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Abstract
We present a simple yet effective unpaired learning based

image rain removal method from an unpaired set of syn-
thetic images and real rainy images by exploring the prop-
erties of rain maps. The proposed algorithm mainly consists
of a semi-supervised learning part and a knowledge dis-
tillation part. The semi-supervised part estimates the rain
map and reconstructs the derained image based on the well-
established layer separation principle. To facilitate rain re-
moval, we develop a rain direction regularizer to constrain
the rain estimation network in the semi-supervised learning
part. With the estimated rain maps from the semi-supervised
learning part, we first synthesize a new paired set by adding
to rain-free images based on the superimposition model.
The real rainy images and the derained results constitute
another paired set. Then we develop an effective knowl-
edge distillation method to explore such two paired sets so
that the deraining model in the semi-supervised learning
part is distilled. We propose two new rainy datasets, named
RainDirection and Real3000, to validate the effectiveness
of the proposed method. Both quantitative and qualitative
experimental results demonstrate that the proposed method
achieves favorable results against state-of-the-art methods
in benchmark datasets and real-world images.

1. Introduction
Single image deraining aims to estimate a rain-free im-

age from a rainy image. It is a classical image processing
problem, which has been an active research topic in the vi-
sion and graphics communities within the last decade. As
numerous real-world tasks (e.g., traffic detection and envi-
ronmental monitoring) require high-quality images, and the
rainy environment usually leads to deprecated images, it is
of great interest to develop an effective algorithm to recover
rain-free images.

Rain is a complex atmospheric phenomenon. Images
with rain may lose color fidelity and suffer visual occlusions
as a result of rain streaks (drops) move through the back-
ground scene. Mathematically, the raining process can be
formulated by the following linear superimposition model:

O(x) = B(x) +R(x), (1)

where O is the rainy image, B is the rain-free image, and

R is the rain map, which describes the distribution and mo-
tion of the rain. x denotes the pixel coordinate. As onlyO is
available, we need to recoverB andR simultaneously. This
problem is highly ill-posed because many different pairs of
B and R give rise to the same O, e.g., a nearly all-zeros
matrix for R and a rainy image for B, where the networks
do not succeed in estimating the rain map due to the com-
plicated distribution and motion of the rain.

To make image deraining problem well-posed, existing
methods usually make some assumptions on the rain map
and rain-free image. For example, the low rank representa-
tion model [1], the sparse representation model [14], Gaus-
sian mixture model [11] have been proposed to model the
rain maps or rain-free images to help rain removal. Jiang
et al. [7] explore gradient operators based on the sparsity
prior for rain maps. Instead of making some assumptions
on the rain map and rain-free image, several methods fo-
cus on developing end-to-end trainable networks for image
deraining [2, 3, 30, 22, 19, 10]. To better explore the do-
main knowledge, several deep learning-based methods im-
pose constraints on the rain map or/and derained images in
different perspectives, e.g., joint rain location detection in
[26], rain density label assigned in [29], rain kernels de-
scribing the repetitive local patterns of rain streaks in [21].
These methods usually need paired data to train deep neu-
ral networks. However, the pixel-wise content loss used in
these methods tends to smooth details, while GAN based
losses may generate fake structures. In [19, 13], Negative
SSIM loss is used to model the local structure similarity be-
tween the derained image and ground truth one. However,
the approach of only imposing constraints on the derained
images neglects the distribution and motion of rain streaks.
Thus, it is necessary to explore the properties of the rain
map for better rain removal.

We find that the rain map of the natural rainy images
usually has a linear shape with similar directions in a local
image patch. The rain map is usually of high contrast with
sharp edges as the pixels covered by rain present high inten-
sity while the pixels without rain is close to zeros. Therefore
we propose a rain direction regularizer to model the prop-
erties of the rain map for the rain map estimation so that
consistent and sharp rain structures can be preserved. The
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proposed rain direction regularizer extracts gradient, which
corresponding parallel and perpendicular directions of the
rain maps to truthfully preserve the local consistency and
sharpness of structures of rain maps.

To further improve the generalization ability for handling
real rainy images, several methods [23, 28, 24, 13] reveal
the gap existed between the synthetic and real rainy images
due to the complicated situations of real rain influenced by
the distribution and motion of the rain. Wang et al. [22]
construct a paired real rain dataset by fusing rainy image
sequences. However, we observe that structure and detail
disalignment are bring into this dataset. Lin et al. [13] syn-
thesize real rain maps with filtered images to distill a rain
map estimation network, yet the derained results are infe-
rior to contemporaneous state-of-the-art methods according
to their released experimental results.

To handle real images, we develop a semi-supervised
learning method with the knowledge distillation strategy.
The semi-supervised learning estimates rain maps and de-
rained images constrained by the rain direction regularizer.
With the estimated rain maps, we can synthesize a new
paired set by applying the estimated rain maps to refer-
ence clear images based on the raining model (1). Then,
the knowledge distillation part distills the derained model
in the semi-supervised learning part to facilitate rain re-
moval tasks. In addition, considering the unavailability of
the rain direction label of existing datasets, we construct a
new dataset RealDirection, of which each rainy image is
assigned with a direction label. A Real3000 dataset is also
proposed as the existing publicly available real rainy dataset
is small-scale. We conduct comprehensive experiments and
show that the proposed method achieves promising results
for rain removal tasks.

The main contributions of this work are as follows:
• We propose a simple and effective rain direction regu-

larizer to preserve the structures and sharpness of the
rain maps based on the local properties of rain maps.

• We develop an unpaired learning method for rain re-
moval by incorporating semi-supervised learning and
knowledge distillation strategy. Given an unpaired
set of synthetic and real rainy images. The semi-
supervised learning part estimates rain maps and de-
rained images. The derained results are further im-
proved by the knowledge distillation part.

• We propose the RainDirection dataset and Real3000
dataset to train the proposed method. Both quantitative
and qualitative evaluations on the benchmark datasets
and real-world images demonstrate the effectiveness of
the proposed method.

2. Related Work
We have witnessed significant advances in single image

deraining in recent years. A comprehensive review is be-
yond the scope of this work. We present a brief review of

the most related ones within proper contexts in this section.
Single image deraining is a classical ill-posed problem.

Various methods make some assumptions and regulariza-
tions on the separated rain map and rain-free image. Chen
and Hsu [1] reveal that a rainy scene usually contains sim-
ilar patterns of rain streaks in different local patches. Then
they propose a low-rank model to characterize the appear-
ance of rain streaks. Luo et al. [14] introduce a sparsity-
based regularization strategy to help rain removal, which
assumes that both the rain map and rain-free image could be
sparsely modeled. Li et al. [11] show that the rainy image
patch mainly contains the annoying effect of rain streaks.
Then they learn a rain streak layer prior for layer separation
based on GMM. One of the limitations is that they tend to
over-smooth the resulting images. Different from the gradi-
ent operators used in Fastderain [7] which is based on the
hand-crafted sparsity prior of rain maps and need to detect
the direction of the rain streaks to shift the image. We syn-
thesize a large dataset with accurate direction labels. Our
proposed rain direction regularizer is differentiable and can
be naturally plugged into the networks to train with modern
deep learning techniques jointly.

Recently deep learning-based methods [2, 3, 26, 29, 17,
18, 21, 6] have made remarkable progress in image derain-
ing problem. Numerous regularizers and prior knowledge
have been applied to the network to better estimate the rain
map and derained image. In [26], the rain location infor-
mation is considered to help estimate rain streaks. In [29],
each rainy image is assigned with a density label, which is
used to supervise the rain residual during training. Wang et
al. [21] introduce rain kernels which describe the repetitive
local patterns of rain streaks. As per-pixel luminance value
based losses tend to smooth the edges, Negative SSIM loss
is adopted in [19, 13] on the derained images to improve
structure similarity. We note that existing methods rarely
explicitly explore the rain direction information in the task
of rain map estimation, which actually encodes important
structures and motion information of rain streaks.

The deep learning based methods discussed above
mainly train with paired synthetic data in a fully-supervised
manner. Several recent semi-supervised learning based
methods [23, 28, 24] have been proposed to process real
rainy images. The basic idea behind the semi-supervised
learning strategy is to train the network with synthetic data
in a supervised manner and real data in an unsupervised
manner, and the architecture and parameters are shared in
both stages. The supervised parts of these methods are sim-
ilar. The networks directly learn the mapping from the syn-
thetic rainy image to the corresponding ground truth rain-
free image with per-pixel luminance value based losses. As
for the unsupervised part, [23] introduces a GMM likeli-
hood term with a K-L Regularizer, while [28] using Gaus-
sian processes, and GAN is used in [24]. [22] proposes
a paired real rain dataset by fusing multi-frame rainy im-
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ages and develops an attention-based supervised network
to tackle this problem. Different from these approaches,
we introduce a rain direction regularizer to help rain map
estimation with an unpaired distillation strategy to further
boost the performance for rain removal. We note that our
approach is different from a recently proposed method [13]
for synthesizing real rain in model formulation, solving pro-
cess, and learning goals. Our method achieves favorable
results against these methods as shown in Sec. 4.

3. Proposed Algorithm
Our proposed algorithm for image deraining contains the

semi-supervised learning and knowledge distillation part,
which mainly involves three stages. Figure 1 shows an
overview of the algorithm. First, we propose a rain direc-
tion regularizer based on the properties of the rain streaks to
constraint the deep neural network on estimating rain maps.
Second, the reconstruction network restores derained im-
ages using the estimated rain maps. The networks for the
synthetic and real input in the first and second stage are
trained in a semi-supervised learning manner. Third, with
the estimated rain maps, we synthesize a new paired data
for the real images and develop a knowledge distillation
method to explore these two paired sets such that the derain-
ing model in the semi-supervised learning part is distilled.
All three stages are trained jointly with an unpaired set of
synthetic images and real rainy images. We present the de-
tails of each component of our algorithm in the following.

3.1. Rain map estimation with direction regularizer
The first stage of our proposed algorithm is to esti-

mate the rain maps from the unpaired input rainy images
{xsyn;xreal}, where xsyn and xreal denotes a synthetic
rainy image and a real rainy image picked randomly from
two independent datasets, respectively.

As pointed in [26, 3, 17], a rain map usually encodes
high-frequency details (residual) and location information
of rain streaks (drops) within the rainy image, which could
be decoded via a series of parameterized mapping functions,
e.g., deep CNNs. Considering the good capability in model-
ing residual information and approximating mapping func-
tions, we use an effective residual network [5, 12] to esti-
mate a rain map from a rainy image directly. Formally, the
process to estimate the rain maps could be formulated as:

zsyn = F1(xsyn), (2)

zreal = F1(xreal), (3)
where F1 is a deep residual network taking xsyn and xreal
as the inputs; zsyn and zreal are the network outputs which
are the estimated rain maps of xsyn and xreal, respectively.

To regularize the network F1, a commonly used method
is to ensure that the estimated rain map zsyn is close to the
ground truth rain map zgt by:

Lcontent = f(zsyn − zgt), (4)

where f is usually taken as L1-norm. However, this com-
monly used content loss (4) does not consider the local
structures of the rain streaks and tends to generate over-
smoothed results as demonstrated in [9, 15].

We note that the rain map of the natural rainy images of-
ten observed linear shapes with similar directions in a local
image patch. Moreover, the rain map is usually of high con-
trast with sharp edges as the pixels covered by rain present
high intensity while the pixels without rain are close to ze-
ros. Hence, we propose a rain direction regularizer to help
preserve the structures and shape of rain maps. The pro-
posed regularizer is defined as:

Ldirection =
∑

kd∈{k‖,k⊥}

f(kd ⊗ zsyn − kd ⊗ zgt) (5)

kd are directional filter kernels used to extract the local gra-
dients by a convolutional operation. Our proposed RainDi-
rection dataset contains rainy images with corresponding
rain direction labels. During training, two predefined ker-
nels correspond to the parallel (denoted as k‖) and perpen-
dicular (denoted as k⊥) direction of the rain streaks in rain
map are used to calculate (5). f is taken as L1-norm.

The proposed rain direction regularizer can model the
neighboring information of rain maps so that the local prop-
erties of the rain map could be preserved more truthfully.
We predefine 18 l × l (l = 5) sized directional filter kernels
corresponding to the angles {0◦, 10◦, ..., 170◦} which im-
proves the robustness to rain direction with small variation.
The filter kernels kd are differentiable and can be naturally
plugged into the networks to train with modern deep learn-
ing techniques jointly. We note that the vertical and hori-
zontal image gradient operators based on the first-order dif-
ference method are a special case of our rain direction reg-
ularizer. Although the image gradient operators also help
preserve edge information, rain motion information, i.e.,
rain direction, has not been considered. Figure 2 presents
two simple cases to illustrate our motivation. Thanks to the
rain direction regularizer, the resulting rain maps (b, e) are
closer to the ground truth (c, f) against (a, d). (b, e) preserve
truthful and sharp structures of rain streaks.

3.2. Derained image reconstruction
With the learned rain maps from the first stage, the re-

construction network in the second stage could restore the
derained images according to the rain model (1). We imple-
ment this process as:

ysyn = F2(xsyn − zsyn), (6)

yreal = F2(xreal − zreal), (7)
where the deep residual network F2 taking xsyn−zsyn and
xreal − zreal as the inputs; ysyn and yreal are the network
outputs which are the estimated derained images of xsyn
and xreal, respectively.

The reconstruction loss is used to regularize the network
F2 with the supervision of clean image ygt:
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Figure 1. An overview of the proposed method. Given an unpaired input rainy images {xsyn;xreal}, the first stage is to estimate the rain
maps constrained by the rain direction regularizer. Then the second stage reconstruct the derained images with {zsyn; zreal} according
to the inverse process of (1). The estimated rain map zreal is used to generate a new rainy image xref by Eq. (9). Such two paired sets
{xreal, yreal} and {xref , ygt} are used to distill the third stage to facilitate the real rain removal tasks.

(a) (b) (c) (d) (e) (f)
Figure 2. Simple cases to illustrate our motivation. (a, d), (b, e)
and (c, f) denote the resulting rain maps estimated with Lcontent

only, Lcontent + λLdirection, and the ground truth, respectively.
λ is a weight parameter. The rain direction regularizer Ldirection

helps preserve structure consistency and sharpness of rain streaks.

Lrecons = f(ysyn − ygt), (8)

where f is taken as L1-norm in our experiments.

3.3. Knowledge distillation for rain removal
We use the results from the rain estimation and recon-

struction networks (i.e., the semi-supervised part) to distill
the network of the third stage. The first two stages serve
as the teacher part while the third stage is the student part.
With the help of rain direction regularizer, the teacher part
can learn a decent derained image ysyn from xsyn super-
vised by ygt, and zreal as well as yreal from xreal via a
semi-supervised manner. Given the reference clean image
ygt, we use the estimated rain map zreal to generate a new
rainy image by:

xref = ygt + zreal. (9)

Thus, we obtain a new image pair {xref , ygt}. And our
knowledge distillation is achieved by:

Ldistill = f(F3(xreal)− yreal) + φg(F3(xref )− ygt),
(10)

where f and g are both taken as L1-norm; F3 denotes a
deep residual network; φ is a positive weight parameter bal-
ancing the importance of each part. Note that xreal and
yreal are the input and output image of the teacher part.

The knowledge distillation is used to explore the useful
information in {xref , ygt} taught by {xreal, yreal} so that
the rain removal process for real-world cases can be further
improved. Section 5.2 will illustrate its effectiveness.

3.4. Joint training with synthetic and real images
Our method adopts both synthetic and real rainy images

to alternatingly update the rain estimation network F1, re-
construction network F2 and the distillation network F3

during training. Each stage takes the outputs from previous
stages as the inputs. Given the unpaired input rainy images
{xsyn;xreal}, F1 and F2 are firstly trained with the syn-
thetic image xsyn which are regularized by the losses de-
fined in (4) and (5), and in (8), respectively. As the ground
truth rain map and clean image of the real rainy image xreal
are unavailable. Similar to [23, 4], we use the TV regu-
larization term LTV on the derained image yreal to con-
strain the smoothness of the background scene. The cycle-
consistent regularizer Lcycle [32] is also adopted so that the
result of derained image yreal added back to the estimated
rain map zreal should close to the input rainy image xreal.
After obtaining the unpaired image pair {xreal, yreal} and
{xref , ygt}, F3 is trained in a fully-supervised manner by
the distillion loss defined in (10) where φ = 10. The over-
all objective of our network is Lcontent + 1.2Ldirection +
Lrecons+0.001LTV +0.01Lcycle+Ldistill. All the weight-
ing parameters are set by sensitivity analysis, e.g., our
method in Figure 8 achieves the highest PSNR value when
λ = 1.2 for the Ldirection.
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We design the semi-supervised part to distill the third
stage and only the knowledge distillation part is used for
test. We note that the semi-supervised part could be re-
placed with other pretrained state-of-the-art image derain-
ing models with the rain direction regularizer to further im-
prove rain map estimation. As for the datasets to train the
knowledge distillation part, only an unpaired set of real-
world rainy and clean images is needed, i.e., xreal and ygt
are unpaired. And the unpaired image pair {xreal, yreal}
and {xref , ygt} can be synthesized during training. Such
strategy effectively facilitates real rain removal tasks.

4. Experimental Results
We compare our method against state-of-the-art image

deraining methods on the publicly available benchmark
datasets and our proposed datasets. Due to the comprehen-
sive experiments performed, we only show a small portion
of the results in the main paper. Please visit the homapege
for more extensive results where we release our source
code, trained models and datasets to the public.

4.1. Datasets
The datasets for training and test are twofold. Rain100H

[26], Rain100L [26], DID-Data [29] and our proposed
RainDirection contain synthetic rainy images with ground
truth rain-free images, while SIRR-Data [23], Real200 [24]
and our proposed Real3000 contain real rainy images with-
out rain-free images. Rain100H and Rain100L dataset is
proposed in [26] covering different rain streak distribution.
DID-Data dataset[29] containing rain-density label infor-
mation, e.g., light, medium, and heavy rain conditions.

We propose a new dataset named RainDirection dataset
to validate the effectiveness of the rain direction regularizer.
Even though existing large-scale datasets could reflect rainy
weather conditions well, they lack the corresponding rain
direction label information. The rainy images in RainDirec-
tion are obtained by adding clean images from Flick2K and
DIV2K dataset [20] with synthetic labeled rain maps ac-
cording to the rain model (1). Each rainy image is assigned
with a direction label. These direction labels are used to
calculate (5) during training. The training and test set of
RainDirection contains 2920 and 430 images, respectively.

We also propose another new dataset named Real3000
dataset. Although several real datasets have been proposed
in previous works, the quantity is small, e.g., SIRR-Data
[23] (147 images) and Real200 [24] (200 images). It is hard
to say that such small-scale datasets are sufficient to train
networks with millions of trainable parameters. The large-
scale Real3000 dataset contains 3000 real rainy images
without ground truth images which are collected mainly
from the internet and captured by a Canon EOS 6D cam-
era. The training and test set contains 2700 and 300 diverse
natural outdoor images, respectively. Real3000 dataset cov-
ers various rain conditions, e.g., sparse and dense rain with
different directions and shapes.

4.2. Implementation details
The rain map estimation network F1, the reconstruction

network F2 and the distillation network F3 could be any
existing deep CNNs. We adopt a small-scale EDSR [12]
network in our method and share the same architecture for
F1, F2 and F3, of which the number of residual blocks is
16, and the number of filters is 64, 64 and 128, respectively.

In the learning process, we use the ADAM optimizer [8]
with parameters β1 = 0.9, β2 = 0.999, and ε = 10−4. The
minibatch size is set to be 12. The learning rate is initial-
ized as 8 × 10−4, which is halved every 40 epochs. The
parameters are initialized randomly, and the network con-
verges well after 200 epochs. We empirically set the weight
parameter of three stages to be 1.0. The entire network is
trained using the Pytorch framework.

During training, the synthetic and real images are ran-
domly cropped in an unpaired manner. For an RGB image
of size h×w×c, the size of the rainy imageO, the rain map
R, and the rain-free image B remain to be h × w × c. The
mathematical operations and CNNs used in our method do
not change the dimensions during training and test.

4.3. Comparisons with the state-of-the-arts
To evaluate the performance of the proposed algorithm,

we compared it against state-of-the-art algorithms including
GMM [11], Clear [2], DDN [3], JORDER [26] (JORDER-
E [25]), DID-MDN [29], UMRL [27], PReNet [19], SIRR
[23], O’er [13], Syn2Real [28], RCDNet [21]. We adopt
4 measurement metrics including PSNR, SSIM, Learned
Perceptual Image Patch Similarity (LPIPS) [31], and Nat-
ural Image Quality Evaluator (NIQE) [16]. Higher PSNR
and SSIM values indicate higher image quality, while lower
LPIPS and NIQE values indicate higher perceptual quality.
We strictly employ the same settings for all the evaluated
methods on the Y channel in YCbCr space similar to pre-
vious works, except that three channels of RGB space are
adopted for the DID-Data dataset. The proposed method
can achieve promising results against the state-of-the-art
methods in benchmark datasets and real images.

Benchmark datasets with ground truth. Table 1
shows the quantitative evaluations on different benchmark
datasets, where the results of the state-of-the-art meth-
ods are obtained using the corresponding publicly avail-
able codes and models for fair comparisons. The proposed
method achieves favorable derained images as well as rain
maps against state-of-the-art methods in terms of PSNR,
SSIM and LPIPS. All of the compared methods are strictly
evaluated with the same settings. We also find some re-
sults of the methods retested by us in Table 1 are better than
their published papers. For example, the PSNR/SSIM on
DID-Data dataset of UMRL [27] tested by us is 30.54/0.93,
while it is 29.77/0.92 in their paper.

Figure 3 and Figure 4 show some derained results from
the Rain100H and Rain100L datasets by the evaluated
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Table 1. Quantitative evaluations for the state-of-the-art deraining methods on the benchmark datasets Rain100H [26], Rain100L [26],
DID-Data [29] and the proposed RainDirection dataset in terms of PSNR, SSIM and LPIPS. Our method performs favorably against the
state-of-the-art image deraining methods. The bold values indicate the best performance. (The results of JORDER [26] on RainDirection
dataset is retrained using their code of TPAMI version [25].)

Datasets Rain100H Rain100L DID-Data RainDirection
Derained Image PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS
GMM [11] 15.23/0.4511/0.573 29.06/0.8720/0.224 24.50/0.8320/0.229 22.92/0.7709/0.355
Clear [2] 13.85/0.4430/0.557 27.39/0.8748/0.215 22.05/0.8396/0.162 22.25/0.8428/0.248
DDN [3] 17.90/0.5621/0.459 29.73/0.9171/0.151 28.37/0.8999/0.136 28.04/0.8746/0.223
JORDER [26] 26.69/0.8347/0.191 36.72/0.9739/0.026 25.52/0.8759/0.179 30.10/0.9064/0.165
DID-MDN [29] 17.36/0.6103/0.443 25.76/0.8597/0.248 27.97/0.9107/0.104 25.70/0.7974/0.350
UMRL [27] 18.21/0.5354/0.465 27.44/0.8717/0.225 30.54/0.9308/0.074 26.08/0.7947/0.342
PReNet [19] 29.46/0.8979/0.122 37.42/0.9784/0.019 26.42/0.8889/0.147 28.94/0.8972/0.181
RCDNet [21] 31.28/0.9081/0.104 39.97/0.9856/0.012 27.69/0.8973/0.132 30.39/0.9054/0.170
Ours 32.62/0.9230/0.090 40.54/0.9872/0.009 33.07/0.9536/0.076 31.35/0.9181/0.153
Rain Map PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
GMM [11] 15.26/0.3932 29.11/0.7971 26.30/0.6864 22.57/0.6889
Clear [2] 14.24/0.2344 28.83/0.8016 25.16/0.6569 23.85/0.7337
DDN [3] 17.91/0.5287 29.75/0.8380 30.35/0.8282 27.46/0.8383
JORDER [26] 26.54/0.9083 36.61/0.9467 25.79/0.6858 29.29/0.8816
DID-MDN [29] 17.51/0.6220 25.93/0.7152 30.19/0.8376 26.43/0.7812
UMRL [27] 18.21/0.5377 27.52/0.7601 32.84/0.8779 26.73/0.7790
PReNet [19] 29.45/0.9358 37.41/0.9536 25.69/0.6785 28.28/0.8627
RCDNet [21] 31.27/0.9483 39.95/0.9716 29.59/0.8140 29.53/0.8827
Ours 32.62/0.9590 40.53/0.9741 34.88/0.9014 30.48/0.8978

(a) Input image (b) GMM [11] (c) DDN [3] (d) JORDER [26] (e) DID-MDN [29]

(f) UMRL [27] (g) PReNet [19] (h) RCDNet [21] (i) Ours (j) Ground Truth
Figure 3. Example results on Rain100H dataset [26]. Our method restores a more clean image with truthful face structures.

(a) Input image (b) GMM [11] (c) DDN [3] (d) JORDER [26] (e) DID-MDN [29]

(f) UMRL [27] (g) PReNet [19] (h) RCDNet [21] (i) Ours (j) Ground Truth
Figure 4. Example results on Rain100L dataset [26]. Our method reconstructs more accurate and consistent structures.

methods. The Gaussian mixture model (GMM) based
method [11] does not restore the derained images well and
generates the results with significant rain residues. DDN
[3] develops a deep detail network for rain removal. How-
ever, this method does not restore human faces or important
structures well as shown in Figure 3 (c) and Figure 4 (c).

JORDER [26] jointly estimates rain locations and rain maps
and achieves effective results, but obvious artifacts still ex-
ist in the results (Figure 3 (d)). DID-MDN [29] introduces
rain density labels while UMRL [27] develops rain streak
location information to help rain removal. However, both
of them do not remove the rain from the input images well.
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(a) Input image (b) GMM [11] (c) DDN [3] (d) JORDER [26] (e) DID-MDN [29]

(f) UMRL [27] (g) PReNet [19] (h) RCDNet [21] (i) Ours (j) Ground Truth
Figure 5. Example results on the RainDirection dataset. Our algorithm recovers a high-quality image with clearer structures and details.

(a) Input image (b) GMM [11] (c) Clear [2] (d) DDN [3] (e) DID-MDN [29] (f) UMRL [27]

(g) PReNet [19] (h) SIRR [23] (i) O’er Me [13] (j) JORDER-E [25] (k) RCDNet [21] (l) Ours
Figure 6. Example results in real-world images. In this challenging case, our method removes the rain streaks (drops) effectively with
fewer rain residues against the compared methods.

Table 2. Quantitative evaluations of the compared methods on the proposed Real3000 dataset (300 real test images) in terms of NIQE.

Methods GMM [11] DID-MDN [29] PReNet [19] SIRR [23] O’er Me [13] JORDER-E [25] Syn2Real [28] RCDNet [21] Ours
NIQE 3.7119 3.8162 3.8363 3.2664 3.5511 3.4530 3.1973 3.4401 3.0558

PReNet [19] progressively tackles the deraining problem in
multiple stages with a shallow yet effective ResNet. RCD-
Net [21] also introduces an iterative algorithm. This method
converges well after 20 stages. However, artifacts still exist
and the structures are not restored well as presented in Fig-
ure 3 (h) and Figure 4 (h). In contrast, our proposed method
recovers more clean images with truthful structures.

Figure 5 shows some derained results on our proposed
RainDirection dataset. We fine-tune the pre-trained mod-
els of other CNN-based methods on the proposed RainDi-
rection dataset and choose their best models for evaluation.
We note that state-of-the-art methods do not remove the rain
streaks well. In contrast, the proposed algorithm restores
high-quality images with truthful image details and struc-
tures against the others.

Real examples. We further evaluate another real example
from [30] where the heavy rain streaks in the air and the
raindrops on the ground both exist. Figure 6 shows that the
state-of-the-art methods [11, 2, 3, 29, 27, 19, 23, 13, 25, 21]
do not restore the derained images well and the results con-
tain rain residues or color distortion. In contrast, our method

Table 3. Average running time comparisons (in seconds) on 100
RGB images of 512 x 512 pixels.

Methods SIRR [23] JORDER-E [25] RCDNet [21] Ours
Platform TensorFlow PyTorch PyTorch PyTorch
Avg. time 0.15 0.36 0.79 0.17
Model size 0.06M 4.2M 3.2M 4.9M

removes both of the rain streaks and raindrops effectively
and restores promising derained images. Table 2 sum-
marizes the quantitative evaluations using the no-reference
score NIQE on the proposed Real3000 dataset. Table 2
indicates that our method can achieve high-quality images
against the state-of-the-art methods on real-world images.

Running time. We evaluate the average running time on
randomly selected 100 RGB images of 512 x 512 pixels on a
computer with an Intel Core i9-9940X CPU and an NVIDIA
TITAN RTX GPU. Table 3 shows that our method takes
slightly more running time compared to SIRR [23] due to a
larger model size. JORDER-E [25] and RCDNet [21] take
more time than ours because their networks have multiple
stages. Our method only needs to evaluate the distillation
network in testing.
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Figure 7. Sensitivity analysis on the hyper-parameters λ and direc-
tional filer kernel size of the rain direction regularizer.

Table 4. Effectiveness of the rain direction regularizer (5) for rain
removal tasks on RainDirection dataset.

Methods w/o (5) Ours
PSNR/SSIM/LPIPS 30.34/0.9083/0.166 31.35/0.9181/0.153

5. Analysis and Discussions
In this section, we further analyze the effectiveness of

the components via conducting ablation studies.

5.1. Effectiveness of the rain direction regularizer
We introduce a rain direction regularizer to help preserve

the structures and shape of rain maps. To demonstrate the
effectiveness of the rain direction regularizer, we analyze
the sensitivity of the trade-off parameter λ and directional
filter kernel size of the rain direction regularizer. Our pro-
posed rain direction regularizer Ldirection is different from
Lcontent although both the f defined in them are taken as
L1-norm. Figure 7 shows that our method is not sensitive
to the change of the hyper-parameter λ within a wide range
on the validation set. When λ = 0, our approach reduces to
using the Lcontent only and the results decrease by nearly
1.6 dB in Avg. PNSR. Compared to using the Lcontent only
or the directional filter of 3×3 kernel size (reduces to using
a horizontal and vertical gradient operator), 5 × 5 or 7 × 7
kernel size helps achive better performance. Table 4 demon-
strates that using the rain direction regularizer can achieve
better derained images in terms of PSNR, SSIM, and LPIPS
on the RainDirection dataset. These experiments indicate
that the rain direction regularizer effectively helps preserve
the structures and shape for image rain removal.

5.2. Effectiveness of the knowledge distillation
The semi-supervised part serves as the teacher part. The

knowledge distillation strategy (10) explores the useful in-
formation from the synthesized paired data {xref , ygt} and
{xreal, yreal}. To demonstrate its effectiveness, we disable
(10) in the proposed method and retrain with the same set-
tings for fair comparisons. Figure 8 (c) shows the result
using the knowledge distillation, where the rain streaks are
removed well. In contrast, the result w/o (10) contains ar-
tifacts and color distortion as shown in Figure 8 (b). The

(a) Real rainy input (b) w/o (10) (c) Ours
Figure 8. Effectiveness of the knowledge distillation in a real case.

Table 5. Effectiveness of the knowledge distillation strategy (10)
for rain removal tasks on Rain100L [26] dataset.

Methods w/o (10) Ours
PSNR/SSIM/LPIPS 39.15/0.9662/0.013 40.54/0.9741/0.009

comparisons in Table 5 demonstrates that using the knowl-
edge distillation can achieve better derained images in terms
of PSNR, SSIM, and LPIPS on Ran100L [26] dataset. The
distillation network benefits from the complementary infor-
mation encoded within the synthesized data, thus further
improve the results of rain removal tasks.

5.3. Relations with the most related methods
Recently, a data distillation method has been proposed

for rain removal tasks [13]. This approach develops a data
distillation strategy to learn real rain maps for rain removal
tasks. Our method is significantly different from this ap-
proach in model formulation, solving process and learn-
ing goals. We differently employ a semi-supervised strat-
egy with an effective rain direction regularizer to estimate
the rain map and derained image. The knowledge distil-
lation part and rain estimation module are decoupled, ex-
ploring complementary information within the synthesized
pseudo paired data and trained in an unpaired learning man-
ner. The quantitative evaluations in Figure 6 and Table 2
further demonstrate that the proposed approach is more ef-
fective for rain removal tasks than the state-of-the-art algo-
rithms including this method.

6. Conclusions
In this paper, we have proposed an effective unpaired

learning based method for image rain removal. The pro-
posed method explores the simple and well-established
layer separation principles according to the linear superim-
position model. It mainly consists of a semi-supervised part
and a knowledge distillation part, trained by unpaired syn-
thetic and real data. We have developed a rain direction
regularizer to help rain map estimation and preserve local
consistency and sharpness of the rain streaks. Two new
datasets named RainDirection and Rain3000 are proposed
to validate the effectivness. Qualitative and quantitative ex-
periments demonstrate that the proposed method achieves
promising results and performs favorably against state-of-
the-art methods on benchmark datasets and real images.
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