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Figure 1: Visual comparisons of our method and CAM [17] on the Real-World images. Both results are produced from the
model trained on DIM [56] dataset. Please zoom in to see the fine details.

Abstract

With the development of deep convolutional neural net-
works, image matting has ushered in a new phase. Regard-
ing the nature of image matting, most researches have fo-
cused on solutions for transition regions. However, we ar-
gue that many existing approaches are excessively focused
on transition-dominant local fields and ignored the inher-
ent coordination between global information and transi-
tion optimisation. In this paper, we propose the Tripar-
tite Information Mining and Integration Network (TIMI-
Net) to harmonize the coordination between global and lo-
cal attributes formally. Specifically, we resort to a novel
3-branch encoder to accomplish comprehensive mining of
the input information, which can supplement the neglected
coordination between global and local fields. In order to
achieve effective and complete interaction between such
multi-branches information, we develop the Tripartite In-

*Joint first authors. †Joint corresponding authors. Project page:
https://wukaoliu.github.io/TIMI-Net.

formation Integration (TI2) Module to transform and inte-
grate the interconnections between the different branches.
In addition, we built a large-scale human matting dataset
(Human-2K) to advance human image matting, which con-
sists of 2100 high-precision human images (2000 images
for training and 100 images for test). Finally, we con-
duct extensive experiments to prove the performance of our
proposed TIMI-Net, which demonstrates that our method
performs favourably against the SOTA approaches on the
alphamatting.com (Rank First), Composition-1K (MSE-
0.006, Grad-11.5), Distinctions-646 and our Human-2K.
Also, we have developed an online evaluation website to
perform natural image matting.

1. Introduction

The digital matting is one of the important tasks in com-
puter vision, which aims to accurately estimate the opacity
of foreground objects in images and video sequences. It
has a wide range of applications, particularly in the fields of
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film production and digital image editing. Formally, the in-
put image is modeled as a linear combination of foreground
and background colours [41], as shown below:

Ii = αiFi + (1− αi)Bi, αi ∈ [0, 1] (1)

where αi ∈ [0, 1] denotes the opacity at pixel i in the input
image, Fi and Bi refer to the Foreground (Fg) and Back-
ground (Bg) colour. The problem is highly ill-posed. As for
a pixel in a typical 3-channel (e.g. RGB) image, 7 unknown
values (i.e. 3 F , 3 B and 1 alpha) need to be solved, but
there are only 3 known quantities (3 I).

To solve the problem, the classical methods [7, 23, 46,
52] utilized trimap as a kind of constraint information to
reduce the solution space. The trimap consists of three
parts, white, black, and gray, representing the foreground,
background and transition regions, separately. Many meth-
ods [2, 6, 31, 38, 43, 62] attempted to go about predict-
ing alpha mattes without auxiliary cues. Although they can
produce promising results, the gap between real-world and
synthetic images remains and can be magnified due to com-
posited artefacts, which can lead to inferior generalisation.

Typically, almost all trimap-based methods [56, 34, 49,
3, 17] perform transition optimisation explicitly by concate-
nating RGB images and trimap to feed the network. Other
trimap-free methods [6, 62, 31] construct some transition
variants (pseudo-trimap) implicitly with the assistance of
loss functions to guide local region optimisation. However,
within the constraints of the transition, these approaches fo-
cus excessively on local regions, which may neglect the co-
ordination between global and local attributes (e.g. texture
similarity, location correlation, etc.), thus leading to incom-
plete information mining.

In this paper, we propose a Tripartite Information Mining
and Integration Network (TIMI-Net) that can capture suffi-
cient global information by mining and integrating multi-
modal information from RGB and Trimap. As for informa-
tion mining, we consider that features from different modal-
ities have complementary global information. RGB images
can provide detailed low-level appearance (e.g. texture and
colour similarity), while high-level positional relevance (se-
mantics, shape, etc.) can be found in trimap. Therefore, we
construct two functionally specific units (termed RGB unit
and Trimap unit) to perform separate mining.

Regarding the information integration, we can intu-
itively add or concatenate features from multi-branches like
[17, 62]. However, this would lead to incomplete inte-
gration due to the differentiated characteristics of different
types of global information and initial local information. To
combine them effectively, inspired by Non-Local [53], we
have developed a Tripartite Information Integration (TI2)
module that transforms and integrates two streams of bi-
lateral relations RGB-Trimap branch and RGB-Unit, RGB-
Trimap branch and Trimap-Unit. In this way, global infor-

mation can be employed to guide the propagation of local
information, thus facilitating the coordination of the both.

Our major contributions can be summarized as follows:

• We propose a Tripartite Information Mining and In-
tegration Network (TIMI-Net) with a Tripartite In-
formation Integration (TI2) module for image mat-
ting, which can sufficiently mine and integrate com-
plementary global information from the RGB image
and trimap.

• We build a large-scale human matting dataset with
2,000 training images and 100 test images. To the best
of our knowledge, this is the largest high-accuracy hu-
man image matting dataset. We will open it to the pub-
lic to advance the human image matting task.

• Experimental results demonstrate that the proposed
TIMI-Net can achieve SOTA performance on syn-
thetic and real-world images, which proves the effec-
tiveness and superiority of the proposed method.

2. Related Work
In this section, we will briefly review the image matting

from the three aspects: Traditional and Deep learning-based
approaches, and Matting dataset.

Traditional methods that solved this ill-posed prob-
lem mainly rely on trimap and scribble constraint infor-
mation, and they fall into two main categories: sampling-
based methods and affinity-based methods. Sampling-
based methods [9, 12, 13, 19, 40, 18, 52, 44, 51] collect a set
of known foreground and background samples to find can-
didate colours for the foreground and background of a given
pixel. Alpha mattes can then be calculated by applying a lo-
cal smoothness assumption on the image statistics. Affinity-
based methods [23, 1, 7, 22, 46, 15, 24] reconstruct Eq.1 so
that it can propagate a known alpha value from known to
unknown regions using the affinity of neighbouring pixels.

Deep Learning-based algorithms achieved great suc-
cess on many tasks due to the advancement of deep con-
volution neural networks (e.g., object detection [50], im-
age restoration [54, 59, 55] and Specific Region Segmen-
tation [35, 36]). In image matting, Shen et al. [45] firstly
applied CNN in the portrait matting. DCNN [8] combined
the results from [23] and [7], and fused them with a CNN
to get the final alpha. For facilitating the end-to-end train-
ing, Xu et al. [56] proposed the first synthetic dataset and
achieved fine performance. Later, Generative Adversarial
Network (GAN) [14] was introduced by AlphaGAN [34] to
improve the alpha mattes. Subsequently, a range of meth-
ods [49, 4, 17, 33, 26, 60, 32, 27, 10, 47] have made different
improvements for acquiring better results. Adamatting [3]
and CAM [17] explored the position information (seman-
tic and shape) in trimap and the global context information
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Figure 2: Classification of information transmission pattern.
1 and 2 mean that Convolution operation focus on known
regions(Bg and Fg), 3 act on the pure unknown areas. 4
and 5 mean that information flows from Bg and Fg to the
transition region, respectively. Black dashed line indicates
the direction of convolution sliding. Blue region refers to
the transitional areas. Red box shows a random set of 3×3
Convolution weight. For better visualization, we expand the
width of unknown regions two times.

(colour and texture) from RGB. GCA [26] mimics image
inpainting [61] to transmit context information from known
regions, while HDMatt [60] takes the patch to learn cross-
patch information between known and unknown areas. The
global and local coordination is still ignored by them, al-
though some of their methods seek some relevant informa-
tion from the background area. In our method, we harmo-
nize the coordination between global and local information,
and then mine and integrate the local and complementary
global information in a tripartite collaborative manner.

There are also many approaches [6, 58, 39, 57, 38, 31,
43, 28, 20, 25] that can acquire alpha mattes without us-
ing trimap as an additional constraint. Although sometimes
pleasant results can be achieved, there are still some under-
lying problems, such as inferior generalisation to the real-
world image due to the enlargement of the gap between the
composited image and the real-world image, the inability of
the user to select the region of interest, the requirement for
other additional information (e.g. background, segmenta-
tion maps for other tasks, etc.). Hence, we focus on trimap-
based image matting in this paper.

Matting Dataset is rarely available due to the extreme
difficulty of obtaining alpha matte and high commercial
value, which also leads to the training and inference diffi-
culties for data-driven methods. As shown in Tab. 1, the
first matting dataset was proposed in DAPM [45], which
focuses solely on portrait images. Later, two datasets were
constructed, Composition-1K [56] with 216 human images
for training, and the other is Distinctions-646 [38] with 343

Image Matting Dataset V H R

DAPM [45] Train 1700 1700 800*600
Test 300 300 800*600

Composition-1K [56] Train 431 216 1256*1048
Test 50 11 1655*1380

Distinctions-646 [38] Train 596 333 1758*1573
Test 50 10 1361*1477

Human-2K (Ours) Train 2000 2000 2560*1440
Test 100 100 2560*1440

Table 1: Comparison between different public matting
datasets. V, H, and R refer to the total volume, the num-
ber of human, and the average resolution.

human images (333 for training, 10 for test). However, there
still lacks a uniform benchmark for human image matting
due to quality and quantity issues. To alleviate this gap, we
build a large-scale human image matting dataset contain-
ing 2000 and 100 high-quality human images with human-
annotated alpha mattes for training and test, respectively.

3. Methodology
3.1. Motivation

For trimap-based methods, most traditional methods
solve for unknown alpha based on various local infor-
mation (e.g. local smoothing assumptions [40]). For
deep learning-based methods, trimap or transition variants
(pseudo trimap) [6, 62, 31] are used to constrain the solution
region, thus helping the network to optimise the transition
region. However, both types pay close attention to the lo-
cal areas around the transition regions and may ignore the
coordination between global and local information (texture
and colour similarity, positional correlation, etc.).

As shown in Fig. 2, the convolution kernel slides from
left to right when performing a convolution operation.
Types 1, 2 and 3 focus only on locally uncrossed fields (un-
known or known regions). Only 4 and 5 perform enlight-
ened transfers, with information flowing from Bg and Fg
to the transition region, respectively. This paradigm there-
fore focuses more on local features and is similar to the par-
tial convolution [30]. In addition, as the network deepens
and the resolution decreases, it leads to a substantial loss of
global positioning guides in trimap, which further weakens
the affinity of unknown regions with known information.

Therefore, we analyse and propose an information min-
ing and integration network in this paper. It can complement
the neglected coordination between the global and local
fields by mining and integrating multi-modal information
from the input RGB image and trimap. Specifically, while
retaining the mainstream RGB-Trimap branch for local in-
formation acquisition, we designed two functionally spe-
cific units RGB-Unit and Trimap-Unit based on the differ-
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Figure 3: Pipeline of the proposed TIMI-Net. RGB-Unit (Orange Rectangle) and Trimap-Unit (Gray Rectangle) receive rgb
and trimap respectively for mining the global information. The blue rectangle shows the RGB-Trimap processing of the
mainstream local information. ResNet-18 [16] and ResNet-34 [16] are employed as the encoder for Trimap-Unit and RGB-
Trimap branch, respectively. The Tripartite Information Integration (TI2) module receives three inputs from RGB-Trimap
branch, RGB-Unit and Trimap-Unit. Also, ASPP [5] is utilized to extract multi-scale contextual information.

ent effects of RGB and trimap for detailed appearance min-
ing and related location guidance. After having obtained
the respective functions from the two separate units, how to
integrate them functionally with the mainstream branches
is a key issue. Addition or concatenation is probably the
most straightforward way. However, they tend to yield sub-
optimal results due to undistinguished features. Instead, we
have developed a Tripartite Information Integration (TI2)
that allows sufficient integration of complementary features.
Regarding the complementarity of RGB-Unit and Trimap-
Unit with the RGB-Trimap branch, TI2 can transform the
global information by using two different attentions com-
puted from the RGB-Triamp branch and RGB-Unit, and the
RGB-Trimap branch and Trimap-Unit. In this way, comple-
mentary features can be captured efficiently, thus harmoniz-
ing global and local information coordination.

3.2. Network Structure

The overall architecture of the proposed method is
shown in Fig. 3. Our method uses the U-Net [42] structure
with the short-cut (Blue) in each encoder block and decoder
block as the baseline, and was used for acquiring the lo-
cal information in the RGB-Trimap branch, which has been
recognized by other methods [33, 26]. On the basis of it,
we develop a RGB-Unit and a Trimap-Unit for their indi-
vidually global information mining. There is also a short-
cut (Orange or Gray) between each block from the two
units and decoder. Then, the features from the RGB-Trimap
branch and two other units are integrated in Tripartite Infor-

mation Integration (TI2). For enhancing the representation
capabilities of the RGB-Trimap branch, we introduce the
ASPP [5] to extract high-level semantic information.

RGB-Unit. We use three consecutive convolutional op-
erations with a kernel size is 3 to achieve this. The number
of channels is 16, 64 and 128, respectively. In addition,
given the location and computational burden of the TI2, we
set the stride of the three convolutions to 2, thus achiev-
ing 8x downsampling for compatibility with resolution and
computation. With this skin-deep design pattern, the global
appearance, especially colour and texture information from
unblended RGB fields, can be preserved, allowing for good
disambiguation when foreground and background are lo-
cally similar to each other. [17].

Trimap-Unit. Position correlation is also important for
modelling the long-range semantic and shape from trimap,
especially for images where almost all regions are transi-
tion regions (e.g. nets, translucency, etc.). However, that
character is under-utilized in the basic RGB-Trimap struc-
ture. To this end, we resort to a relatively deep network,
ResNet-18 [16], to extract the high-level global representa-
tions for modelling position attributes. Meanwhile, in or-
der to maintain the same resolution as the features at the
mainstream RGB-Trimap branch, we only use the first three
blocks (conv-1, res-2, res-3), and do not change the kernel
size and number of channels in ResNet-18 [16]. Notably,
we kept the MaxPool to increase the receptive field for a
more global view, while the other two downsamplings are
performed on the first convolution of res-2 and res-3.
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Tripartite Information Integration. When we acquire
the distinctive features from the RGB-Trimap branch, RGB-
Unit, and Trimap-Unit, the major issue becomes how to
integrate them efficiently. In general, addition or concate-
nation is a simplistic way, but they tend to treat the fea-
tures from different modalities equally. Inspired by the
Non-Local model [53] and in order to integrate the comple-
mentary multi-modal global information, we utilise the two
attention maps gained from two separate units as indexes
and sufficiently fetch the information about their properties
from the mainstream RGB-Trimap branch separately.

We firstly briefly review the Non-Local model, which
can be regularly defined as:

Y = g(X)A(X), (2)

where X ∈ RH×W×C and Y ∈ RH×W×C is the input
features and output attentive features, where H, W, and C
denote their height, width, and the number of channel, re-
spectively. A(X) is a normalization function that outputs
an attention map:

A(X) = softmax
(
θ(X)Tϕ(X)

)
, (3)

the g, θ and ϕ are learnable embedding functions, and the
X is the feature extracted from one same domain.

As we can see from Eq. 2 and 3, the Non-Local focus on
an identical feature X and it computes a self-attentive map
in a bilinear projection way. While in our case, the RGB im-
age and Trimap is a kind of cross-modal information. The
RGB image is rich in global appearance (colour, texture,
etc.), while more comprehensive high-level information (se-
mantic and shape attributes) can be seen in trimap. There-
fore, we incorporate the characteristics complement using
supplementary information from different modalities. For-
mally, the features from RGB-Trimap branch, RGB-Unit
and Trimap-Unit are depicted as XR T ∈ RH×W×CR T ,
XR ∈ RH×W×CR , and XT ∈ RH×W×CT . With the two
features XR and XT from the RGB and Trimap modality in
mind, we integrated them into XR T :

OutputTI2 = XR T (A(XR) +A(XT ) + 1), (4)

as for XR and XT , we embed them into the θ and ϕ spaces
and obtain their attentive feature, respectively. While for
XR T , instead of performing the linear embedding g on it,
we apply residuals to superimpose the complementary in-
formation. Consequently, the global information can be
utilized to steer the local information throughout the opti-
mization of transition. In view of the computation costs, we
choose to deploy it only at the stage in encoder and decoder
when output stride = 8.

3.3. Loss Function

In order to verify the validity of this pattern and to pre-
vent bias caused by other losses, we use only the alpha loss

in all experiments:

Lα = |αi
g − αi

p| (5)

where i refers to the pixel position. The g and p denotes the
Ground Truth and predicted alpha, respectively.

4. Experiments

4.1. Experiment Settings

To verify the effectiveness of the proposed method, we
evaluate the performance on the following four datasets.

Alphamatting.com. It is an online benchmark website,
which provides 27 images and alpha mattes for training and
7 images for evaluation.

Composition-1K. It contains 431 and 50 sets of fore-
ground images and alpha mattes for training and test. And
they are used to composite new images combined with
background images from COCO [29] and VOC [11] in a
ratio of 1 : 100 and 1 : 20, respectively.

Distinctions-646. This dataset provides 596 and 50 sets
of foreground images and alpha mattes with more challeng-
ing and diverse training and test objects. It takes the same
rule and ratio as Composition-1K.

Human-2K. Although some public datasets we can use
for human image matting task, quantity and quality re-
main an issue. Besides, we lack a uniform benchmark for
comparison. Instead, our Human-2K provides 2100 high-
accuracy images and alpha masks, which are good enough
to be used as a benchmark for training (2000) and test (100).
The same rules and ratios as Composition-1K [56] are used
in our Human-2K to composite new images.

Implementation Details. The proposed framework is
built on the public PyTorch [37] toolbox and is trained on
a 24-core i9-9920X 3.5GHZ CPU, 128 GB RAM, and an
NVIDIA Tesla V100 GPU. We use the Adam [21] optimizer
for all the network training with an initial learning rate of
0.01 and batch size of 16. The learning rate is divided by 10
at the epoch of {20, 30, 40}, {60, 80}, and {90, 100, 120}
for Composition-1K [56], Distinctions-646 [38], and our
Human-2K dataset, respectively. It took 5, 10, and 15 days
for the above three datasets to train 50 epochs, 100 epochs,
and 150 epochs, respectively. We follow [56, 62, 38] to
carry out the data augmentation. For training, we randomly
cropped the input images and trimaps to a resolution of
512 × 512, 640 × 640, and 960 × 960, and then, random
scaling, flipping, and rotation between [-60, 60] degrees are
applied to them. When do inference, we feed full-resolution
images and trimaps to network to predict alpha mattes.

Evaluation Metrics. We follow [17, 3, 33, 26] to use
th following four metrics to make comparisons. Namely
the Sum of Absolute Differences, Mean Square Error, the
Gradient and Connectivity error.
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SAD ↓
Average Rank Troll Doll Donkey Elephant Plant Pineapple Plastic bag Net

O S L U S L U S L U S L U S L U S L U S L U S L U S L U

Ours 3.0 3.8 3.3 1.9 8.3 8.7 9.0 4.4 4.7 4.4 2.8 2.9 2.0 1.0 1.1 1.3 4.7 5.2 6.2 1.8 1.9 2.3 15.9 16.2 15.5 16.6 19.2 18.0

HDMatt [60] 8.4 10.3 7.0 8.0 9.5 10 10.7 4.7 4.8 5.8 2.9 3.0 2.6 1.1 1.2 1.3 5.2 5.9 6.7 2.4 2.6 3.1 17.3 17.3 17.0 21.5 22.4 23.2
AdaMatting [3] 10.3 9.1 9.3 12.6 10.2 11.1 10.8 4.9 5.4 6.6 3.6 3.4 3.4 0.9 0.9 1.8 4.7 6.8 9.3 2.2 2.6 3.3 19.2 19.8 18.7 17.8 19.1 18.6
BgMatting [43] 10.5 8.1 8.4 14.9 9.3 10.0 10.1 4.5 5.1 6.7 2.9 3.3 2.9 1.0 1.2 2.2 5.7 6.0 7.8 2.8 3.4 4.3 16.4 17.3 16.4 19.5 20.9 27.9
SampleNet [49] 10.7 8.6 10.3 13.3 9.1 9.7 9.8 4.3 4.8 5.1 3.4 3.7 3.2 0.9 1.1 2.0 5.1 6.8 9.7 2.5 4.0 3.7 18.6 19.3 19.1 20.0 21.6 23.2
GCA [26] 11.9 12.9 9.0 13.8 8.8 9.5 11.1 4.9 4.8 5.8 3.4 3.7 3.2 1.1 1.2 1.3 5.7 6.9 7.6 2.8 3.1 4.5 18.3 19.2 18.5 20.8 21.7 24.7
DIM [56] 13.5 14.9 12.5 13.0 10.7 11.2 11.0 4.8 5.8 5.6 2.8 2.9 2.9 1.1 1.1 2.0 6.0 7.1 8.9 2.7 3.2 3.9 19.2 19.6 18.7 21.8 23.9 24.1
IndexNet [33] 16.9 19.5 15.6 15.6 12.6 13.4 11.4 4.8 4.9 5.7 3.3 4.0 3.0 1.1 1.5 1.6 6.4 7.5 8.9 3.4 4.0 4.1 18.6 19.1 18.5 23.4 25.1 29.3
AlphaGAN [34] 18.5 19.5 18.8 17.3 9.6 10.7 10.4 4.7 5.3 5.4 3.1 3.7 3.1 1.1 1.3 2.0 6.4 8.3 9.3 3.6 5.0 4.3 20.8 21.5 20.6 25.7 28.7 26.7
Context-Aware [17] 21.0 25.0 19.0 18.9 10.4 11.1 10.1 6.4 7.4 7.1 4.1 4.5 3.8 2.3 3.1 3.0 7.1 8.2 9.1 3.5 5.5 4.1 18.3 19.2 16.5 21.1 23.3 24.6

Table 2: Comparison between our method and nine representative algorithms using the SAD metric. “O” represents overall
rank, “S”, “L”, and “U” represent performance corresponding to the trimaps with different difficulty levels. Our method rank
first regardless of the quality of the trimap (Small, Large, or User).

Image User Trimap DIM[56] AlphaGAN [34] SampleNet [49] IndexNet[33]

CAM [17] AdaMatting [3] GCA[26] BgMatting[43] HDMatt[60] Ours
Figure 4: Visual comparison of TIMI-Net against SOTA methods results on the Alphamatting.com test set. All the results
are obtained from the alphamatting.com website. More visual comparison can be seen in the supplementary materials.

4.2. Comparison to Prior Work

To evaluate the performance of the proposed method, we
quantitatively and visually compare our method with other
2 classical and 9 SOTA deep learning-based image matting
methods with available codes or results, including KNN [7],
Closed-Form [23], DCNN [8], DIM [56], AlphaGAN [34],
IndexNet [33], CAM [17], SampleNet [49], GCA [26], Bg-
Matting [43] and HDMatt [60].

Tab. 2, 3, 4, 5 tabulate the quantitative results of our
model and SOTA methods on four datasets. Our model
rank first on the public benchmark alphamatting.com and
outperforms all of them in all metrics on the Composition-
1K, Distinctions-646 datasets, and our human image mat-
ting benchmark. Compared to the HDMatt [60] using
patches, our method yields a result of 29.08 and 11.5 in
terms of SAD and Conn on the Composition-1K test set,
which brings 4.42 and 4.54 improvements. Meanwhile, our
model outperforms GCA [26] by a large margin, with 6.22
and 5.40 improvements regarding SAD and Grad on the
Composition-1K test set. The same improvements can be
seen in diverse Distinctions-646 and Human-2K datasets,
proving the superiority of our method in harmonizing the
global and local information from the complementary RGB

and Trimap modalities. We also give visual comparisons
in Fig. 4, 5, 6 and 7. It can be obviously seen that our
method can acquire fine details, such as the hair tip sites,
the fingertip slits in Fig. 7.

4.3. Internal Analysis

We also validate the effectiveness of each component in
TIMI-Net on three datasets (Tab. 3, 4, 5). Basic denotes
the U-Net [42] structure with the shortcut for local infor-
mation acquisition, and the RGB-Unit and Trimap-Unit are
used to mine global appearance and position correlation, re-
spectively. S I refers to the additive fusion of the local in-
formation from the RGB-Trimap branch with the global in-
formation from RGB-Unit and Trimap-Unit. TI2

E
and TI2

D

indicate the TI2 is applied in Encoder and Decoder.
As shown in Tab. 3, we take the results on Composition-

1K as an example. (i) Compared to the baseline model, the
addition of our RGB unit reduced SAD and Conn by 5.48
and 6.76, respectively, providing strong evidence that global
appearance in the RGB domain is essential to guide the tran-
sition optimization, particularly for modelling colour and
texture similarity. (ii) Trimap-Unit also improves the re-
sults, showing that pixel position correlation between tran-
sition and known regions (Fg and Bg) is necessary. (iii) We
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Inputs Trimap DIM[56] IndexNet[33] GCA[26] Ours GT

Figure 5: Visual comparison of TIMI-Net against SOTA methods results obtained on the Adobe Composition-1K test set.

Inputs Trimap DIM[56] IndexNet[33] GCA[26] Ours GT

Figure 6: Visual comparison of TIMI-Net against SOTA methods results obtained on the Distinctions-646 test set.

Inputs Trimap DIM[56] IndexNet[33] GCA[26] Ours GT

Figure 7: Visual comparison of TIMI-Net against SOTA methods results obtained on our Human-2K test set.

can also see that the results are further improved by incor-
porating RGB-Unit and Trimap-Unit into the mainstream
branch compared to each separate unit, which validates the
complementarity between the two, one for low-level details
and the other for higher-level positioning. (vi) Compared
to S I, the proposed TI2 allows for better integration of
global and local information from the two complementary
modalities, as it can sufficiently model the interrelationship
between mainstream global and local information for each
modality. It is worth noting that whether our TI2 is applied
in Encoder or Decoder both show growth. Our TI2

D
results

show increases of 5.6% and 7.2% in the MSE and Grad met-
rics, and 11% and 12% increases can be seen in TI2

E
. (v)

The multiplexing of information at the decoder stage can

further harmonize the coordination between global and lo-
cal information, thus better results are achieved. Similar
results can also be seen in Tab. 4 and 5.

4.4. Generalization Analysis

For proving the generalization of our method and
Human-2K, we have done cross-comparison experiments
using different models on different datasets. We train each
model using the entire training set of Composition-1K [56]
and Human-2K dataset. For test, we selected only the im-
ages with human from the Composition-1K [56] test set. As
shown in Tab. 6, the performance of both the representative
methods DIM [56] and IndexNet [33] and our TIMI-Net
were improved, especially for the DIM with MSE and Grad

77561



Methods SAD↓ MSE↓ Grad↓ Conn↓
KNN [7] 175.4 0.103 124.1 176.4
Closed-Form [23] 168.1 0.091 126.9 167.9
DCNN [8] 161.4 0.087 115.1 161.9
DIM [56] 54.4 0.014 31.0 50.8
IndexNet [33] 45.8 0.013 25.9 43.7
CAM [17] 35.8 0.008 17.3 33.2
SampleNet [49] 40.4 0.010 ∗ ∗
GCA [26] 35.3 0.009 16.9 32.5
HDMatt(Patch) [60] 33.5 0.007 14.5 29.9
Basic 38.60 0.0107 19.11 36.62
Basic + RGB-Unit 33.12 0.0081 14.48 29.86
Basic + Trimap-Unit 36.77 0.0097 16.67 34.34
Basic + S I 31.21 0.0072 13.84 27.89
TI2

E
30.18 0.0064 12.20 26.74

TI2
D

30.60 0.0068 12.90 27.29
TIMI-Net (Ours) 29.08 0.0060 11.50 25.36

Table 3: Quantitative results on the Composition-1K [56]
test set. ∗ means the results were not shown in their paper.
Basic and + denote our baseline network and the addition
operation. S I denotes and the straightforward additive in-
tegration between the RGB-Trimap branch, RGB-Unit, and
Trimap-Unit. TI2

E
and TI2

D
refer to the TI2 being applied

in Encoder and Decoder.

Methods SAD↓ MSE↓ Grad↓ Conn↓
DIM [56] 44.15 0.031 39.08 44.65
IndexNet [33] 34.47 0.019 28.31 33.37
GCA [26] 26.59 0.015 19.50 25.23
Basic 32.20 0.0163 20.07 28.75
Basic + RGB-Unit 26.93 0.0140 18.51 25.57
Basic + Trimap-Unit 27.67 0.0150 19.47 26.41
Basic + S I 25.96 0.0135 16.01 24.68
TI2

E
25.27 0.0124 15.32 24.22

TI2
D

25.56 0.0131 15.86 24.09
TIMI-Net (Ours) 22.28 0.0107 14.38 20.49

Table 4: Quantitative results on the Distinctions-646 [38]
test set.

improving by 0.005 and 4.67, respectively, which demon-
strates that the generalisation of our dataset is robust and
can be used as a benchmark. Meanwhile, our model still
turn out to be optimal, which also implies the superiority.

4.5. Real-World Image Matting

In practice, to facilitate selecting areas of interest, novice
users are asked to draw trimaps based on known and un-
known regions. As shown in Fig. 1, the quality of these
trimaps is inferior. However, as our method harmonises
more global information, our results are better than those
of CAM [17]. Notably, both models used were trained us-

Methods SAD↓ MSE↓ Grad↓ Con↓
DIM [56] 7.53 0.008 6.4 6.7
IndexNet [33] 6.55 0.006 4.5 5.5
GCA [26] 5.18 0.004 3.0 4.0
Basic 5.87 0.0047 3.68 4.81
Basic + RGB-Unit 5.16 0.0037 2.78 4.03
Basic + Trimap-Unit 5.45 0.0041 3.03 4.36
Basic + S I 4.93 0.0034 2.59 3.71
TI2

E
4.65 0.0031 2.43 3.47

TI2
D

4.83 0.0033 2.57 3.62
TIMI-Net (Ours) 4.20 0.0026 2.06 2.95

Table 5: Quantitative results on our Human-2K test set.

Model SAD↓ MSE↓ Grad↓ Conn↓

DIM [56] C C 15.25 0.0150 10.99 14.41
H C 11.46 0.0100 6.32 10.04

IndexNet [33] C C 11.27 0.0086 6.01 9.64
H C 10.57 0.0070 5.30 9.00

Our C C 8.11 0.0046 3.12 6.24
H C 7.41 0.0040 2.78 5.55

Table 6: Generalization analysis of our Human-2K dataset.
C and H refer to the Composition-1K [56] and our Human-
2K datasets. C C and H C mean the model trained on C and
H, then they are tested on C.

ing solely the Composition-1K [56] training set.

5. Conclusion and Future Work

In this paper, we have observed that previous image mat-
ting methods pay more attention to local areas closed to
transitional regions, which potentially ignore the coordina-
tion between global and local information. Based on this
observation, we have proposed a novel tripartite informa-
tion mining and integration model to sufficiently supple-
ment the ignored harmonization. To advance the devel-
opment of the human image matting task, we have pre-
pared a new large-scale high-accuracy human image mat-
ting dataset (Human-2K). Finally, we have conducted ex-
tensive experiments to verify the effectiveness of the pro-
posed method against SOTA approaches.

Our method does have limitations, the parameters of two
units and computation cost of TI2 limit its application to
real-time. In the future, we will explore how to exploit other
techniques to model long-range information in a light way
to image and video matting [48, 63].
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Westermann. Random walks for interactive alpha-matting.
In Proc. VIIP, pages 423–429, 2005.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., pages 770–778, 2016.

[17] Qiqi Hou and Feng Liu. Context-aware image matting for si-
multaneous foreground and alpha estimation. In Proc. IEEE
Int. Conf. Comput. Vis., pages 4129–4138, 2019.

[18] Jubin Johnson, Ehsan Shahrian Varnousfaderani, Hisham
Cholakkal, and Deepu Rajan. Sparse coding for alpha mat-
ting. IEEE Trans on Image Process., 25(7):3032–3043,
2016.

[19] Levent Karacan, Aykut Erdem, and Erkut Erdem. Alpha mat-
ting with kl-divergence-based sparse sampling. IEEE Trans.
Image Process., 26(9):4523–4536, 2017.

[20] Zhanghan Ke, Kaican Li, Yurou Zhou, Qiuhua Wu, Xiangyu
Mao, Qiong Yan, and Rynson WH Lau. Is a green screen re-
ally necessary for real-time portrait matting? arXiv preprint
arXiv:2011.11961, 2020.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations, 2015.

[22] P Lee and Ying Wu. Nonlocal matting. In Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., pages 2193–2200, 2011.

[23] Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form
solution to natural image matting. IEEE Trans. Pattern Anal.
Mach. Intell., 30(2):228–242, 2007.

[24] Anat Levin, Alex Rav-Acha, and Dani Lischinski. Spec-
tral matting. IEEE Trans. Pattern Anal. Mach. Intell.,
30(10):1699–1712, 2008.

[25] Jizhizi Li, Jing Zhang, and Dacheng Tao. Deep automatic
natural image matting. arXiv preprint arXiv:2107.07235,
2021.

[26] Yaoyi Li and Hongtao Lu. Natural image matting via guided
contextual attention. In Proc. AAAI Conf. Artif. Intell., pages
11450–11457, 2020.

[27] Yaoyi Li, Qingyao Xu, and Hongtao Lu. Hierarchical
opacity propagation for image matting. arXiv preprint
arXiv:2004.03249, 2020.

[28] Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sen-
gupta, Brian Curless, Steve Seitz, and Ira Kemelmacher-
Shlizerman. Real-time high-resolution background matting.
pages 8762–8771, 2021.

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Proc. Eur. Conf. Comput. Vis., pages 740–755, 2014.

[30] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,
Andrew Tao, and Bryan Catanzaro. Image inpainting for ir-
regular holes using partial convolutions. In Proc. Eur. Conf.
Comput. Vis., pages 85–100, 2018.

[31] Jinlin Liu, Yuan Yao, Wendi Hou, Miaomiao Cui, Xuan-
song Xie, Changshui Zhang, and Xian-Sheng Hua. Boosting
semantic human matting with coarse annotations. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., June 2020.

[32] Yuhao Liu, Jiake Xie, Yu Qiao, Yong Tang, and Xin
Yang. Prior-induced information alignment for image mat-
ting. IEEE Trans. Multimedia, 2021.

[33] Hao Lu, Yutong Dai, Chunhua Shen, and Songcen Xu. In-
dices matter: Learning to index for deep image matting. In
Proc. IEEE Int. Conf. Comput. Vis., pages 3265–3274, 2019.

97563



[34] Sebastian Lutz, Konstantinos Amplianitis, and Aljoscha
Smolic. Alphagan: Generative adversarial networks for nat-
ural image matting. In Proc. Bri. Mach. Vis. Conf., page 259,
2018.

[35] Haiyang Mei, Bo Dong, Wen Dong, Pieter Peers, Xin Yang,
Qiang Zhang, and Xiaopeng Wei. Depth-aware mirror seg-
mentation. In Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., June 2021.

[36] Haiyang Mei, Ge-Peng Ji, Ziqi Wei, Xin Yang, Xiaopeng
Wei, and Deng-Ping Fan. Camouflaged object segmentation
with distraction mining. In Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., June 2021.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. 2019.

[38] Yu Qiao, Yuhao Liu, Xin Yang, Dongsheng Zhou, Mingliang
Xu, Qiang Zhang, and Xiaopeng Wei. Attention-guided hi-
erarchical structure aggregation for image matting. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., pages 13676–
13685, 2020.

[39] Yu Qiao, Yuhao Liu, Qiang Zhu, Xin Yang, Yuxin Wang,
Qiang Zhang, and Xiaopeng Wei. Multi-scale information
assembly for image matting. Computer Graphics Forum,
39(7):565–574, 2020.

[40] C. Rhemann and C. Rother. A global sampling method for
alpha matting. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 2049–2056, 2011.

[41] Christoph Rhemann, Carsten Rother, Jue Wang, Margrit
Gelautz, Pushmeet Kohli, and Pamela Rott. A perceptually
motivated online benchmark for image matting. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., pages 1826–
1833, 2009.

[42] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241,
2015.

[43] Soumyadip Sengupta, Vivek Jayaram, Brian Curless,
Steven M Seitz, and Ira Kemelmacher-Shlizerman. Back-
ground matting: The world is your green screen. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., pages 2291–
2300, 2020.

[44] Ehsan Shahrian, Deepu Rajan, Brian Price, and Scott Co-
hen. Improving image matting using comprehensive sam-
pling sets. In Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., pages 636–643, 2013.

[45] Xiaoyong Shen, Xin Tao, Hongyun Gao, Chao Zhou, and
Jiaya Jia. Deep automatic portrait matting. In Proc. Eur.
Conf. Comput. Vis., pages 92–107, 2016.

[46] Jian Sun, Jiaya Jia, Chi Keung Tang, and Heung Yeung
Shum. Poisson matting. ACM Trans. Graph., 23(3):315–
321, 2004.

[47] Yanan Sun, Chi-Keung Tang, and Yu-Wing Tai. Semantic
image matting. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 11120–11129, 2021.

[48] Yanan Sun, Guanzhi Wang, Qiao Gu, Chi-Keung Tang, and
Yu-Wing Tai. Deep video matting via spatio-temporal align-
ment and aggregation. In Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., pages 6975–6984, 2021.

[49] Jingwei Tang, Yagiz Aksoy, Cengiz Oztireli, Markus Gross,
and Tunc Ozan Aydin. Learning-based sampling for natural
image matting. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 3050–3058, 2019.

[50] Xin Tian, Ke Xu, Xin Yang, Baocai Yin, and Rynson WH
Lau. Weakly-supervised salient instance detection, 2020.

[51] Jue Wang and Michael F. Cohen. An iterative optimization
approach for unified image segmentation and matting. In
Proc. IEEE Int. Conf. Comput. Vis., pages 936–943, 2005.

[52] Jue Wang and Michael F. Cohen. Optimized color sampling
for robust matting. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 1–8, 2007.

[53] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., pages 7794–7803, 2018.

[54] Ke Xu, Xin Wang, Xin Yang, Shengfeng He, Qiang Zhang,
Baocai Yin, Xiaopeng Wei, and Rynson WH Lau. Efficient
image super-resolution integration. The Visual Computer,
34(6):1065–1076, 2018.

[55] Ke Xu, Xin Yang, Baocai Yin, and Rynson WH Lau.
Learning to restore low-light images via decomposition-and-
enhancement. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 2281–2290, 2020.

[56] Ning Xu, Brian Price, Scott Cohen, and Thomas Huang.
Deep image matting. In Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., pages 311–320, 2017.

[57] Xin Yang, Yu Qiao, Shaozhe Chen, Shengfeng He, Baocai
Yin, Qiang Zhang, Xiaopeng Wei, and Rynson W. H. Lau.
Smart scribbles for image matting. ACM TOMM, 16(4),
2020.

[58] Xin Yang, Ke Xu, Shaozhe Chen, Shengfeng He, Baocai Yin
Yin, and Rynson Lau. Active matting. In Proc. Int. Conf.
Neural Inf. Process. Systems, pages 4590–4600, 2018.

[59] Xin Yang, Ke Xu, Yibing Song, Qiang Zhang, Xiaopeng
Wei, and Rynson WH Lau. Image correction via deep recip-
rocating hdr transformation. In Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., pages 1798–1807, 2018.

[60] Haichao Yu, Ning Xu, Zilong Huang, Yuqian Zhou, and
Humphrey Shi. High-resolution deep image matting. 2021.

[61] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Generative image inpainting with con-
textual attention. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 5505–5514, 2018.

[62] Yunke Zhang, Lixue Gong, Lubin Fan, Peiran Ren, Qixing
Huang, Hujun Bao, and Weiwei Xu. A late fusion cnn for
digital matting. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 7461–7470, 2019.

[63] Yunke Zhang, Chi Wang, Miaomiao Cui, Peiran Ren, Xuan-
song Xie, Xian-sheng Hua, Hujun Bao, Qixing Huang, and
Weiwei Xu. Attention-guided temporal coherent video ob-
ject matting. arXiv preprint arXiv:2105.11427, 2021.

107564


