor fm. Note
that fm is dynamically selected for each training sample
and we employ the greedy manner to control the selection.
The loss LCE of sample Ii can be calculated as:

LCE(~xi) = Largminm L
m(~xi)(~xi). (7)

This indicates that after the forward and backward propaga-
tion, only one fm will be updated and provide gradient to
the backbone for each sample. To be clear, we demonstrate
the pipeline of SKH in Fig. 3. In this manner, SKH is able to
capture the complex distribution of the whole training data
with potential label noise, no matter for intra-class noise or
inter-class noise. The optimization target is to minimize the
loss LCE over the whole training data. To achieve this, it
tends to switch the samples of different identities with the
same ID or the same identity with different IDs to differ-
ent fm. Therefore, the gradients ∂ cos θn,yi

∂ ~Wyi

and ∂ cos θk,yi

∂ ~Wyi

in Fig. 2 are substituted to ∂ cos θn,yi

∂ ~W
m1
yi

and ∂ cos θk,yi

∂ ~W
m2
yi

, where

m1,m2 ∈ {1, ldots,M} and m1 6= m2. ~Wm1
yi and ~Wm2

yi

Figure 3. The pipeline of Switchable K-class Hyperplanes. Only
one K-class hyperplane in SKH will be activated by the specific
training sampling to alleviate the intra-class conflict and inter-
class conflict.

denote the class centers in fm1 and fm2 for ID yi, respec-
tively. This potential switchable manner effectively elimi-
nate the intra-class conflict and inter-class conflict.

4.2. Posterior Data Clean Strategy

When applied to the practical optimization, we observed
that the clean samples, hard samples and noise samples will
automatically converge to their respective weight centers.
Even though Switchable K-class Hyperplanes can effec-
tively improve the robustness under label noise, the intra-
class compactness and inter-class discrepancy still suffer an
inevitable decline. The clean samples and hard samples are
separated into different weight centers in different anchors.
The clean samples and noise samples still do. This may be-
come more serious when the dataset only contains few noise
images.

Based on this observation, we propose a straightforward
strategy to recapture intra-class compactness and inter-class
discrepancy after the standard training process. For each
class, we only preserve the weight center with the largest
number of samples between M anchors. Let ~Wi and ~Wj

denote the preserved weight centers of i-th and j-th ID, re-
spectively. The similarity of ~Wi and ~Wj is calculated by:

sim( ~Wi, ~Wj) =

〈
~Wi, ~Wj

〉
∥∥∥ ~Wi

∥∥∥
2

∥∥∥ ~Wj

∥∥∥
2

. (8)

We introduce the constant angle threshold T1, T2. We drop
the samples when sim( ~Wyi , ~xi) ≤ T1 and merge samples
belonging to ~Wi and ~Wj when sim( ~Wi, ~Wj) ≥ T2. After
that, we can retrain the model based on the cleaned dataset.

4.3. Robustness and Effectiveness Analysis

We give a more intuitive illustration to understand the
training process based on noise samples. The first figure in
Fig. 4 describes the initial state of the model with 3 hyper-
planes. Each sample will get similar loss value with dif-
ferent fm and the greedy selection strategy now is more
like random selection. After a few steps of training, the

3022



Init. Middle. Anaphasis.

ID 4

ID 2

ID 4

ID 2

ID 4

ID 2

bring high loss achieve lowest loss
Random loss

Figure 4. An intuitive illustration to understand the training process based on noise samples. The second sample in ID 4 is intra-class noise
and the inter-class noise samples in ID 2 have the same identity as ID 4. These three figures indicate different training stages.

inter-class noise samples will obtain high loss when acti-
vating the same hyperplanes. Therefore, some of them will
be switched to others with the lowest loss as shown in the
second figure in Fig. 4. Finally, the optimal state can be
achieved by separating the noise samples to different an-
chors to eliminate the gradient conflict on the class center.

Except for the switchable manner with the lowest loss,
we can also consider other different strategies. (1) Adopt
the largest loss manner to switch the sample to different an-
chors. This forces noise samples to disturb the class centers
dominated by clean samples and collapse the model opti-
mization. (2) Adopt max pooling on the class-wise cosine
similarity as done in sub-center ArcFace [5]. This can effec-
tively dispose the intra-class conflict but intensify the inter-
class conflict. It will force to generate the gradient conflict
as shown in Fig. 2(b). On the contrary, the proposed Switch-
able K-class Hyperplanes can jointly alleviate the influence
of intra-class and inter-class noise, and can be combined
with variant loss functions.

5. Experiments

5.1. Experimental Settings

Datasets The datasets for training in our experiments in-
clude MS1MV0 (about 10M images of 100K identities)
, MS1MV2 (about 5.8M faces of 85K identities), and
MS1MV3 (about 5.1M faces of 91K identities). MS1MV0
is the original version of dataset proposed in [11],
and it is shown that the proportion of noise is about
50%. MS1MV2 and MS1MV3 are both semi-automatically
cleaned from MS1MV0, introduced in [6] and [7] respec-
tively. MS1MV2, also known as “emore”, is popular in face
recognition research, and MS1MV3 is a strengthened ver-
sion of MS1MV2. For evaluation, we mainly employ IJB-
B [29] and IJB-C [18] as the testing datasets and follow the
standard test protocol. Moreover, the results of our final re-
sult on LFW [14], CFP-FP [22], and AgdDB-30 [19] are
reported.

Implementation Details We follow ArcFace [6] to get
the aligned face crops and resize them into (112×112).
Then, a ResNet-like [12] network R50 is used to extract
representation and returns a 512-D embedding for each im-
age. For all the experiments in this paper, we set the learn-
ing rate as 0.1 at the start of training and downscale it by
0.1 at 100K, 160K, and 220K iterations. The training pro-
cess ends after 240K iterations. We also utilize a warm-up
of learning rate from 0.01 in the first 12K iterations. The
weight decay is set to 5e-4 and the momentum of the SGD
optimizer is 0.9. We train the network on 8 NVIDIA V100
GPUs, with a total batch size of 512. The experiments are
implemented by PyTorch.

5.2. Comparison with the State-of-the-art

We conduct experiments with ResNet-50 to investigate
the proposed Switchable K-class Hyperplanes based on the
noisy MS1MV0. In Tab. 1, the performance of vanilla Ar-
cFace is decreased by a large margin compared to train-
ing on the clean data of MS1MV3. As analyzed in Fig. 2,
the serious potential intra-class conflict and inter-class con-
flict in MS1MV0 greatly hinder the optimization of the net-
work. With the proposed Switchable K-class Hyperplanes,
the performance of basic ArcFace is remarkably improved
under massive noise.

We further compare our method with the state-of-the-art
methods, including co-mining [27] and sub-center ArcFace.
As shown in Tab. 1, the proposed SKH outperforms exist-
ing works with a significant margin, which demonstrates
the effectiveness of our method on noisy data. To be spe-
cific, when training on the noisy MS1MV0, SKH outper-
forms co-mining for 1.43% and sub-center for 1.53% under
TAR@FAR=1e-4 on IJB-C testset. The IJB-B testset has
shown a similar trend. The superiority of our method is
mainly due to the delicate switchable strategy with multiple
K-class hyperplanes, which can handle intra-class noise and
inter-class noise simultaneously.
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Method Dataset IJB-B IJB-C
1e-5 1e-4 1e-3 1e-5 1e-4 1e-3

ArcFace MS1MV0 78.88 89.24 93.86 85.49 91.82 95.15
sub-center ArcFace M = 3 MS1MV0 85.62 91.70 94.88 90.59 93.72 95.98
co-mining [27] MS1MV0 85.57 91.80 94.99 90.71 93.82 95.95
NT [13] MS1MV0 85.56 91.57 94.79 90.48 93.65 95.86
NR [32] MS1MV0 85.53 91.58 94.77 90.41 93.60 95.88
SKH + ArcFace M = 3 MS1MV0 89.34 93.50 95.89 93.00 95.25 96.85
SKH + ArcFace M = 2 MS1MV0 88.12 93.04 95.44 91.92 94.63 96.47
SKH + ArcFace M = 3 MS1MV0 89.34 93.50 95.89 93.00 95.25 96.85
SKH + ArcFace M = 4 MS1MV0 89.04 93.47 95.77 92.99 95.11 96.72
SKH + ArcFace M = 5 MS1MV0 88.88 93.50 95.74 92.71 95.04 96.70
sub-center ArcFace M = 3 ↓1 MS1MV0 89.40 94.56 96.49 94.03 95.92 97.40
SKH + ArcFace M = 3 ↓1 MS1MV0 90.71 94.82 96.55 94.18 96.26 97.53
ArcFace MS1MV2 88.64 94.41 96.16 93.63 95.81 97.23
ArcFace MS1MV3 90.74 95.04 96.66 94.66 96.44 97.64

Table 1. Ablation experiments of different settings on MS1MV0 and MS1MV3. The 1:1 verification accuracy (TAR@FAR) is used as the
evaluation metric on IJB-B and IJB-C. M = 3 ↓ 1 indicates we perform the posterior data clean strategy.

Method T1 T2 IJB-B IJB-C
SKH M = 3 ↓1 0.70 - 94.72 96.12
SKH M = 3 ↓1 0.75 - 94.80 96.22
SKH M = 3 ↓1 0.75 0.8 94.82 96.26
SKH M = 3 ↓1 0.75 0.9 94.80 96.15

Table 2. Experiments with different choices of T1 and T2. We
adopt the 1:1 verification TAR (@FAR=1e-4) on the IJB-B and
IJB-C dataset as the evaluation metric.

5.3. Ablation Study

Exploration on Hyperparameters. The Switchable K-
class Hyperplanes is effective but simple to implement,
with only three hyper-parameters: the anchor number M ,
the constant threshold T1 and T2. We first conduct sev-
eral experiments to explore the sensitivity of performance
to the value of M . The number of switchable hyperplanes
M plays an important role of balance between hard sam-
ples and noise samples. If M is too small, the hyperplanes
are not capable of isolating all noise samples. If M is too
large, the intra-class and inter-class variance in each hyper-
plane is reduced, leading to degenerated discriminability.
On MS1MV0 dataset, we conduct ablation experiments on
M , shown in Tab. 1, and find M = 3 achieve the best per-
formance. More hyperplanes do not lead to better perfor-
mance.

We further examine the influence of different T1 and T2
and show the results in Tab. 2. We find that the combination
of T1 = 0.75 and T2 = 0.8 is the best, while the perfor-
mance is actually insensitive to these hyperparameters. In
the following experiments, we use M = 3, T1 = 0.75 and
T2 = 0.8 as the default setting.

Method Dataset IJB-B IJB-C
ArcFace IA-MS1MV3 93.84 95.31
SKH + ArcFace IA-MS1MV3 94.67 96.06
ArcFace IT-MS1MV3 86.96 90.69
SKH + ArcFace IT-MS1MV3 94.81 95.04

Table 3. Experiments on variant label noises. We adopt the 1:1
verification TAR (@FAR=1e-4) on the IJB-B and IJB-C dataset as
the evaluation metric.

Effectiveness on Synthetic Noise. Switchable K-class
Hyperplanes is designed for noise-robust representation
learning. We elaborately construct synthetic noisy datasets
to explore the robustness of SKH on different types of label
noise. We employ the MS1MV3, cleaned multiple times
by a semi-automatic manner, to establish intra-class noise,
inter-class noise and mixture of noise.

1. For intra-class noise, we merge the images from one
identity into another. Specifically, we change the labels
of images belonging to identity yi into yi − 1 if yi is
a even number. After the merging process, we get a
noisy dataset with ∼45K different IDs.

2. For inter-class noise, we split the images of one iden-
tity into two different IDs. Specifically, we randomly
select half of the images belonging to yi, and change
the labels into yi+n, where n is the number of identi-
ties of original MS1MV3. Then we get a noisy dataset
with ∼180K different IDs.

3. For mixture of noise, we further generate both of intra-
class noise and inter-class noise to simulate the real
world situation. Firstly, we keep half of images in each
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Figure 5. Evaluation of SKH with different ratios of noisy data in
Mix-MS1MV3.

ID to form a clean subset. Then, the rest images for
each identity will be randomly split into two groups,
which are given two random labels respectively. It is
noteworthy that we can control the number of images
inserted into the clean subset to achieve various noise
ratio.

The results on intra-class noise and inter-class noise are
shown in Tab.3. The original ArcFace on both of them re-
sults in a significant performance drop. By contrast, the
proposed SKH effectively enhances the robustness towards
variant label noises.

For mixture of noise, as shown in Fig. 5, SKH surpasses
ArcFace and sub-center by a large margin, especially when
the noise ratio getting bigger. When the noise ratio in-
creases, the performance of SKH almost keeps the same,
and can even increase a little. However, the performance
of ArcFace and sub-center drops by an increasing margin.
This indicates that the proposed SKH is more robust for
noise-tolerant face recognition training.

Posterior Data Clean. Based on the discriminative power
of the converged SKH, we can further clean the data to filter
out some noise samples by an offline manner. The related
experiments with “M = 3 ↓ 1” in Tab. 1 demonstrate the
results. The offline data cleaning can further improve the
performance. By performing only once, the cleaned dataset
leads to a superior performance than MS1MV2, which us-
ing elaborate semi-automatic cleaning.

Note that, the proposed SKH has a slight performance
gap compared with ArcFace when training on MS1MV3.
However, with the proposed posterior data clean strategy,
we can catch up and even achieve better performance when
compared with MS1MV3. The results on several popular
testsets are shown in Table 4. Furthermore, we carefully
look over the data cleaning process on MS1MV3. Surpris-
ingly, we find that there are about 2.4K identities are over-

Method IJB-B IJB-C LFW CFP-FP AgeDB-30
ArcFace 95.04 96.44 99.83 98.57 98.12
SKH m=3 93.50 95.25 99.78 98.59 98.23
SKH m=3↓1 94.98 96.48 99.77 98.70 98.25

Table 4. Experiments on MS1MV3 cleaned by the proposed pos-
terior data clean strategy, showing superior performance than the
original one. We adopt the 1:1 verification TAR (@FAR=1e-4) on
the IJB-B and IJB-C dataset as the evaluation metric.

ID: 646

ID: 46776

ID: 660

ID: 12941

Figure 6. An illustration of the inter-class noise in the semi-
automatically refined MS1MV3. The ID at the left-top of the im-
ages indicates the given label in MS1MV3.

Method CosFace sub-center SKH
IJB-C 92.16 94.02 94.92
IJB-B 89.25 92.21 93.02

Table 5. Experiments with CosFace. We adopt the 1:1 verification
TAR (@FAR=1e-4) on the IJB-B and IJB-C dataset as the evalua-
tion metric.

lap with each other, and we show several examples in Fig. 6.
This explains why the cleaned dataset based on MS1MV3
can result in better performance than the original one, and
demonstrates the effectiveness of our methods further more.

Generalization on Other Loss Function. We further ex-
amine the generalization ability of SKH on CosFace [26]
loss, another popular loss other than ArcFace. Comparison
of the results in Table 5 demonstrates that our method can
still surpass ArcFace and sub-center by a significant margin.

Discussion. To understanding the reason behind the ef-
fectiveness of our method, we analyze the training process
in detail. We first give an intuitive illustration to show
the evolution of feature space. Specifically, we visualize
the changes of features of samples and anchors in different
training stages to demonstrate how SKH separates the intra-
class noise samples and inter-class noise samples to differ-
ent anchors. As in Fig. 7, at the initial stage of training, both
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Figure 7. Visualization of the evolution of feature space in SKH at different training stages. SKH can separate the intra-class noise samples
and inter-class noise samples to different anchors.

Figure 8. The number of valid classes along the training process
for MS1MV0 and MS1MV3 datasets.

training samples and anchors are scattered randomly over
the feature space. Along with the training process, the sam-
ples and anchors begin to converge under the greedy selec-
tion strategy. When the training completes, the intra-class
noise samples and inter-class noise samples are switched to
different anchors.

Furthermore, we count the number of valid classes,
i.e., the number of anchors that have been selected as the
class center by at least one sample, and plot the results on
MS1MV0 and MS1MV3 at different training epochs. We
can see that, for MS1MV0, the number of valid classes is
close to 99743, the number of all classes, along the train-
ing process. This indicates that the proposed SKH learns to
effectively utilize most of anchors in 3 K-class hyperplanes
to handle the intra-class and inter-class noise. On the con-
trary, the number of valid classes on MS1MV3 decreases
significantly as training to about one third of the of identitie
number. This shows that our SKH learns to gather most of
the intra-class samples together randomly with one of the
three class centers. The decrease of valid classes helps to
explain the performance gap between SKH and ArcFace on
MS1MV3. We verify this explanation by training SKH with
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Figure 9. The result of SKH trained on MS1MV3 with different
values of margin.

greater margin in ArcFace, and find that the performance
increases as the margin equals 0.6, which results in inferior
performance in standard ArcFace on MS1MV3.

6. Conclusion

In this work, we present Switchable K-class Hyperplanes
to better describe the latent space under massive noisy data.
It can directly replace the conventional single K-class hy-
perplane as the new paradigm for noise-robust representa-
tion learning. When collaborated with the popular ArcFace
on million-level data representation learning, we found that
the switchable manner in SKH can effectively eliminate the
gradient conflict generated by real-world label noise. A pos-
terior data clean strategy is further introduced to refine the
noisy dataset. Extensive experiments on noisy data training
demonstrate the effectiveness of SKH and it provides a new
state-of-the-art for noise-robust representation learning.
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