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Abstract

Video data is with complex temporal dynamics due to
various factors such as camera motion, speed variation,
and different activities. To effectively capture this diverse
motion pattern, this paper presents a new temporal adap-
tive module (TAM) to generate video-specific temporal ker-
nels based on its own feature map. TAM proposes a unique
two-level adaptive modeling scheme by decoupling the dy-
namic kernel into a location sensitive importance map and
a location invariant aggregation weight. The importance
map is learned in a local temporal window to capture short-
term information, while the aggregation weight is gener-
ated from a global view with a focus on long-term struc-
ture. TAM is a modular block and could be integrated into
2D CNNs to yield a powerful video architecture (TANet)
with a very small extra computational cost. The exten-
sive experiments on Kinetics-400 and Something-Something
datasets demonstrate that our TAM outperforms other tem-
poral modeling methods consistently, and achieves the
state-of-the-art performance under the similar complex-
ity. The code is available at https://github.com/
liu-zhy/temporal-adaptive-module.

1. Introduction

Deep learning has brought great progress for various
recognition tasks in image domain, such as image classi-
fication [21, 12], object detection [28], and instance seg-
mentation [!1]. The key to these successes is to devise
flexible and efficient architectures that are capable of learn-
ing powerful visual representations from large-scale image
datasets [4]. However, deep learning research progress in
video understanding is relatively slower, partially due to the
high complexity of video data. The core technical prob-
lem in video understanding is to design an effective tempo-
ral module, that is expected to be able to capture complex
temporal structure with high flexibility, while yet to be of
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low computational consumption for processing high dimen-
sional video data efficiently.

3D Convolutional Neural Networks (3D CNNs) [15, 34]
have turned out to be mainstream architectures for video
modeling [, 8, 36, 27]. The 3D convolution is a direct
extension over its 2D counterparts and provides a learn-
able operator for video recognition. However, this sim-
ple extension lacks specific consideration about the tem-
poral properties in video data and might as well lead to
high computational cost. Therefore, recent methods aim to
model video sequences in two different aspects by combin-
ing a lightweight temporal module with 2D CNNs to im-
prove efficiency (e.g., TSN [40], TSM [23]), or designing
a dedicated temporal module to better capture temporal re-
lation (e.g., Nonlocal Net [41], ARTNet [38], STM [17],
TDN [39]). However, how to devise a temporal module
with both high efficiency and strong flexibility still remains
to be an unsolved problem. Consequently, we aim at ad-
vancing the current video architectures along this direction.

In this paper, we focus on devising an adaptive module
to capture temporal information in a more flexible way. In-
tuitvely, we observe that video data is with extremely com-
plex dynamics along the temporal dimension due to factors
such as camera motion and various speeds. Thus 3D con-
volutions (temporal convolutions) might lack enough repre-
sentation power to describe motion diversity by simply em-
ploying a fixed number of video invariant kernels. To deal
with such complex temporal variations in videos, we argue
that adaptive temporal kernels for each video are effective
and as well necessary to describe motion patterns. To this
end, as shown in Figure 1, we present a two-level adaptive
modeling scheme to decompose the video specific temporal
kernel into a location sensitive importance map and a loca-
tion invariant (also video adaptive) aggregation kernel. This
unique design allows the location sensitive importance map
to focus on enhancing discriminative temporal information
from a local view, and enables the video adaptive aggrega-
tion to capture temporal dependencies with a global view of
the input video sequence.

Specifically, the design of temporal adaptive module
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Figure 1. Temporal module comparisons: The standard temporal convolution shares weights among videos and may lack the flexibility
to handle video variations due to the diversity of videos. The temporal attention learns position sensitive weights by assigning varied

importance for different time without any temporal interaction, and may ignore the long-range temporal dependencies.

Our proposed

temporal adaptive module (TAM) presents a two-level adaptive scheme by learning the local importance weights for location adaptive
enhancement and the global kernel weights for video adaptive aggregation. ©® is attention operation, and ® is convolution operation.

(TAM) strictly follows two principles: high efficiency and
strong flexibility. To ensure our TAM with a low computa-
tional cost, we first squeeze the feature map by employing
a global spatial pooling, and then establish our TAM in a
channel-wise manner to keep the efficiency. Our TAM is
composed of two branches: a local branch (£) and a global
branch (G). As shown in Fig. 2, TAM is implemented in
an efficient way. The local branch employs temporal con-
volutions to produce the location sensitive importance maps
to enhance the local features, while the global branch uses
fully connected layers to produce the location invariant ker-
nel for temporal aggregation. The importance map gen-
erated by a local temporal window focuses on short-term
motion modeling and the aggregation kernel using a global
view pays more attention to the long-term temporal infor-
mation. Furthermore, our TAM could be flexibly plugged
into the existing 2D CNN:ss to yield an efficient video recog-
nition architecture, termed as TANet.

We verify the proposed TANet on the task of action clas-
sification in videos. In particular, we first study the per-
formance of the TANet on the Kinetics-400 dataset, and
demonstrate that our TAM is better at capturing temporal
information than other several counterparts, such as tempo-
ral pooling, temporal convolution, TSM [23], TEINet [24],
and Non-local block [41]. Our TANet is able to yield a very
competitive accuracy with the FLOPs similar to 2D CNNs.
We further test our TANet on the motion dominated dataset
of Something-Something, where the state-of-the-art perfor-
mance is achieved.

2. Related Work

Video understanding is a core topic in the field of com-
puter vision. At the early stage, a lot of traditional meth-

ods [22, 20, 29, 43] have designed various hand-crafted
features to encode the video data, but these methods are
too inflexible when generalized to other video tasks. Re-
cently, since the rapid development of video understand-
ing has been much benefited from deep learning meth-
ods [21, 32, 12], especially in video recognition, a series
of CNNs-based methods were proposed to learn spatiotem-
poral representation, and the differences with our method
will be clarified later. Furthermore, our work also relates to
dynamic convolution and attention in CNNs.

CNNs-based methods for action recognition. Since the
deep learning method has been wildly used in the image
tasks, there are many attempts [18, 31, 40, 46, 10, 23, 39]
based on 2D CNNs devoted to modeling the video clips.
In particular, [40] used the frames sparsely sampled from
the whole video to learn the long-range information by ag-
gregating scores after the last fully-connected layer. [23]
shifted the channels along the temporal dimension in an
efficient way, which yields a good performance with 2D
CNNs. By a simple extension from spatial domain to spa-
tiotemporal domain, 3D convolution [15, 34] was proposed
to capture the motion information encoded in video clips.
Due to the release of large-scale Kinetics dataset [19], 3D
CNNs [1] were wildly used in action recognition. Its vari-
ants [27, 36, 44] decomposed the 3D convolution into a
spatial 2D convolution and a temporal 1D convolution to
learn the spatiotemporal features. And [8] designed a net-
work with dual paths to learn the spatiotemporal features
and achieved a promising accuracy in video understanding.

The methods aforementioned all share a common insight
that they are video invariant and ignore the inherent tempo-
ral diversities in videos. As opposed to these methods, we
design a two-level adaptive modeling scheme by decompos-
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Figure 2. The overall architecture of TANet: ResNet-Block vs.
TA-Block. The whole workflow of temporal adaptive module
(TAM) in the lower right shows how it works. The shape of tensor
has noted after each step. & denotes element-wise addition, ® is
element-wise multiplication, and ® is convolution operation. The
symbols appeared in figure will be explained in Sec. 3.1.

ing the video specific operation into a location sensitive ex-
citation and a location invariant convolution with adaptive
kernel for each video clip.

Attention in action recognition. The local branch in TAM
mostly relates to SENet [13]. But the SENet learned mod-
ulation weights for each channel of feature maps. Sev-
eral methods [24, 5] also resorted to the attention to learn
more discriminative features in videos. Different from these
methods, the local branch keeps the temporal information
to learn the location sensitive importances. [41] designed
a non-local block which can be seen as self-attention to
capture long-range dependencies. Our TANet captures the
long-range dependencies by simply stacking more TAM,
and keep the efficiency of networks.

Dynamic convolutions. [16] first proposed the dynamic
filters on the tasks of video and stereo prediction, and de-
signed a convolutional encoder-decoder as filter-generating
network. Several works [45, 3] in image tasks attempted to
generate aggregation weights for a set of convolutional ker-
nels, and then produce a dynamic kernel. Our motivation
is different from these methods. We aim to use this tem-
poral adaptive module to deal with temporal variations in
videos. Specifically, we design an efficient form to imple-
ment this temporal dynamic kernel based on input feature
maps, which is critical for understanding the video content.

3. Method
3.1. The Overview of Temporal Adaptive Module

As we discussed in Sec. 1, video data typically exhibit the
complex temporal dynamics caused by many factors such as
camera motion and speed variations. Therefore, we aim to

tackle this issue by introducing a temporal adaptive module
(TAM) with video specific kernels, unlike the sharing con-
volutional kernel in 3D CNNs. Our TAM could be easily
integrated into the existing 2D CNNss (e.g., ResNet) to yield
a video network architecture, as shown in Figure 2. We will
give an overview of TAM and then describe its technical
details.

Formally, let X € REXT*HXW denote the feature maps
for a video clip, where C' represents the number of chan-
nels, and 7', H, W are its spatiotemporal dimensions. For
efficiency, TAM only focuses on temporal modeling and the
spatial pattern is expected to captured by 2D convolutions.
Therefore, we first employ a global spatial average pooling
to squeeze the feature map as follows:

1
Xc,t = ¢(X)c,t = m ZXC,t,j7i7 (1)

,J

where ¢, t, 7, ¢ is the index of different dimensions (in chan-
nel, time, height and width), and X e ROxT aggregates
the spatial information of X. For simplicity, we here use
¢ to denote the function that aggregates the spatial infor-
mation. The proposed temporal adaptive module (TAM) is
established based on this squeezed 1D temporal signal with
high efficiency.

Our TAM is composed of two branches: a local branch £
and a global branch G, which aims to learn a location sensi-
tive importance map to enhance discriminative features and
then produces the location invariant weights to adaptively
aggregate temporal information in a convolutional manner.
More specifically, the TAM is formulated as follows:

Y =g(X)® (LX) o X), @)

where ® denotes convolution operation and © is element-
wise multiplication. It is worth noting that these two
branches focus on different aspects of temporal informa-
tion, where the local branch tries to capture the short term
information to attend important features by using a tempo-
ral convolution, while the global branch aims to incorpo-
rate long-range temporal structure to guide adaptive tempo-
ral aggregation with fully connected layers. Disentangling
kernel learning procedures into local and global branches
turns out to be an effective way in experiments. These two
branches will be introduced in the following sections.

3.2. Local Branch in TAM

As discussed above, the local branch is location sensi-
tive and aims to leverage short-term temporal dynamics to
perform video specific operation. Given that the short-term
information varies slowly along the temporal dimension, it
is thus required to learn a location sensitive importance map
to discriminate the local temporal semantics.
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As shown in Figure 2, the local branch is built by a se-
quence of temporal convolutional layers with ReLU non-
linearity. Since the goal of local branch is to capture short
term information, we set the kernel size K as 3 to learn im-
portance map solely based on a local temporal window. To
control the model complexity, the first Conv1lD followed
by BN [14] reduces the number of channels from C to .
Then, the second Conv1D with a sigmoid activation yields
the importance weights V' € R¢*T which are sensitive to
temporal location. Finally, the temporal excitation is for-
mulated as follows:

Z = Frcscalc(v) ® X = L(X) ® X, (3)

where ©® denotes the element-wise multiplication and Z €
REXT*HXW To match size of X, Frescalo(V) rescales the
Vto V € REXTXHXW py replicating in spatial dimension.

3.3. Global Branch in TAM

The global branch is location invariant and focuses on
generating an adaptive kernel based on long-term tempo-
ral information. It incorporates global context information
and learns to produce the location invariant and also video
adaptive convolution kernel for dynamic aggregation.
Learning the Adaptive Kernels. We here opt to gener-
ate the dynamic kernel for each video clip and aggregate
temporal information in a convolutional manner. To sim-
ply this procedure and as well as preserve high efficiency,
The adaptive convolution will be applied in a channel-wise
manner. In this sense, the learned adaptive kernel is ex-
pected to only model the temporal relations without taking
channel correlation into account. Thus, our TAM would
not change the number of channels of input feature maps,
and the learned adaptive kernel convolves the input feature
maps in a channel-wise manner. More formally, for the cth
channel, the adaptive kernel is learned as follows:

0. = G(X), = softmax(F(Wa,§(F(W1,0(X).)))),
“)
where O, € R¥ is generated adaptive kernel (aggregation
weights) for ¢! channel, K is the adaptive kernel size, &
denotes the activation function ReLU. The adaptive kernel
is also learned based on the squeezed feature map X.eR”
without taking the spatial structure into account for model-
ing efficiency. But different with the local branch, we use
fully connected (fc) layers F to learn the adaptive kernel
by leveraging long-term information. The learned adaptive
kernel with the global receptive field, thus could aggregate
temporal features guided by the global context. To increase
the modeling capabilities of the global branch, we stack two
fclayers and the learned kernel is normalized with a soft-
max function to yield a positive aggregation weight. The
learned aggregation weights © = {©1, 02, ..., O} will be
employed to perform video adaptive convolution.

Temporal Adaptive Aggregation. Before introducing the
adaptive aggregation, we can look back on how a vanilla
temporal convolution aggregates the spatio-temporal visual
information:

Y=W®®X, (5)

Where W is the weights of convolution kernel and has no
concern with input video samples in inference. We argue
this fashion ignores the temporal dynamics in videos, and
thus propose a video adaptive aggregation:

where G can be seen as a kernel generator function. The ker-
nel generated by G can perform adaptive convolution but is
shared cross temporal dimension and still location invari-
ant. To address this issue, the local branch produces Z with
location sensitive importance map. The whole procedures
can be expressed as follows:

Yrii=0X)Z=0QZ = Z Oc k- Zeyt+k,jis

k

(N
where - denotes the scalar multiplication and Y is the output
feature maps (Y € REXTXHXW)

In summary, TAM presents an adaptive module with a
unique aggregation scheme, where the location sensitive ex-
citation and location invariant aggregation all derive from
input features, but focus on capturing different structures
(i.e., short-term and long-term temporal structure).

3.4. Exemplar: TANet

We here intend to describe how to instantiate the TANet.
Temporal adaptive module can endow the existing 2D
CNNs with a strong ability to model different temporal
structures in video clips. In practice, TAM only causes lim-
ited computing overhead, but obviously improves the per-
formance on different types of datasets.

ResNets [12] are employed as backbones to verify the
effectiveness of TAM. As illustrated in Fig. 2, the TAM is
embedded into ResNet-Block after the first Conv2D, which
easily turns the vanilla ResNet-Block into TA-Block. This
fashion will not excessively alter the topology of networks
and can reuse the weights of ResNet-Block. Supposing we
sample T frames as an input clip, the scores of T frames
after fc will be aggregated by average pooling to yield the
clip-level scores. No temporal downsampling is performed
before fclayer. The extensive experiments are conducted in
Sec. 4 to demonstrate the flexibility and efficacy of TANet.

Discussions. We notice that the structure of local branch is
similar to the SENet [13] and STC [5]. The first obvious
difference is the local branch does not squeeze the temporal
dimension. We thus use temporal 1D convolution, instead
of fclayer, as a basic layer. Two-layer design only seeks to
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make a trade-off between non-linear fitting capability and
model complexity. The local branch provides the location
sensitive information, and thereby addresses the issue that
the global branch is insensitive to temporal location.

TSN [40] and TSM [23] only aggregate the temporal fea-
tures with a fixed scheme, but TAM can yield the video
specific weights to adaptively aggregate the temporal fea-
tures in different stages. In extreme cases, our global branch
in TAM can degenerate into TSN when dynamic kernel
weights © is learned to equal to [0,1,0]. From another
perspective, if the kernel weights © is set to [1,0,0] or
[0,0, 1], global branch can be turned into TSM. It seems that
our TAM theoretically provides a more general and flexible
form to model the video data.

When it refers to 3D convolution [ 5], all input samples
share the same convolution kernel without being aware of
the temporal diversities in videos as well. In addition, our
global branch essentially performs a video adaptive convo-
lution whose filter has size 1 x k x 1 x 1, while each filter
in a normal 3D convolution has size C' x k& X k x k, where
C' is the number of channels and k denotes the receptive
field. Thus our method is more efficient than 3D CNNss.
Unlike some current dynamic convolution [3, 45], TAM is
more flexible, and can directly generate the kernel weights
to perform video adaptive convolution.

4. Experiments
4.1. Datasets

Our experiments are conducted on three large scale
datasets, namely, Kinetics-400 [19] and Something-
Something (Sth-Sth) V1&V2 [9]. Kinetics-400 contains
~300k video clips with 400 human action categories. The
trimmed videos in Kinetics-400 are around 10s. We train
the models on the training set (~240k video clips), and test
models on the validation set (~20k video clips). The Sth-
Sth datasets focus on fine-grained and motion-dominated
action, which contains pre-defined basic actions involving
different interacting objects. The Sth-Sth V1 comprises
~86k video clips in the training set and ~12k video clips
in the validation set. Sth-Sth V2 is an updated version of
Sth-Sth V1, which contains ~169k video clips in the train-
ing set and ~25k video clips in the validation set. They both
have 174 action categories.

4.2. Implementation Details

Training. In our experiments, we train the models with 8
and 16 frames as inputs. On Kinetics-400, following the
practice in [41], the frames are sampled from 64 consecu-
tive frames in the video. On Sth-Sth V1&V2, the uniform
sampling strategy in TSN [40] is employed to train TANet.
We first resize the shorter side of frames to 256, and apply
the multi-scale cropping and randomly horizontal flipping

as data augmentation. The cropped frames are resized to
224 x 224 for network training. The batch size is 64. Our
models are initialized by ImageNet pre-trained weights to
reduce the training time. Specifically, on the Kinetics-400,
the epoch for training is 100. The initial learning rate is
set 0.01 and divided by 10 at 50, 75, 90 epochs. We use
SGD with a momentum of 0.9 and a weight decay of le-4
to train TANet. On Sth-Sth V1&V2, we train models with
50 epochs. The learning rate starts at 0.01 and is divided by
10 at 30, 40, 45 epoch. We use a momentum of 0.9 and a
weight decay of 1e-3 to reduce the risk of overfitting.

Testing. Different inference schemes are applied to fairly
compare with other state-of-the-art models. On kinetics-
400, we resize the shorter to 256 and take 3 crops of
256 x 256 to cover the spatial dimensions. In the temporal
dimension, we uniformly sample 10 clips for 8-frame mod-
els and 4 clips for 16-frame models. The final video-level
prediction is yielded by averaging the scores of all spatio-
temporal views. On Sth-Sth V1, we scale the shorter side of
frames to 256 and use center crop of 224 x 224 for evalua-
tion. On Sth-Sth V2, we employ a similar evaluation proto-
col to Kinetics, but only uniformly sample 2 clips, and also
present the accuracy with a single clip using center crop.

4.3. Ablation Studies

The exploration studies are performed on Kinetics-400
to investigate different aspects of TANet. The ResNet archi-
tecture we used is the same with [12]. Our TANet replaces
all ResNet-Blocks with TA-Blocks by default.

Parameter choices. We use different combinations of «
and [ to figure out the optimal hyper-parameters in TAM.
The TANet is instantiated as in Fig. 2. TANet with o =
2 and 5 = 4 achieves the highest performance shown in
Table 1a, which will be applied in following experiments.

Temporal receptive fields. We try to increase the temporal
receptive fields for learned kernel © in the global branch.
From Table 1b, it seems the larger K is beneficial to the ac-
curacy when TANet takes more sampled frames as inputs.
On the other hand, it even degenerates the performance of
TANet when sampling 8 frames. In our following experi-
ments, the K will be set to 3.

TAM in the different position. Table Ic tries to study the
effects of TAM in different position. TANet-a, TANet-b,
TANet-c, and TANet-d denote the TAM is inserted before
the first convolution, after the first convolution, after the
second convolution, and after the last convolution in the
block, respectively. These four styles are graphically pre-
sented in the supplementary material. The style in Fig. 2 is
TANet-b, which has a slightly better performance than other
styles as shown in Table 1c. The TANet-b will be abbrevi-
ated as TANet by default in the following experiments.
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Setting Frames | Top-1 Top-5
o=l | =2 3 5 63%  9210% Kernel ‘ Frames ‘ Top-1 Top-5 Model | Frames | Top-1 Top-5
a=2 | B=4 8 76.28%  92.60% K=3 8 76.28%  92.60% TANet-a 8 75.95%  92.18%
a=4 | B=4 3 7572%  92.14% K=5 8 75.62%  92.14% TANet-b 8 76.28% 92.60%
K=3 16 76.87%  92.88% TANet-c 8 75.75%  92.13%
zz giz 2 ;22;2 3;:233; K=5 | 16 | 77.19% 93.17% TANetd| 8 | 7520% 91.78%
a=2 | =8 8 75.63%  92.20%

(b) Study on the temporal receptive (c) Exploring where to insert TAM. we

(a) Study on parameter choices of o and .
The results have revealed an excellent advan-

fields. Trying larger temporal recep-

insert TAM into TA-Block in difference

tage that TAM is not so insensitive to these

hyper-parameters.

tive fields of © when TANet uses 8
frames and 16 frames as inputs.

position to study its impact.

Models ShuffleNet V2 MobileNet V2  Inception V3 ResNet-50  I3D-ResNet-50 [2]
Stages ‘Frames‘Blooks‘ Top-1 Top-5 Top-1 Top-5 ‘ Top-1 Top-5 ‘ Top-1 Top-5 ‘ Top-1 Top-5 ‘ Top-1 Top-5
ress 8 3 74.12% 91.45% w/o TAM | 62.1% 84.3% | 64.1% 85.6% | 71.4% 89.8% | 70.2% 88.9% | 76.6% -
ress_s 8 9 7515%  92.04% with TAM | 67.3% 87.6% | 71.6% 90.1% | 75.6% 92.0% | 76.3% 92.6% | 77.2%  92.9%
resgz_s 8 13 75.90% 92.22% AAcc. |+52% +3.3%|+7.5% +4.5%|+4.2% +2.2%|+6.1% +3.7% |+ 0.6% -
resa_s5 8 16 | 76.28% 92.60%

(d) Study on the number of TA-Blocks.
The TA-Blocks are cumulatively added into
ResNet50 from stage2 to stageS.

Table 1. Ablation studies on Kinetics-400. These experiments use ResNet-50 as backbone and take 8-frame as inputs in training.

models share the same inference protocol, i.e., 10 clips X 3 crops.

The number of TA-Blocks. To make a trade-off between
performance and efficiency, we gradually add more TA-
Blocks into ResNet. As shown in Table 1d, we find that
more TA-Blocks contributes to better performance.
reso_5 achieves the highest performance and will be used
in our experiments.

Transferring to other backbones. Finally we verify the
generalization of our proposed module. To this end, we
apply the TAM to other well known 2D backbones, like
ShuffleNet V2 [26], MobileNet V2 [30], Inception V3 [33]
and 3D backbones, like I3D-ResNet-50 [1, 2], where all
models has no temporal downsampling operation before the
global average pooling layer. From Table le, we can ob-
serve that the backbone networks equipped with our TAM
outperform their C2D and I3D baselines by a large margin,
which demonstrates the generalization ability of our pro-
posed module.

4.4. Comparison with Other Temporal Modules

As a standard temporal operator, we make comparisons
between our TAM and other temporal modules. For fair
comparison, all models in this study employ the same frame
input (8 x 8) and backbone (ResNet-50). The inference pro-
tocol is to sample 10 x 3 crops to report the performance.

Baselines. We first choose several baselines with temporal
modules. We begin with the 2D ConvNet (C2D), where we
only build 2D ConvNet with ResNet50 and focus on learn-
ing the spatial features. In this sense, it operates on each
frame independently without any temporal interaction be-
fore the global average pooling layer in the end. The second
is the C2D-Pool. To endow the 2D network with temporal
modeling capacity, C2D-Pool inserts the average pooling

(e) Study on the impact on different backbones. We try to extend the TAM to other back-
bones. I3D-ResNet-50 takes 32 frame as inputs but other backbones take 8 frame as inputs.
The performance shows TAM can easily enjoy the benefits with different backbones.

FLOPs

Models . . Params Top-1 Top-5

(of single view)
C2D 42.95G 24.33M  70.2% 88.9%
C2D-Pool 42.95G 2433M  73.1%  90.6%
The C2D-TConv 53.02G 28.10M  733%  90.7%
C2D-TIM [24] 43.06G 2437TM  747%  91.7%
I3Dsx1x1 62.55G 3299M  743%  91.6%
TSM* [23] 42.95G 2433M  741%  91.2%
TEINet* [24] 43.01G 2511IM  749%  91.8%
NL C2D [41] 64.49G 31.6OM  744%  91.5%
Global branch 43.00G 2433M  75.6%  91.9%
Local branch 43.07G 2559M  733%  90.7%
Global branch + SE [13] 43.02G 24.65M  759%  92.1%
TANet-R 43.02G 2559M  76.0%  92.2%
TANet 43.02G 25.59M  76.3%  92.6%

All

Table 2. Studying on the effectiveness of TAM. All models use

ResNet50 as backbone and take 8 frames with sampling stride 8
as inputs. To be consistent with testing, the FLOPs are calculated
with spatial size 256 x 256. x is reported by the author of paper.
All methods share the same training setting and inference protocol.

layer whose kernel size is K x 1 x 1 to perform temporal
fusion without any temporal downsampling. This is eas-
ily implemented by simply replacing all TAMs in network
with average pooling layers. The third type is the learn-
able temporal convolution, whose kernel is shared by all
videos. We first replace each TAM with a standard tempo-
ral convolution with randomly initialized weights, termed as
C2D-TConv. In addition, we replace the standard temporal
convolution with the channel-wised temporal convolution
using TSM [23] initialization to solely aggregate temporal
information without relating different channels, termed as
C2D+TIM [24]. Finally, we compare with Inflated 3D
ConvNet (I3D), whose operation is also based on tempo-
ral convolutions by directly inflating the original 2D con-
volutions into 3D convolutions. In our implementation, we
inflate the first 1 x 1 kernel in ResNet-Blockto 3 x 1 x 1,
which can provide a more fair comparison with our TANet.
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Following [4 1], this variant is referred to as I3D3x1x1. It
is worth noting these three types of temporal convolutions
share the similar idea of fixed aggregation kernel, but differ
in the specific implementation details, which can demon-
strate the efficacy of adaptive aggregation in our TAM.

The aforementioned methods share the same temporal
modeling scheme with a fixed pooling or convolution. As
shown in Table 2, our TAM yields superior performance to
all of them. We observe that C2D obtains the worst perfor-
mance that is less than TAM by 6.1%. Surprisingly, the
naively-implemented temporal convolution (C2D-TConv)
performs similar to temporal pooling (C2D-Pool) (73.3%
vs. 73.1%), which can partly blame on the randomly initial-
ized weights of temporal convolution that corrupt the Ima-
geNet pre-trained weights. In temporal convolution based
models, we find that C2D-TIM obtains the best perfor-
mance with the smallest number of FLOPs. We analyze
that this channel-wise temporal convolution can well keep
the feature channel correspondence and thus benefits most
from the ImageNet pre-trained models. However, it is still
worse than our TAM by 1.6%.

Other temporal counterparts. There are some compet-
itive temporal modules that learn video features based on
C2D, i.e., TSM [23], TEINet [24], and Non-local C2D
(NL C2D). We here compare our TAM with these different
temporal modules, and the results of TSM and TEINet are
directly cited from the original papers, as they share similar
numbers of FLOPs to our TAM. The non-local block is a
kind of self-attention module, proposed to capture the long-
range dependencies in videos. The preferable setting with 5
non-local blocks mentioned in [41] is under a similar com-
putational budget and thereby employed to compare with
our TAM. As seen in Table 2, our TANet achieves high-
est accuracy among these temporal modules, outperforming
TSM by 2.2%, TEINet by 1.4%, and NL C2D by 1.9%.

Variants of TAM. To study the performance of each part
in temporal adaptive module, we separately validate the
Global branch and Local branch. Furthermore, Global
branch + SE uses global branch with SE module [13] to
compare with TANet. TANet achieves the highest accuracy
among these models as well, which proves the efficacy of
each part of TAM and as well as the strong complementar-
ity between local branch and global branch. We also re-
verse the order of local branch and global branch (TANet-
R):Y = L(X)O(G(X)®X). We see that TANet is slightly
better than TANet-R.

4.5. Comparison with the State of the Art

Comparison on Kinetics-400. Table 3 shows the state-
of-the-art results on Kinetics-400. Our method (TANet)
achieves the competitive performance to other models.
TANet-50 with 8-frame also outperforms SlowFast [8] by

Methods Backbones Training Input GFLOPs Top-1 Top-5
TSN [40] InceptionV3 3x224x224 3x250 72.5% 90.2%
ARTNet [38] ResNet18 16 x112x112  24x250 70.7% 89.3%
13D [1] InceptionV1  64x224x224  108xN/A 72.1% 90.3%
R(2+1)D [36] ResNet34 32x112x112 152x10 74.3% 91.4%
NL I3D [41] ResNet50 128x224x224  282x30 76.5% 92.6%
ip-CSN [35] ResNet50 8x224x224 1.2x10 70.8% -
TSM [23] ResNet50 16x224x224 65x30 74.7% 91.4%
TEINet [24] ResNet50 16x224 %224 86x30 76.2% 92.5%
bLVNet-TAM [6] bLResNet50  48x224x224 93x9  73.5% 91.2%
SlowOnly [&] ResNet50 8x224x224 42x30 74.8% 91.6%

SlowFastsx16 [8] ResNet50  (4+32)x224x224  36x30 75.6% 92.1%
SlowFastsxs [8] ResNet50  (8+32)x224x224 66x30 77.0% 92.6%

13D* [2] ResNet50 32 x224x224 335 x30 76.6% -
TANet-50 ResNet50 8x224x224 43%x30  76.3% 92.6%
TANet-50 ResNet50 16x224 %224 86x12  76.9% 92.9%
X3D-XL [7] - 16x312x312 48%30  79.1% 93.9%
CorrNet [37] ResNet101 32x10%3 224x30 79.2% -
ip-CSN [35] ResNetl52 32 x224x224 83x30 79.2% 93.8%

SlowFastiexs [8] ResNetl01 (16+464)x224x224 213x30 78.9% 93.5%

TANet-101 ResNet101 8x224x224 82x30 77.1% 93.1%
TANet-101 ResNet101 16x224x224 164x12 78.4% 93.5%
TANet-152 ResNet152 16x224x224 242x12 79.3% 94.1%

Table 3. Comparisons with the state-of-the-art methods on
Kinetics-400. As described in [8], the GFLOPs of a single view x
the number of views (temporal clips with spatial crops) represents
the model complexity. The GFLOPs is calculated with spatial size
256 x 256. * denotes the I3D without temporal downsampling.

0.7% when using similar FLOPs per view. The 16-frame
TANet only uses 4 clips and 3 crops for evaluation such
that it provides higher inference efficiency and more fair
comparisons with other models. It is worth noting that our
16-frame TANet-50 is still more accurate than 32-frame NL
I3D by 1.4%. As ip-CSN [35] is pretrained on Sports-
IM [18], it achieves the promising accuracy with deeper
backbone, i.e., ResNet152. Furthermore, TAM is com-
patible with the existing video frameworks like SlowFast.
Specifically, our TAM is more lightweight than a standard
3 x 1 x 1 convolution when taking the same number of
frames as inputs, but can yield a better performance. TAM
thus can easily replace the 3 x 1 x 1 convolution in SlowFast
to achieve lower computational costs. X3D has achieved
great success in video recognition. X3D was searched by
massive computing resources and can not be easily ex-
tended in a new situation. Although our method fails to beat
all state-of-the-art methods with deeper networks, TAM as
a lightweight operator can enjoy the advantages from more
powerful backbones and video frameworks. To sum up, the
proposed TANet makes a good practice on adaptively mod-
eling the temporal relations in videos.

Comparison on Sth-Sth V1 & V2. As shown in Table 4,
our method achieves the comparable accuracy comparing
with other models on Sth-Sth V1. For fair comparison,
Table 4 only reports the results taking a single clip with
a center crop as inputs. TANetg,, is higher than TSMpg,,
equipped with same backbone (Top-1: 50.6% vs. Top-1:
49.7%). We also conduct the experiments on Sth-Sth V2.
V2 has more video clips than V1, which can further unleash
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Methods Backbones Pre-train Frames | FLOPs | Top-1 | Top-5
TSN-RGB [40] BNInception ImgNet 8f 16G | 19.5%
TRN-Multiscale [46] | BNInception TmgNet 8f 33G |34.4% -
S3D-G [44] Inception ImgNet 64f |71.38G|48.2% | 78.7%
ECO [47] BNIncep+Res18 K400 16f 64G |41.6% | -
ECOgyLite [47] | BNIncep+Res18 K400 92f 267G |46.4% | -
TSN [40] ResNet50 ImgNet 8f 33G | 19.7% | 46.6%
13D [42] ResNet50 ImgNet+K400 | 32f x 2| 306G |41.6% | 72.2%
NL I3D [42] ResNet50 ImgNet+K400 | 32f x 2 | 334G |44.4%|76.0%
NL I3D+GCN [42] | ResNet50+GCN | ImgNet+K400 | 32f x 2| 606G |46.1% | 76.8%
TSM [23] ResNet50 ImgNet 8f 33G | 45.6% |74.2%
TSM [23] ResNet50 ImgNet 16f 65G |47.2% | 77.1%
TSME,, [23] ResNet50 ImgNet 8f+16f | 98G |49.7% |78.5%
TAM [6] ResNet50 ImgNet 8f - 46.1% -
bLVNet-TAM [6] ResNet50 Sth-Sth V1 32f 48G | 48.4% | 78.8%
GST [25] ResNet50 ImgNet 8f 30G | 47.0% |76.1%
GST [25] ResNet50 ImgNet 16f 59G | 48.6% | 77.9%
TEINet [24] ResNet50 ImgNet 8f 33G |47.4% -
TEINet [24] ResNet50 ImgNet 16 f 66G | 49.9%
TEINetgn [24] ResNet50 ImgNet 8f+16f | 66G |52.5%| -
TANet ResNet50 ImgNet 8f 33G |47.3%|75.8%
TANet ResNet50 ImgNet 16f 66G |47.6% | 77.7%
TANetg, ResNet50 ImgNet 8f+16f | 99G |50.6% |79.3%

Table 4. Comparisons with the state-of-the-art methods on Sth-Sth
V1. The models only taking RGB frames as inputs are listed in
table. To be consistent with testing, we use spatial size 224 x224
to compute the FLOPs.

Methods Backbones | Pre-train | Framesxclipsxcrops | Top-1 | Top-5
TRN [46] BNInception | ImgNet 8fx2x3 48.8% | 77.6%
TSM [23] ResNet50 ImgNet 8fx2x3 59.1% | 85.6%
TSM [23] ResNet50 ImgNet 16fx2x3 63.4% | 88.5%
TSMastream [23]1| ResNet50 ImgNet (16f+16f)x2x3 |66.0% |90.5%
GST [25] ResNet50 ImgNet 8fx1x1 61.6% |87.2%
GST [25] ResNet50 ImgNet 16fx1x1 62.6% | 87.9%
bLVNet-TAM [6]| ResNet50 |Sth-Sth V2 32fx1x1 61.7% | 88.1%
TEINet [24] ResNet50 ImgNet 8fx1x1 61.3%| -%
TEINet [24] ResNet50 ImgNet 16fx1x1 62.1% | -%
TEINetg, [24] | ResNet50 ImgNet Bf+16f)x10x3 |66.5% | -%
TANet ResNet50 ImgNet 8fx1x1 60.5% | 86.2%
TANet ResNet50 ImgNet 8fx2x3 62.7% | 88.0%
TANet ResNet50 ImgNet 16fx1x1 62.5% | 87.6%
TANet ResNet50 ImgNet 16fx2x3 64.6% | 89.5%
TANetg,, ResNet50 ImgNet (8f+16f)x2x3  66.0% |90.1%

Table 5. Comparisons with the SOTA on Sth-Sth V2. We here
apply the two different inference protocal, i.e., 1 clip X 1 crop and
2 clip x 3 crop, to fairly evaluate the TAM with other methods.

the full capabilities of TANet without suffering the overfit-
ting. Following the common practice in [23], TANets use
2 clips with 3 crops to evaluate the accuracy. As shown in
Table 5, our models have achieved the state-of-art perfor-
mance on Sth-Sth V2. As a result, the TANetg,, yields a
competitive accuracy compared with the two-stream TSM
and TEINetg,,. The results on Sth-Sth V1 & V2 have
demonstrated that our method is also good at modeling the
fine-grained and motion-dominated actions.

4.6. Visualization of Learned Kernels

To better understand the behavior of TANet, we visual-
ize the distribution of kernel © generated by global branch
in the last block of stage4 and stage5. For clear compari-
son, the kernel weights in I3D34 1«1 at the same stages are
also visualized to find more insights. As depicted in Fig. 3,
we find that the learned kernel © has a different property:
the shapes and scales of distribution are more diverse than
I3D3x1x1. Since all video clips share the same kernels
in I3D341x1, it causes the kernel weights cluster together
tightly. As opposed to temporal convolution, even model-

driving car driving car drinking beer skydiving

] 1
TANet 13D3,11

Figure 3. The statistics of kernel weights trained on Kinetics-400,
and we plots the distributions in different temporal offsets (¢ €
{—=1,0,1}). Each filled area in violinplot represents the entire data
range, which marks the minimum, the median and the maximum.
The first four columns in the left figure are the distributions of
learned kernels in TANet. In the fifth column, we visualize the
filters of 3 X 1 x 1 kernel in I3D3x 1 x1 to compare with the TANet.

ing the same action in different videos, TAM can generate
the kernel with slightly different distributions. Taking driv-
ing car as an example, the shapes of the distribution shown
in Fig. 3 are similar to each other but the medians of dis-
tributions are not equal. For different actions like drink-
ing beer and skydiving, the shapes and medians of distribu-
tions are greatly different. Even for different videos of the
same action, TAM can learn a different distribution of ker-
nel weights. Concerning that the motion in different videos
may exhibit different patterns, it is necessary to employ an
adaptive scheme to model video sequences.

5. Conclusion

In this paper, we have presented a generic temporal mod-
ule, termed as temporal adaptive module (TAM), to capture
complex motion patterns in videos and proposed a power-
ful video architecture (TANet) based on this new temporal
module. TAM is able to yield a video-specific kernel with
the combination of a local importance map and a global ag-
gregation kernel. This unique design is helpful to capture
the complex temporal structure in videos and contributes to
more effective and robust temporal modeling. As demon-
strated on the Kinetics-400, the networks equipped with
TAM are better than the existing temporal modules in action
recognition, which demonstrates the efficacy of our TAM in
video temporal modeling. TANet also achieves the state-
of-the-art performance on the motion dominated datasets of
Sth-Sth VI1&V2.
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