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Abstract

Transformer-based detector is a new paradigm in ob-
ject detection, which aims to achieve pretty-well perfor-
mance while eliminates the priori knowledge driven com-
ponents, e.g., anchors, proposals and the NMS. DETR, the
state-of-the-art model among them, is composed of three
sub-modules, i.e., a CNN-based backbone and paired trans-
former encoder-decoder. The CNN is applied to extract lo-
cal features and the transformer is used to capture global
contexts. This pipeline, however, is not concise enough. In
this paper, we propose WB-DETR (DETR-based detector
Without Backbone) to prove that the reliance on CNN fea-
tures extraction for a transformer-based detector is not nec-
essary. Unlike the original DETR, WB-DETR is composed
of only an encoder and a decoder without CNN backbone.
For an input image, WB-DETR serializes it directly to en-
code the local features into each individual token. To make
up the deficiency of transformer in modeling local informa-
tion, we design an LIE-T2T (local information enhancement
tokens to token) module to enhance the internal information
of tokens after unfolding. Experimental results demonstrate
that WB-DETR, the first pure-transformer detector without
CNN to our knowledge, yields on par accuracy and faster
inference speed with only half number of parameters com-
pared with DETR baseline.

1. Introduction
CNN-based approaches [18] have dominated object de-

tection tasks [20, 32] for years. In these methods, a com-
mon component is the backbone network [12, 13, 14, 35],

*Equal contribution.
†Corresponding author is Wenzhe Zhao.

CNN
Transformer

encoder-

decoder

Linear Projection of Flattened Patches

Transformer encoder-decoder

Image features

Set of box 

predictions

(a)

(b)

      

Set of box 

predictions

Figure 1. DETR vs. WB-DETR. (a) DETR first uses a CNN net-
work to extract features, and then utilizes a transformer structure
for object detection. (b) WB-DETR serializes the image and uses
transformer to detect object directly.

acting as extracting image features by a series of convo-
lution and pooling layers. Modern CNN-based detectors
[9, 11, 27, 21, 36, 29, 23, 25, 26, 22] regard the detector de-
sign as a modules combination process, which always com-
posed of a backbone, a neck [21] and multiple detection
heads [3]. Among which, the backbone has become a de
facto standard to improve the performance and the design
of various backbones is also a focus of research in the field
of object detection. As we all know, the equipment of a
backbone is essential for existing CNN-based detectors.

To get out of the paradigm of CNN-based design, Car-
ion et al. propose a novel detector named DETR [4]. Un-
like previous CNN-based works, DETR is a transformer-
based detector [4, 40, 5, 33], which eliminates many hand-
crafted operations [4], e.g., anchor generation, rule-based
object assignment, non-maximum suppression (NMS) post-
processing, and so on. As shown in Figure 1 (a), DETR
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Figure 2. T2T vs. LIE-T2T. T2T aggregates the information of
adjacent tokens through reshape and unfold operations. Based on
T2T, LIE-T2T can realize local spatial attention of reshaped Ti by
calculating channel attention of unfolded Ti+1. F (·,W ) means an
attention calculation, F (·) represents element-wise multiplication
and FC indicates the FC layer.

applies a simple architecture that combined with a CNN
backbone and paired transformer [31] encoder-decoder to
output set of box predictions, which simplifies the pipeline
of object detection in an extent. However, DETR is also in-
fluenced by the modular splicing design and still relies on
CNN to extract features, which makes the model not unify
and neat enough.

Vision Transformer (ViT) [6] is the first pure-transformer
model that can be directly applied for image classification.
It splits the input image into 16 × 16 patches with fixed
length. Then, an encoder sub-module is run to conduct se-
quence modeling of patches to obtain classification results.
Unfortunately, ViT achieves inferior performance compared
with CNN [12, 13, 14, 35], since the simple tokenization
of input images fails to model the important local struc-
ture (e.g., edges, lines) among neighboring pixels. T2T-
ViT (Tokens-to Token Vision Transformer) [37] solves the
above problem by recursively aggregating neighboring to-
kens into one token. In this way, not only the local structure
presented by surrounding tokens that can be modulated, the
tokens length also can be reduced. The performance of T2T-
VIT exceeds that of the classifier designed by CNN, which
proves that transformer is also capable of extracting shal-
low features. And thus, a nature problem is: is the CNN-
backbone in DETR redundant?

In this paper, we show the above answer is affirma-
tive. Inspired by [37], we try to get rid of the backbone
of DETR and propose what we believe the most concise
detector (WB-DETR) so far. As depicted in Figure 1 (b),
WB-DETR does not use the backbone of CNN to extract
features. Instead, it directly serializing the image, encoding
local features in each independent token. As we all know,
the self-attention of transformer has strong global informa-
tion modeling ability, which can commendably modulate
the contexts between different tokens. However, the lo-
cal information in each token and the information between

adjacent tokens in space are not well modeled. In other
words, transformer lacks the ability of local information
modeling. Although the T2T [37] module can aggregate the
contexts of adjacent tokens, it is unable to model the inter-
nal information of the aggregated independent token sep-
arately, as illustrated in Figure 2 (a). Accordingly, along
with WB-DETR, we present LIE-T2T (Local Information
Enhancement-T2T) module. As shown in Figure 2 (b), LIE-
T2T not only reorganizes and unfolds the adjacent tokens,
but also calculates the attention on the channel-dimension
of each token after unfolding. Because the tokens are ob-
tained from feature map through unfold operation, model-
ing the relationship between channels of the tokens is equiv-
alent to modeling the spatial relationship between the pixels
in feature map. That is why channel attention in LIE-T2T
can enhance local information.

In a word, we propose WB-DETR (DETR-Based De-
tector without Backbone), which is only composed of an
encoder and a decoder without the backbone. Instead of
utilizing a CNN to extract features, WB-DETR serializes
the image directly, encoding the local features of input into
each individual token. Besides, to allow WB-DETR bet-
ter make up the deficiency of transformer in modeling local
information, we design LIE-T2T (Local Information En-
hancement Tokens-to Token) module to modulate the inter-
nal (local) information of each token after unfolding. Com-
pared with the DETR baseline, WB-DETR without back-
bone is more unify and neat. We encourage researchers to
rethink the modules combination (backbone-neck-head) de-
sign paradigm for object detection.

2. Related Works

2.1. Object Detection

Object detection is a basic task in computer vision,
which operates as localizing and classifying objects in an
image. With the assistance of deep learning, object de-
tection yields great progress in the current era, promot-
ing broad vision tasks directly or indirectly, such as object
tracking [2, 15], instance segmentation [11], pose estima-
tion [8, 24], and so on. Modern object detectors hammer
at maintaining the high precision in the process of pursu-
ing pipeline simplicity. Two-stage detectors [28, 3]predict
boxes, w.r.t., proposals, whereas single-stage methods make
predictions, w.r.t., anchors [22] or grids of possible objects
centers [39, 29]. In the last few years, anchor box is used
to match a ground truth box and acts as a guidance for
detectors to regress the object bounding box. Faster R-
CNN [28] popularizes the anchor mechanism in its Region
Proposal Network (RPN) which used to generate propos-
als from a set of candidate boxes. Later, the anchor boxes
are widely used in the two-stage and anchor-based detec-
tors. Afterwards, to further explore the efficiency of mod-
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Figure 3. The architecture of the proposed WB-DETR. Firstly, an input image is soft split as patches, and unfolded as a sequence of tokens
T0, Then, T0 is fed into the LIE-T2T Transformer Encoder, composed of N layers LIE encoders and K layers encoders without LIE, to
get Ti. Finally, WB-DETR utilizes each output embedding of the decoder to a shared Feed Forward Network (FFN) to predict either an
“object” (with class and bounding box) or a “no object”.

els, some anchor-based one-stage detectors also appeared.
They remove the RPN and directly regress and classify the
anchor boxes. YOLOv2 [26] uses anchor boxes to predict
bounding boxes, which achieves much better performance
than YOLOv1[25]. Recently, considering the drawbacks
of the anchor mechanism, researchers have proposed many
anchor-free methods. FCOS [29] treats pixels as positive
samples and directly regresses four-vectors (the distances
from each pixel to the borders of the corresponding box).
In addition, Keypoints-based detectors usually predict key-
points via outputting heatmaps [30]. For example, Corner-
Net [19] detects objects by predicting and grouping pairs
of corner points. Based on CornerNet, Duan et al. de-
signed CenterNet [7] that detects each object as a triplet.
Recent works [38] demonstrate that the final performances
of the above models heavily depend on the exact way of
what initial guesses are set, e.g., the settings of anchors and
the matching rules of positive and negative samples. When
these detectors match positive and negative samples, they
often match multiple predictions with one target, which lead
to one object along with multiple bounding boxes predic-
tions. They require prior knowledge, such as NMS, to filter
out excess boxes. That is why the object detector cannot be
designed as complete end-to-end.

2.2. Visual Transformers

The concept of transformers is first proposed in [31]
for the sequence-to-sequence machine translation task, and

since then transformers have become the de facto method
in most NLP (Natural Language Processing) tasks [1]. As
the core mechanism of transformers, self-attention is partic-
ularly suitable for modeling long-range dependencies. Re-
cently, transformers start to show prospects in computer vi-
sion tasks. DETR [4] builds an object detection systems
based on transformers, which largely simplifies the tradi-
tional detection pipeline, and achieves on par performances
compared with highly optimized CNN-based detectors. ViT
[6] introduces the transformer to image recognition and
models an image as a sequence of patches, which attains
excellent results compared with state-of-the-art CNN net-
works. The above two works show the effectiveness of
transformers in image understanding tasks. Our work is in-
spired by DETR and ViT. To our knowledge, there is no ob-
ject detector uses pure-transformer without any CNN mod-
ules. Whether the object detection task can be completed
using only transformer? In this paper, we introduce the
WB-DETR and provide an affirmative answer to it.

3. Method

In this section, we first introduce the overall pipeline
of the proposed WB-DETR. Next, we will delve into each
module of the proposed WB-DETR and show how LIE-T2T
helps better model local information. Finally, we introduce
the design of loss functions.
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Figure 4. The process of Image to Tokens. Take an input image
with 512×512×3 as an example. Firstly, the image is cut to 1024
patches with the size of 32×32× 3. Then, each patch is reshaped
to one-dimensional. Finally, a trainable linear projection is per-
formed to yield required tokens.

3.1. Image to tokens

We follow the ViT to handle 2D images. Firstly, We cut
the image to a size of (p, p) with a step size of (s, s). In
this way, the input image x ∈ Rh×w×c is reshaped into a
sequence of flattened 2D patches xp ∈ Rl×cp , where h and
w are the height and width of the original image, c is the
number of channels, and l represents the length of patch.
Among them, l = h×w

s2 , cp = p2 × c. l also serves as the
effective input sequence length for the transformer encoder.
Our LIE-T2T encoder employs constant latent vector size
d through all of its layers. And thus, we flatten and map
the patches to d dimensions with a trainable linear projec-
tion. More specifically, this linear projection has an input
and output dimensions of cp and d, respectively. We name
the output of this projection as the tokens T0. The procedure
of converting image to tokens is shown in Figure 4.

3.2. LIE-T2T encoder

After the process of image to tokens, we add positional
encodings [4] to target tokens to make them carry location
information. The positional encoding is a standard learn-
able 1D version [6, 3]. Then, the resulting sequence of em-
bedding vectors serves as input to the encoder, as shown
in Figure 3. Each encoder layer keeps a standard architec-
ture which consists of a multi-head self-attention module
and a feed forward network (FFN). An LIE-T2T module is
equipped behind each encoder layer to constitute the LIE-
T2T encoder. The LIE-T2T module can progressively re-
duce the length of tokens and transform the spatial structure
of the image.

Since we do not use any CNN-based backbone to extract
image features, instead of directly serializing the image, the
local information of the image is encoded in each indepen-
dent token. Although the self-attention sub-module in trans-
former has strong global information modeling capabilities,
which can model information between different tokens, the
local information within each token and the information be-
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Figure 5. Detailed structure diagram of the LIE-T2T encoder.
Each encoder layer keeps a standard architecture which consists
of a multi-head self-attention module and a feed forward network
(FFN). An LIE-T2T module is equipped behind each encoder layer
to constitute the LIE-T2T encoder.

tween adjacent tokens in space are not well modeled. To
this end, when designing the LIE-T2T module, we need to
not only reorganize and stretch the adjacent tokens, but also
enhance the internal information (i.e., local information) of
the tokens after flattening.

Concretely, LIE-T2T module calculates attention on the
channel-dimension of each token. The attention is calcu-
lated separately for each token. More detailed iterative pro-
cess of LIE-T2T module is shown in Figure 5, which can
also be formulated as follows:

T = Unfold (Reshape (Ti)) (1)

S = Sigmoid (W2 ·ReLU (W1 · T )) (2)

Ti+1 =W3 · (T · S) (3)

where Reshape means the operation: reorganize (l1 × c1)
tokens into (h× w × c) feature map. Unfold represents
stretching (h× w × c) feature map to (l2 × c2) tokens.
W1,W2, andW3 indicate parameters of corresponding fully
connected layer. We use the ReLU activation to find its
nonlinear mapping and employ the Sigmoid function to
generate the final attention. The input of LIE-T2T encoder
is with the dimension of ((h/s× w/s)× 256).
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3.3. Decoder

The decoder of WB-DETR follows the standard archi-
tecture of the transformer [4], acting as transforming N
embeddings of size d using multi-headed self-attention and
encoder-decoder mechanisms. Like DETR, our WB-DETR
decodes the N objects in parallel at each decoder layer.
Since the decoder is permutation-invariant, theN input em-
beddings must be distinguishable to produce different re-
sults. These input embeddings are learnable embeddings
that we refer to object queries. As the encoder, we add po-
sitional encoding to the input of each attention layer in de-
coder. Finally, the N object queries are transformed into an
output embedding by the decoder and then independently
decoded into box coordinates and class labels by a feed for-
ward network (FFN), yielding N final predictions.

3.4. Feed Forward Network

The feed forward network is computed by a 3-layer per-
ceptron with a ReLU activation function and a linear pro-
jection layer. The final outputs of FFN are the normalized
center coordinates, height and width of the boxes w.r.t. the
input image, and the linear layer predicts the class label via
a Softmax function. Since we predict a fixed-size set ofN
bounding boxes, where N is usually much larger than the
actual number of objects of interest in an image, an addi-
tional special class label ”no object” [4] is used to represent
that no object is detected within a slot. This ”no object”
class plays a similar role to the “background” class in the
traditional object detection approaches [11, 23].

3.5. Loss Functions

The loss functions of WB-DETR are the same as DETR,
which are driven by Hungarian algorithm. In other words,
all supervisions are applied after the matching between pre-
dictions and ground-truths.

Matching. Our loss functions produce an optimal bi-
partite matching between predicted and ground-truth ob-
jects. We use the Hungarian algorithm to find an optimal
match and the matching cost is composed of predicted class
and bounding box following [4]. After matching, we can
get a new order of ground-truth objects, and then multi-
classification loss and bounding box loss are calculated
based on the new matching ground-truth.

Multi-classification loss. WB-DETR adopts cross-
entropy loss with balanced-weights as multi-classification
loss function. The specific formula can be expressed as:

Lc(y, ŷ)=−
1

N

i=N∑
i=1


log(ŷi) if yclass 6= no object

α · log(ŷi) otherwise,
(4)

where α is the loss weight, balancing the object and “no
object” samples, which we set to 0.1.

Bounding box loss. The regression loss of bounding box
consists of two parts: L1 loss and IoU loss as follows.

Lbox(b̂, b) =
1

N

i=N∑
i=1

[γ · L1(b̂i, bi)+

η · Liou(b̂i, bi)]

(5)

where γ and η are the balanced-weights of L1 and Liou.
b̂ and b represent the regressed and ground-truth bounding
box, respectively.

4. Experiments

4.1. Dataset

We evaluate the proposed WB-DETR on the very chal-
lenge MS COCO benchmark dataset [20, 17]. We train our
model on the train2017 split with about 115K annotated
images and validate our method on the val2017 split with
5K images. COCO uses average precision (AP) at different
IoUs as the main evaluation metrics.

4.2. Implementation details

The main settings and training strategy of our WB-
DETR are mainly followed DETR [4] for better compar-
isons. All transformer weights are initialized with Xavier
Init [10], and our model has no pre-train process on any ex-
ternal dataset. By default, models are trained for 500 epochs
with a learning rate drop 10× at the 400 epoch. We optimize
WB-DETR via an Adam optimizer [16] with a base learning
rate of 1e−4 and a weight decay of 0.001. We use a batch
size of 32 and train the network on 16 V100 GPUs with
4 images per-GPU. We use some standard data augmenta-
tions, such as random resizing, color jittering, random flip-
ping and so on to overcome the overfitting. The transformer
is trained with a default dropout of 0.1. We fix the number
of decoding layers at 6 and report performance with the dif-
ferent layer number N and K of encoder: When N and K is
n and k, the corresponding model is named as WB-DETRn

k .

4.3. Comparisons with Faster R-CNN and DETR

We validate the effectiveness of WB-DETR by compar-
ing it with the most classic detectors (Faster R-CNN and
DETR). As shown in Table 1, our WB-DETR (2-12) model
yields on par AP with DETR while the number of param-
eters of our model is only about half of the DETR. Be-
sides, the speed is 8 FPS faster than that of DETR. The
WB-DETR (2-8) achieves the similar AP (40.2) and about
twice of the inference speed also only with half of parame-
ters compared with Faster R-CNN (with FPN) model. The
above results prove that without a CNN-based backbone, a
pure-transformer is capable of all the steps of object detec-
tion task, and even better than the CNN-based ones.
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Table 1. Comparison with Faster R-CNN and DETR on the COCO validation set. The parameters of our model are greatly reduced, and
the inference speed is a lot faster than the classic Faster R-CNN and DETR.

Method Params FLOPs FPS AP AP50 AP75 APS APM APL

Faster R-CNN w/FPN 42M 180G 26 40.2 61.0 43.8 24.2 43.5 52.0
Faster R-CNN-DC5 166M 320G 16 39.0 60.5 42.3 21.4 43.5 52.5
Faster R-CNN-R101 w/FPN 60M 246G 20 42.0 62.5 45.9 25.2 45.6 54.6

DETR 41M 86G 28 42.0 62.4 44.2 20.5 45.8 61.1
DETR-DC5 41M 187G 12 43.3 63.1 45.9 22.5 47.3 61.1
DETR-R101 60M 152G 20 43.5 63.8 46.4 21.9 48.0 61.8
DETR-DC5-R101 60M 253G 10 44.9 64.7 47.7 23.7 49.5 62.3

WB-DETR (2-4) 14M 62G 51 39.6 58.4 43.8 18.2 42.7 54.9
WB-DETR (2-8) 19M 80G 42 40.2 60.1 43.9 19.3 44.1 58.8
WB-DETR (2-12) 24M 98G 36 41.8 63.2 44.8 19.4 45.1 62.4

Table 2. We evaluated the effectiveness of our proposed LIE-T2T
module by changing the number of LIE-T2T encoder layers.

Layers Params FLOPs FPS AP APS APM APL

0 13M 60G 49 30.7 10.5 35.2 56.5
1 16M 72G 45 38.5 17.1 40.8 57.6
2 19M 80G 42 40.2 19.3 44.1 58.8
3 21M 94G 40 40.3 19.2 44.3 58.7

Table 3. Comparison with LIE-T2T and T2T. The values of
AP50 yielded by LIE-T2T and T2T are very close, and the AP75

achieved by LIE-T2T is much higher than T2T.

LIE-T2T T2T Params FLOPs FPS AP AP50 AP75

X 19M 79G 42 38.1 62.8 41.4
X 19M 80G 42 40.2 63.2 44.8

4.4. Ablation Studies

In the transformer decoder, self-Attention is the key
component which models relations between feature repre-
sentations of different predictions. In the above experi-
ments, the number of decoder layers is fixed at 6 as default.
In this part, with the fixed decoder, we explore how other
components of our architecture and loss functions influence
the final performance. All ablation studies only use WB-
DETR (2-8) for limited computing resources.

Number of LIE-T2T encoder layers. We evaluate the
effectiveness of the proposed LIE-T2T module further by
changing the number of LIE-T2T encoder layers. More
specifically, when we reduce the number of LIE-T2T en-
coder layers, we also increase the step size of each layer to
ensure that the subsequent dimensions are consistent. As
illustrated in Table 2, we can see that if we do not add

our LIE-T2T module to original encoder, the AP would
drop significantly (from 40.3 to 30.7), especially for small
targets, with a drop of nearly 1

2 AP (from 19.2 to 10.5).
This result can adequately demonstrate that our LIE-T2T
encoder layers can make the transformer process local in-
formation better. As the number of LIE-T2T encoder layers
continues to increase (from 1 to 2), the delta AP is getting
smaller. 2 LIE-T2T encoder layers achieves on par AP (40.2
vs.40.3) with 3. That is why we select 2 as the number
of LIE-T2T encoder layers. Of course, in other view, this
experiment also shows that a pure-transformer without any
modification can still perform rough object detection.

LIE-T2T vs. T2T. We compare our proposed LIE-
T2T with the original T2T module. Although T2T mod-
ule can aggregate the information of adjacent tokens, it can
not model the internal information of the aggregated inde-
pendent tokens separately. Accordingly, we designed the
LIE-T2T module based on T2T. As mentioned above, LIE-
T2T not only reorganizes and stretches the adjacent tokens,
but also calculates the attention in the channel-dimension
of each token after stretching. Because the tokens are ob-
tained by feature map through unfolding, modeling the re-
lationship between the channels of tokens is equivalent to
modeling the spatial relationship between the pixels. We
add channel-dimension attention on tokens, which is equiv-
alent to add local spatial attention. It can be seen from
Table 3 that the values of AP50 yielded by LIE-T2T and
T2T are very close, yet the AP75 achieved by LIE-T2T is
much higher than T2T. The experiment result shows that the
regressed bounding boxes are more accurate after model-
ing the local information. Besides, the extra computational
overhead of LIE-T2T is minimal. Visualization of detec-
tion results of LIE-T2T and T2T are shown in Figure 6. We
can see that the detection boxes obtained by our LIE-T2T
are very accurate. Every detection box can fit well with the
object boundary, yielding outstanding AP75.
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Figure 6. Visualization of detection results. (a) Detection results of directly running object detection with pure-transformer without any
modifications. (b) Detection results of object detection using pure-transformer along with the T2T module. (c) Detection results of object
detection using pure-transformer along with the LIE-T2T module. We can see that the model, using transformer directly (a), has poor
performance for small targets and the regressed bounding boxes are not accurate. After adding the T2T module (b), the detection effect for
small targets has been much improved, but the bounding boxes are still not accurate enough. With the addition of our LIE-T2T module (c),
the quality of detection results is significant lifted.

Table 4. We change the patch-size and step-size of cutting to eval-
uate the impact of both the overlap areas and different amounts of
information in each token on the detection results.

Patch Step Params FLOPs FPS AP AP50 AP75

8 4 19M 184G 32 41.1 63.3 45.6
16 8 19M 80G 42 40.2 63.2 44.8
24 12 19M 64G 48 38.8 63.0 43.0
32 16 19M 42G 58 36.3 62.5 42.1
8 8 19M 79G 44 39.7 63.2 44.2

16 16 19M 34G 59 35.4 62.3 41.8
24 24 19M 18G 64 34.2 61.5 40.5
32 32 19M 12G 80 33.9 61.0 37.6

Patch and step sizes. We change the patch- and step-
size of cutting to evaluate the impact of both the overlap
areas and different amounts of information in each token
on the detection results. As can be seen in Table 4, the
step size has an important relationship with the accuracy
of the model. When the step size is too large (e.g., ≥ 16),
the model can not effectively output high quality bounding
boxes. When the step size is too small (e.g.,≤ 8), there will
be an exponential increase in computing overhead. There-

fore, it is important to pick the right pair of patch- and step-
size.

5. Conclusion
In conclusion, we propose the first pure-transformer de-

tector WB-DETR (DETR-Based Detector without Back-
bone). The new model is only composed of an encoder and
a decoder without any CNN-based backbones. Instead of
utilizing a CNN to extract features, WB-DETR serializes
the image directly and encodes the local features of input
into each individual token. Besides, to allow WB-DETR
better make up the deficiency of transformer in modeling
local information, we design a LIE-T2T (Local Informa-
tion Enhancement Tokens-to Token) module to modulate
the internal (local) information of each token after unfold-
ing. Unlike other traditional detectors, WB-DETR with-
out backbone is more unify and neat. Experimental results
demonstrate that WB-DETR, the first pure-transformer de-
tector without CNN to our knowledge, yields on par accu-
racy and faster inference speed with only half number of
parameters compared with DETR baseline. We encourage
researchers to rethink the modules combination (backbone-
neck-head) design paradigm for object detection.
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