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Abstract

Existing calibration methods occasionally fail for
large �eld-of-view cameras due to the non-linearity of the
underlying problem and the lack of good initial values for
all parameters of the used camera model. This might occur
because a simpler projection model is assumed in an initial
step, or a poor initial guess for the internal parameters
is pre-de�ned. A lot of the dif�culties of general camera
calibration lie in the use of a forward projection model.
We side-step these challenges by �rst proposing a solver
to calibrate the parameters in terms of a back-projection
model and then regress the parameters for a target for-
ward model. These steps are incorporated in a robust
estimation framework to cope with outlying detections.
Extensive experiments demonstrate that our approach is
very reliable and returns the most accurate calibration
parameters as measured on the downstream task of abso-
lute pose estimation on test sets. The code is released at
https://github.com/ylochman/babelcalib .

1. Introduction

Cameras with very wide �elds of view, such as �sh-
eye lenses and catadioptric rigs [44], usually require highly
nonlinear models with many parameters. Calibrating these
cameras can be a tedious process because of the camera
model’s complexity and its underlying non-linearity. If the
calibration is inaccurate or even fails, then the user is often
required to manually remove problematic images or �du-
cials, capture additional images, or provide better initial
guesses for the unknown model parameters. A second com-
mon problem is that the choice of calibration toolbox limits
the user to a particular set of supported camera models and
extending the toolbox to accommodate more �exible cam-
era models can be a dif�cult task.

This paper proposes a method that robustly estimates ac-
curate camera models for central projection cameras [39]
with �elds of view ranging from both narrow to omni-
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Figure 1:Method overview and result. (left) BabelCalib
pipeline: the camera model proposal step ensures a good
initialization, (right) example result showing residuals of re-
projected corners of test images.

directional. Furthermore, the proposed framework can es-
timate the most widely used camera models for these lens
types, while also providing an easy and common path to
extend the method to new camera models.

Camera calibration is a very non-linear task, hence a
good initial guess is typically needed to obtain accurate pa-
rameters. Poor initial estimates are frequent source of fail-
ures. Sensible initial guesses are often available only for
some of the model unknowns,e.g., initial values are of-
ten unavailable for parameters describing substantial lens
distortions. A second failure mode is caused by incorrect
or grossly inaccurate measurements,e.g., corner detections,
which are matched to �ducials on the calibration target. If
corrupted data is used to estimate the initial guess, then the
downstream model re�nement will likely fail.

Our method addresses both failure modes. We introduce
a solver that recovers all calibration parameters for a wide
range of cameras (and lenses) such as pinhole, �sheye and
catadioptric ones. We show that the proposed solver pro-
vides a good initialization for all critical intrinsics, which
includes the center of projection and pixel aspect ratio. Our
solver assumes only a planar calibration target. In addi-
tion, the initialization simultaneously improves the accu-
racy of corner detections while estimating the center of pro-
jection and camera pose by enforcing projective constraints.
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MODEL PARAMETERS, � RADIAL (BACK-)PROJECTIONFUNCTION
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Brown-Conrady (BC) [8] f k1 ; k2g � � (R; Z ) = ( R=Z ) �
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Kannala-Brandt (KB) [20] f k1 ; : : : ; k 4g � � (R; Z ) = � +
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Division (DIV) [34, 40] f a1 ; a2 ; a3g  � (r ) = 1 +
P 3

n =1 an r n +1

Division-Even [22] f � 1 ; : : : ; � N g  � (r ) = 1 +
P N

n =1 � n r 2n

Table 1: Supported camera models. Models compute either radially-symmetric projection,r = � � (R; Z ), or back-
projection, r : rZ � R � (r ) = 0 , whereR andZ are the radial and depth components of a scene point, andr is the distance
from the center of projection of a retinal point. The right column lists functions for published models.

The solver is used within a RANSAC framework for ef�-
cient model generation. The model proposals are evaluated
for consistency with the extracted features, and poorly ex-
tracted features and incorrect correspondences are rejected.

Our approach uses a back-projection model as an in-
termediate camera model. Back-projection models map-
ping image points to 3D ray directions are able to model a
wide range of cameras (such as pinhole, �sheye and omni-
directional cameras). Our approach (and therefore our main
contribution) is to decouple the calibration task for general
camera models into a much simpler calibration task for a
powerful back-projection model followed by a regression
task to obtain the parameters of the general target camera
model. Effectively, we remove the need to generate a solver
for each target camera model, which can be intractable, or
result in solvers that are computationally expensive or nu-
merically unstable in practice. Instead, we use an ef�cient
solver for a back-projection model followed by an easier re-
gression task to recover the target model parameters. The
motivation for such an approach is given in Table 1, where
it shows that projection equations are relatively simple once
the radial componentR and the depth componentZ are
known. These values are provided by the back-projection
model.E.g., for the Kannala-Brandt model [20], estimation
of its parameters is linear for givenR andZ .

Overall, our strati�ed approach to calibration circum-
vents many of the issues that are due to the highly non-linear
behavior of many �exible camera models. BabelCalib per-
forms both back-projection estimation and target model re-
gression inside of a robust estimation framework, and di-
rectly returns the parameters of the target model. Fig. 1
illustrates the accuracy of our method for a �sheye lens on
hold-out test images. The achieved high accuracy is spa-
tially coherent across the entire calibration target over all
test images.

1.1. Related Work

Camera calibration is an important tool in order to up-
grade cameras from pure imaging devices to geometric sen-
sors, and it has led to the development of many parametric
models for cameras (and their lens systems) and the intro-
duction of respective toolboxes (e.g. [8, 18, 43, 11, 38, 5,
26, 23, 32]). In order to facilitate the highest accuracy for
the calibration parameters, a controlled, usually planar cal-
ibration target is employed in many applications. The use
of dedicated images (�training data�) for the task of cam-
era calibration distinguishes standard calibration from self-
calibration, that extracts calibration parameters from uncon-
trolled �test� images (e.g. [9, 17, 30, 12, 42, 31, 24]).

Most relevant to our approach in terms of forward pro-
jection models are the uni�ed camera model [13, 1, 26], the
�sheye projection model by Kannala and Brandt [20], and
the double sphere model [41]. Using these models for cali-
bration tasks is not always straightforward and comes with
their own set of assumptions.E.g., the estimator proposed
for the Double-Sphere model [41] requires that the circular
�eld-of-view is visible to recover the center of projection
and the aspect ratio, that the relative position of the spheri-
cal retinas be initialized, and that a non-radial line be iden-
ti�ed to recover the focal length. Further, the method pro-
posed for the popular Kannala-Brandt model requires spec-
ifying focal length and �eld of view [20].

The introduction of a linear solver to calibrate the divi-
sion model in the back-projection framework [34] demon-
strates the bene�ts of using back-projections. This linear
method assumes known center of distortion and unit aspect
ratio and is extended to a two-stage method in [35] to in-
clude estimation of the center of distortion. Urbanet al.
[40] identi�es the shortcomings of this two-stage method
and suggests joint re�nement of all unknowns instead.

Finally, very general non-parametric models for cameras
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and lenses have been proposed (including [33, 15, 3, 36]),
Our experiments indicate that appropriate parametric mod-
els are suf�cient to model a wide range of cameras and
lenses and are therefore�due to Occam’s razor�preferable
in general.

2. Preliminaries
Let us de�ne the camera matrixP mapping from scene

coordinates to ray directions in the camera coordinate sys-
tem asP = diag( f; f; 1)

�
R t

�
, where f is the focal

length,R =
�
r 1 r 2 r 3

�
is the rotation matrix, andt =

�
tx ; ty ; tz

�> is the translation vector. We build on the omni-
directional camera model of Micusik and Pajdla [27], that
relates the image pointu =

�
u; v; 1

�> and the scene point
X as


g (Au) = PX s.t. 
 > 0: (1)

In (1) the matrixA maps from image coordinates to reti-
nal coordinates. Denote the center of projection ase =�
ex ; ey ; 1

�> , the scale factor ass, and the pixel aspect ratio
asa. For the initialization method we assume that the pixels
are orthogonal, so we have

A= diag( a� 1; 1; 1) diag(s� 1; s� 1; 1)T(� e); (2)

whereT(x ) is a homogeneous matrix encoding translation
by x . The nonlinear functiong(�) 2 R3 ! R3 in (1)
maps from the retinal plane to ray directions in the cam-
era coordinate system. For the initialization method, the
typically small decentering distortions caused by lens mis-
alignment are ignored [16] so that we can model back-
projection ofu =

�
u; v; 1

�> as radially symmetric,g(u) =
�
u; v;  (r (u))

�> , where the radius of the retinal point is
r (u) =

p
u2 + v2.

Back-Projection with Division Model We parameterize
 (�) with the division model. It has a good ability to model
signi�cant lens distortions and was used in [34] for �sh-
eye and catadioptric lenses with �elds-of-view greater than
180� . The model is de�ned as

 (r ) = 1 +
NX

n =1

� n r 2n (3)

Function  (�) is not invertible in general; however, we
assume that there is only a single rootr � 2 [0; r max ],
where r max is the image diagonal. More precisely, let
x =

�
x; y; w

�> and leth(�) be the function projectingx
to the retinal plane,

h(x ) =
�

r �

r (x ) x; r �

r (x ) y; 1
� >

; (4)

where r � is the only solution of (r ) = w in [0; r max ].
Consequently,

u = h(g(u)) : (5)
Multiple roots in [0; r max ] imply that a scene point maps
to multiple image points, which is an implausible physical
con�guration.

Radial Fundamental Matrix Without loss of generality,
we assume the target to be on the planez = 0 . Trans-
forming a pointX on the target to a ray direction in the
camera coordinate system can be done by the homography
H=

�
r 1 r 2 t

�
constructed from the camera matrix

PX = diag( f; f; 1)
�
R t

� �
X; Y; 0; 1

�> =

diag(f; f; 1)
�
r 1 r 2 t

�
| {z }

H

�
X; Y; 1

�>

| {z }
x

: (6)

Hartley and Kang [15] used the radial fundamental matrix to
recover the principal point of distorted pinhole cameras. We
extend the radial fundamental matrix to recover the center
of projectione and camera poseR; t for the back-projection
model of [27]. We substitutediag(f; f; 1)Hx for PX in (1)
using (6), apply the projection functionh(�) to both sides,
and use (5) to eliminateg giving

u = A� 1h(1=
 diag(f; f; 1)Hx ) =
T(e)1=
 diag(a(sfr � )=r(x ); (sfr � )=r(x ); 1)Hx :

(7)

Note that the scaling by(sfr � )=(
r (x )) due to focal
length, projection byh(�), pixel scales and depth multi-
plier 
 is entangled and acts radially. Substituting� =
(sfr � )=(
r (x )) into (7) and crossing both sides withe
gives

[e]� u = [ e]� T(e) diag(a�; �; 1=
 )Hx

= [ e]� diag(a�; �; 0)Hx :
(8)

The radial line[e]� u is eliminated from by taking the
inner product ofu with (8), and� can be eliminated since
it is non-zero. Denote the rows ofH such thatH =�
h1 h2 h3

� > . Then (8) simpli�es to

u> [e]�
�
ah>

1 x ; h>
2 x ; 03

� > = 0 ;

which can be rearranged to give the radial fundamental ma-
trix Fr for omni-directional cameras

u> [e]�

2

4
ar11 ar12 atx
r 21 r 22 ty
0 0 0

3

5

| {z }
Fr

x = 0 : (9)

The aspect ratio is modeled, but cannot be recovered with-
out additional constraints. The radial fundamental matrix
Fr is rank two by construction, and the center of projection
e is a basis for the left null space ofFr .
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3. Obtaining the Initial Estimate
The methods proposed in this section ensure that a good

initial guess of the camera model is made. The parameters
are recovered by a sequence of linear solvers (see Fig. 1).
The back-projection model of (1) corresponds image points
to ray directions in the camera coordinate system. Given
this correspondence, we show that regressing the commonly
used projection models can be done easily. This enables
the search for good initial guesses for the target projection
model in a sampling framework, which increases the robust-
ness of the method.

3.1. Solving the Radial Fundamental Matrix

The radial fundamental matrix is estimated to recover the
center of projection and camera pose. The epipolar con-
straint on the radial fundamental matrixu> Fx = 0 in (9)
can be written as a linear constraint onF

x 
 u vec(F) = 0 : (10)

Following the classic solver for the fundamental matrix in
[16], we use at least seven image-to-target point correspon-
dences, denotedf u i $ x i g, to compute the null space of
stacked constraints of the form (10). The nonlinear con-
straintdet F = 0 is enforced to recover at most three real
solutions from the null space. The fundamental matrix con-
sistent with the most correspondences is kept.

3.2. Solving the Center of Projection and Pose

As shown in (9), the center of projection is a basis for the
left null space ofF

� e = null F> : (11)

There is a scale ambiguity, denote it� , between the radial
fundamental matrixFr as formulated in (9) and the funda-
mental matrixF recovered by the seven-point method,

F = � Fr whereF =
�
f ij

�
: (12)

Let r 31; r 32 be the unknown components of the rotation
vectorsr 1 andr 2. If we let S = � � 1 diag(a� 1; 1; 1), then
r j = S

�
f 2j ; � f 1j ; r 3j

�> . We use the orthonormality ofr 1
andr 2 to put quadratic constraints on the unknowns,

kS(f 21; � f 11; r 31)> k2
2 = kS(f 22; � f 12; r 32)> k2

2

and
�
f 21; � f 11; r 31

�
S2 �

f 22; � f 12; r 32
� > = 0 :

(13)

There are four unknowns but only three constraint equa-
tions. Additional constraints are needed to recover the as-
pect ratio. The unknownsf �; a; r 31; r 32; tz ; � 1; :::; � n g can
be jointly recovered by solving a system of polynomial
equations (see Sec. A in Supplemental); however, we chose
to sample over the interval of aspect ratiosa 2 [0:5; 2] and
recoverf �; r 31; r 32g from (13).

Figure 2:Correcting corners improves the initial guess.
We evaluate the accuracy of the center of projection, camera
pose and rewarped points using the original and corrected
corners. Evaluation is done over 1000 experiments at each
noise level. Solid curves are median errors, and shaded re-
gions are interquartile ranges.

3.3. Corner Correction

Corner correction is de�ned such that given the radial
fundamental matrixFr and correspondenceu i $ x i , the
corrected corner isu � = u + � u i , where� u i is the smallest
displacement such thatu � satis�es the epipolar constraint
u �> Fr x = 0 . The target �ducialsf x i g are assumed cor-
rect since they are noiseless. It can be shown [16] that the
corrected corneru �

i is recovered by projecting the measured
corneru i onto the epiline ofx i ,

u �
i = projFr x i

(u i ): (14)

We re�ne the radial fundamental matrixFr by minimiz-
ing the displacements with non-linear least squares. Eight
correspondences are suf�cient for correcting the sampled
corners [16], but it is reasonable to use more since we
expect a high inlier ratio for a calibration capture. The
rank-two constraint is encoded with the parameterization
Fr = [ e]�

�
h>

1 ; h>
2 ; 03

� > . Then the re�ned fundamental
matrix is recovered by solving

e� ; h �
1; h �

2 = argmin
e;h 1 ;h 2

X

i

� >
u i

� u i (15)

and reconstructingF�
r from e� ; h �

1; h �
2. The noisy detected

corners are corrected according to (14) usingF�
r .

Evaluation of Corrected Corners Synthetic scenes were
used to measure the accuracy gains to camera model es-
timation from corner correction. The camera was ran-
domly posed to view a chessboard. Image resolution was
1200� 800pixels, focal length400pixels, and the center of
projection was displaced to

�
700; 500

�
. We added different

levels white noise to the corners:� 2 f 0; 0:1; 0:2; :::; 2g.
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Camera models were �t using either the original or cor-
rected corners for 1000 images. Clockwise from the top
left, Fig. 2 reports (i) the distance between the estimated
and ground truth center-of-projection, (ii) the smallest an-
gle of rotation required to correct the estimated orientation,
(iii) the distance between the estimated and ground-truth
camera position, and (iv) the RMS reprojection error be-
tween an image grid and the reprojection of scene points
by the estimated camera that should project onto the image
grid. Fig. 2 shows that correcting corners reduces median
errors of rotation, translation and RMS reprojection error by
31%, 28%, and33%on average.

3.4. Solving the Remaining Intrinsics and Depth

The homographyH mapping from the camera coordi-
nate system to coordinates of the retinal plane can be
used to solve for the remaining parameters,
g (Au) =
diag(f; f; 1)Hx : Note thats andf in Acannot be disentan-
gled without additional knowledge about the camera such
as the pixel size. Further, we assume that this information
is unavailable, and letf  sf . An unknown
 is eliminated
through the cross product,

g
�
diag(f � 1; f � 1; 1)u0� �

0

@
x0

y0

z0+ tz

1

A = 0 ; (16)

where u0 = diag( a� 1; 1; 1)T(� e)u, x0 = h>
1 x , y0 =

h>
2 x , andz0 =

�
r 31; r 32; 0

�
x . Reparameterizing~� k =

� k =f 2k � 1 and collecting terms in (16) gives a system linear
in the unknowns

2

66664

...
x0

i x0
i r 0

i
2 ::: x0

i r 0
i
2N � u0

i
y0

i y0
i r 0

i
2 ::: y0

i r 0
i
2N � v0

i
...

3

77775

0

BBBBB@

f
~� 1
...

~� N
tz

1

CCCCCA
=

0

BBBB@

...
u0

i � z0
i

v0
i � z0

i
...

1

CCCCA

(17)
wherer 0

i = r (u0
i ) is the radius of the pointu0

i .

Model Selection for the Division Model The degree of
division model (�) de�ned in (3) needs to be chosen such
that it can approximate the extreme radial pro�les of �sh-
eye and catadioptric rigs, and so that it does not over-
�t to noisy measurements for narrow �eld-of-view lenses.
Clearly these are competing goals. We evaluated (�) for
polynomials of even degrees from two to ten. Model selec-
tion is performed on the dataset introduced in Sec. 5, which
contains a wide range of lenses as well as catadioptric rigs.

The camera model of (1) is estimated linearly from sam-
pled corner correspondences (denotedInitial in Table 2) as
outlined above and �t with non-linear least squares (denoted
Re�ned in Table 2) using all corners for each calibration
capture. The weighted RMS reprojection error and inlier

Degree Initial RMS [px], inl. [%] Re�ned RMS [px], inl. [%]
2 5.342, 26.042 0.647, 97.086
4 4.585, 28.991 0.587, 97.403
6 4.516, 26.184 0.587, 97.399
8 7.429, 13.307 1.020, 93.660
10 12.804, 8.448 4.812, 61.267

Table 2:Model selection for the division model.A poly-
nomial of degree four gives the best results overall.

ratio are used to assess the accuracy of each model’s ini-
tial guess and re�ned solution across the entire dataset. Ta-
ble 2 shows that models of degrees eight and ten signi�-
cantly deviate from the optimal result, suggesting that they
are over-�tting. The fourth-degree division model parame-
terized byf � 1; � 2 g is the simplest model that is suf�ciently
�exible to provide a good initial guess. We estimate the
back-projection function (1) using (3) withN = 2 .

Model-to-Model Regression A radial projection func-
tion, denoted� � (R; Z ), can always be parameterized by
how it maps a point at radiusR from the optical axis and
depthZ from the principal plane to the retinal plane (see
Table 1). This parameterization admits a universal way to
regress radially-symmetric projection functions against the
division model.

If the user-selected projection model does not have the
division model for its radial pro�le, then the following op-
timization must be performed

X

k

(� � (r k ;  (r k )) � r k )2 ! min
�

; (18)

where radiir k = k � 1
K � 1 r max are uniformly sampled from

zero to the maximum radiusr max , which is �xed to the
half-diagonal of the image. All regressions are linear for
the models in Table 1 with the exception of the DS model.
See Sec. B in Supplemental for the details and example of
regression against the Kannala-Brandt model.

4. Robust Estimation Framework
In this section we propose a calibration framework that

is robust to corner detection errors, works with either one
or multiple calibration boards, and handles the partial visi-
bility of board �ducials across the calibration capture. The
robustness of the method is, in part, achieved using the cam-
era geometry estimators proposed in Sec. 3. With these es-
timators, an accurate estimate of any of the board models
listed in Table 1 can be recovered from a sample of noisy
corner detections. However, corner extraction can fail due
to the detector’s inability to localize highly-distorted saddle
points [14]. The grid search can also fail at the extents of
a �sheye image because of highly-distorted neighborhoods.
Occlusions can also create false corners. We incorporate
the solvers of Sec. 3 into a RANSAC-based framework to
handle bad detections [10]. The method �ts camera models
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OV-Plane � 130108MP, 0:478 px RMS OV-Corner � Cam4, 0:770 px RMS OV-Cube� Cam1, 0:268 px RMS

Figure 3:Projection of calibration target from estimated calibration. Detected corners are red crosses, target projected
using initial calibration are blue squares and using the �nal calibration are cyan circles.

Dataset # cam., # img. DFOV range Max. img. size
Kalibr 8, 140 + 60 110� � 268� 1680 � 1680
OCamCalib 9, 79 + 40 130 � � 266� 3840 � 2880
UZH-DAVIS 4, 140 + 60 124� � 148� 346 � 260
UZH-Snapdragon 4, 140 + 60 144� � 166� 640 � 480
OV-Corner 8, 280 + 120 109� � 109� 1280 � 800
OV-Cube 4, 105 + 49 159� � 183� 1280 � 800
OV-Plane 4, 92 + 41 88 � � 187� 1280 � 800

Table 3: Calibration dataset details. Train-test split of
the images is indicated by+ . The diagonal �eld of view
(DFOV) is approximated using intrinsic calibration.

sampled from corner-to-board correspondences. The mod-
els are scored with a robust objective. During sampling,
the best-so-far model is kept and re�ned with a maximum-
likelihood estimator, which is inspired by the local opti-
mization step in [4]. The output of the model is a maximum-
likelihood �t of camera intrinsics and extrinsics. The esti-
mators proposed in Sec. 3 are linear, so they are fast and are
well-suited for use in the model proposal step of RANSAC.
Algorithm 1 in Sec. C of Supplemental may be helpful as
a cross-reference for the next paragraphs that specify the
method.

The input to the method is a set of 2D-3D correspon-
dences that match corner detections with board �ducials,
which we denoteX ij $ u ijk . Indices i and j indicate
a particular �ducial i on planej , andk indicates the im-
age of the corner detectionu ijk of �ducial X ij . For each
RANSAC iteration, we sample an imagek, a planej visi-
ble in imagek, and a non-minimal sample of14correspon-
dences that are used to compute the radial fundamental ma-
trix, center of projection, and corner correction according to
(10), (11), and (14). The utilized sample size of14 corre-
spondences was cross-validated.

The aspect ratio is a necessary parameter for the pose and
intrinsics estimators. If the camera has non-square pixels or
an anamorphic lens, we sample an aspect ratio from the in-
terval[0:5; 2]. Pose and intrinsics are estimated as derived in
(13) and (17). The radial pro�le of the user-selected camera
model is regressed against the radial pro�le of the division
model using (18), if the division model is not the desired
model. The model-to-model regression generates the cam-
era geometry portion of the RANSAC model proposal. The

OpenCV-BC Kalibr-BC Ours-BC
RMS [px], inl. [%]

Cam0 0.886, 90.9 0.945, 87.3 0.704, 96.1
Cam1 0.781, 95.2 0.893, 88.8 0.674, 98.0
Cam2 0.773, 96.1 0.756, 95.6 0.720, 96.9
Cam3 0.733, 97.0 0.953, 87.6 0.710, 96.4
Cam4 0.757, 97.3 0.828, 93.6 0.679, 97.6
Cam5 0.772, 96.4 0.831, 91.7 0.759, 96.0
Cam6 0.715, 95.4 0.748, 94.5 0.677, 96.0
Cam7 0.701, 96.6 0.855, 90.6 0.641, 97.5

Table 4:Pose evaluation for the BC model.OV-Corner
test images used.

intrinsics are used to rectify the unused planar boards in all
of the images. The pose of the remaining boards is com-
puted using P3P (Perspective-3-Point [29]) from three sam-
pled recti�ed-corner-to-board correspondences. The board
poses for the capture session are added to the camera model
to give a RANSAC model proposal.

The reprojection error is evaluated against the entire cal-
ibration capture with the robust objective

J (�) =
X

ijk

� (d(�
��

Rjk t jk
�

X ij ); u ijk )
�

; (19)

where� (�) is the selected projection function,d(�; �) is the
Euclidean distance,� (�) is the the Huber loss function [19],
and� = f �; K; Rjk ; t jk g are the calibration parameters. In
the case of multiple planar targets, the posesRjk ; t jk are
constructed using the absolute poses of the cameras,Rc

k ; t c
k ,

and the relative poses of the boards with respect to the ref-
erence board,Rb

j ; t b
j ,

Rjk = Rc
k Rb

j t jk = Rc
k t b

j + t c
k :

If RANSAC encounters a best-so-far calibration pro-
posal, then the model re�nement step,J (�) ! min � , is
invoked. The axis-angle representation is used to minimally
parameterize the rotations for the bundle adjustment. Pro-
posals are ranked by their inlier ratio, and the inlier ratio is
computed according to

I (�) =
1

M

X

ijk

1f� � g
�
d

�
�

��
Rjk t jk

�
X ij

�
; u ijk

��
;

(20)










