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Existing calibration methods occasionally fail for 4DPHUD ORGH
large eld-of-view cameras due to the non-linearity of the '

6HTXHQFH RI/LQI—:DS R 3 07

underlying problem and the lack of good initial values for ::| spcLpo )xQeprHo 3 |-
. . . &RUQHU &RUUHF 5 5
all parameters of the used camera model. This might occur::| 3puwiLpo &ppPHU :
because a simpler projection model is assumed in an initial | /L@t PTHOOW
step, or a poor initial guess for the internal parameters \ ORGHO WR ORGHO
is pre-de ned. A lot of the dif culties of general camera @ " A
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calibration lie in the use of a forward projection model. SHILOHPHOW 0

We side-step these challenges by rst proposing a solver ..
to calibrate the parameters in terms of a back-projection Figure 1: Method overview and result. (left) BabelCalib

model and then regress the parameters for a target for- pipeline: the camera model proposal step ensures a good

ward model. These steps are incorporated in a robust inisiglization, (right) example result showing residuals of re-
estimation framework to cope with outlying detections. projected corners of test images.

Extensive experiments demonstrate that our approach is

very reliable and returns the most accurate calibration directional. Furthermore, the proposed framework can es-
parameters as measured on the downstream task of absotimate the most widely used camera models for these lens
lute pose estimation on test sets. The code is released atypes, while also providing an easy and common path to

https://github.com/ylochman/babelcalib . extend the method to new camera models.
) Camera calibration is a very non-linear task, hence a
1. Introduction good initial guess is typically needed to obtain accurate pa-

rameters. Poor initial estimates are frequent source of fail-

o glae?;a:s‘sar\:\gtga\t/aegov?r?fri e;d[sa,aaf :;i\';’” Slrjghuﬁz h?hr-ﬂ ures. Sensible initial guesses are often available only for
y P 9 ’ yreq 9 ysome of the model unknowns,g, initial values are of-

nonlinear models with many parameters. Calibrating theseten unavailable for parameters describing substantial lens

camer1as can be_a tedlqus process becauge Of. the Camefdsiortions. A second failure mode is caused by incorrect
model’'s complexity and its underlying non-linearity. If the

calibration is inaccurate or even fails, then the user is oftenOr grossly inaccurate measuremeets, comer detections,
) o which are matched to ducials on the calibration target. If
required to manually remove problematic images or du-

; . . . ... corrupted data is used to estimate the initial guess, then the
cials, capture additional images, or provide better initial b 9

uesses for the unknown model parameters. A second Comdownstream model re nement will likely fail.
9 p ' Our method addresses both failure modes. We introduce

mon problem is that the choice of calibration toolbox limits L .
the user to a particular set of supported camera models and solver that recovers all calibration parameters for a wide
extending the toolbox to accommodate more exible cam- range of cameras (and lenses) such as pinhole, sheye and
era models can be a dif cult task. catadioptric ones. We show that the proposed solver pro-

This paper proposes a method that robustly estimates alC}_/ldes a good initialization for all critical intrinsics, which

curate camera models for central projection cameras [Sgllncludes the center of projection and pixel aspect ratio. Our

. . . .- "“solver assumes only a planar calibration target. In addi-
with elds of view ranging from both narrow to omni- . R . )
tion, the initialization simultaneously improves the accu-

Part of this work was done when Yaroslava Lochman and James Pritts'8CY of corner detections while eSti.mating. the. center of pro-
were at Facebook Reality Labs. jection and camera pose by enforcing projective constraints.
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MODEL PARAMETERS, RADIAL (BACK-)PROJECTIONFUNCTION

lJ
Brown-Conrady (BC) [8] fki;kag (RiZ)=(R=Z) 1+ 2_ kn(R=Z)?"
P
Kannala-Brandt (KB) [20] fki;:::;kag (Riz)= + . ko 2"  =zatan2(R;Z)
§ Uni ed Camera (UCM) [26] fg (R,Z)= R( +1):((pR2+ Z2)+ Z)
€ Field of View (FOV) [7] fwg (R;Z2)= % atan2 (2R tan %; Z)
p
Extended Uni ed Camera (EUCM) [21] f; g (R;Z)= R=(d +(1 )Z), d= R2+ 22
q —"—
Double Sphere (DS) [41] f; g (R;Z)= R=(d 2+ (1 )Z2); dp= R2+ 73, Z,= P RZ+Z2+ Z
<] L |
E Division (DIV) [34, 40] fas;az;asg ()=1+ 3 anrn*
I PN n
& Division-Even [22] f 150000 NO (r)y=1+ n=1 nf
Table 1: Supported camera models. Models compute either radially-symmetric projection, = (R;Z), or back-

projection,r : rZ R (r) =0, whereR andZ are the radial and depth components of a scene point, extie distance
from the center of projection of a retinal point. The right column lists functions for published models.

The solver is used within a RANSAC framework for ef- 1.1. Related Work
cient model generation. The model proposals are evaluated o ) )
for consistency with the extracted features, and poorly ex- Camera calibration is an important tool in order to up-

tracted features and incorrect correspondences are rejecte@fade cameras from pure imaging devices to geometric sen-
sors, and it has led to the development of many parametric

Our approach uses a back-projection model as an in-models for cameras (and their lens systems) and the intro-
termediate camera model. Back-projection models map-duction of respective toolboxes.¢ [8, 18, 43, 11, 38, 5,
ping image points to 3D ray directions are able to model a 26, 23, 32]). In order to facilitate the highest accuracy for
wide range of cameras (such as pinhole, sheye and omni-the calibration parameters, a controlled, usually planar cal-
directional cameras). Our approach (and therefore our mainibration target is employed in many applications. The use
contribution) is to decouple the calibration task for general of dedicated images ( training data ) for the task of cam-
camera models into a much simpler calibration task for a era calibration distinguishes standard calibration from self-
powerful back-projection model followed by a regression calibration, that extracts calibration parameters from uncon-
task to obtain the parameters of the general target camerarolled test images €.g [9, 17, 30, 12, 42, 31, 24]).
model. Effectively, we remove the need to generate a solver  \jost relevant to our approach in terms of forward pro-
for each target camera model, which can be intractable, Ofjection models are the uni ed camera model [13, 1, 26], the
result in solvers that are computationally expensive or nu- speye projection model by Kannala and Brandt [20], and
merically unstable in practice. Instead, we use an ef cient {he gouble sphere model [41]. Using these models for cali-
solver for a back-projection model followed by an easier re- pration tasks is not always straightforward and comes with
gression task to recover the target model parameters. Thenejr own set of assumption&.g, the estimator proposed
motivation for such an approach is given in Table 1, where for the Double-Sphere model [41] requires that the circular
it shows that projection equations are relatively simple once g|g-of-view is visible to recover the center of projection
the radial componerR and the depth componedt are  and the aspect ratio, that the relative position of the spheri-
known. These values are provided by the back-projection ¢ retinas be initialized, and that a non-radial line be iden-
model.E.g, for the Kannala-Brandt model [20], estimation ¢ eq to recover the focal length. Further, the method pro-
of its parameters is linear for givéd andZ.. posed for the popular Kannala-Brandt model requires spec-

Overall, our strati ed approach to calibration circum- ifying focal length and  eld of view [20].

vents many of the issues that are due to the highly non-linear ~ The introduction of a linear solver to calibrate the divi-
behavior of many exible camera models. BabelCalib per- Sion model in the back-projection framework [34] demon-

forms both back-projection estimation and target model re- Strates the bene ts of using back-projections. This linear
gression inside of a robust estimation framework, and di- Method assumes known center of distortion and unit aspect

rectly returns the parameters of the target model. Fig. 1ratio and is extended to a two-stage method in [35] to in-
illustrates the accuracy of our method for a sheye lens on clude estimation of the center of distortion. Urbenal.
hold-out test images. The achieved high accuracy is spa{40] identi es the shortcomings of this two-stage method
tially coherent across the entire calibration target over all and suggests joint re nement of all unknowns instead.

test images. Finally, very general non-parametric models for cameras
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and lenses have been proposed (including [33, 15, 3, 36])wherer is the only solution of (r) = w in [0;r™&],
Our experiments indicate that appropriate parametric mod-Consequently,

els are suf cient to model a wide range of cameras and u = h(g(u)): (5)
lenses and are therefore due to Occam’s razor preferable Multiple roots in[0; r™] imply that a scene point maps

in general. to multiple image points, which is an implausible physical

- . con guration.
2. Preliminaries

Let us de ne the camera matrik mapping from scene  Radial Fundamental Matrix ~ Without loss of generality,
coordinates to ray directions in the camera coordinate sys-We assume the target to be on the plane 0. Trans-

tem asP = diag(f;f; 1) R t , wheref is the focal forming a pointX on the target to a ray direction in the
length,R= ry r, rs is the rotation matrix, ant = camera coordinate system can be done by the homography

. . . . ri r, t constructed from the camera matrix
tx;ty;t, ~ isthe translation vector. We build on the omni- v

directional camera model of Micuiik and Pajdla [27], that PX =diag(f:f; 1) R t X;Y: 0,1 =
relates the image point = u;v;1"~ and the scene point _ > ©6)
X as diag(f; f; 1)|r1 {rzz t}lx;\{(z; 1 }:

g(Au)= PX st > O 1) W %
In (1) the matrixA maps from image coordinates to reti- Hartley and Kang [15] used the radial fundamental matrix to
nal coordinates. Denote the center of projectioreas recover the principal point of distorted pinhole cameras. We

extend the radial fundamental matrix to recover the center
of projectione and camera pode t for the back-projection
model of [27]. We substitutdiag(f; f; 1)Hx for PX in (1)
using (6), apply the projection functidm( ) to both sides,

A=diag(a %L1 1)diags Lis LT €); (2) and use (5) to eliminatg giving

: _ _ _ u= A *h(l= diag(f;f; 1)H)=
whereT(x) is a homogeneous matrix encoding translation i (7
by x. The nonlinear functiog() 2 R® ! R%in (1) T(e)1= diag(a(sfr )=r(x);(sfr )=r(x); 1)Hk:
maps from the retinal plane to ray directions in the cam- Note that the scaling by(sfr )=(r (x)) due to focal
era coordinate system. For the initialization method, the length, projection byn( ), pixel scales and depth multi-
typically small decentering distortions caused by lens mis- plier is entangled and acts radially. Substituting=
alignment are ignored [16] so that we can model back- (sfr )=(r (x)) into (7) and crossing both sides with

e e, ”, the scale factor as and the pixel aspect ratio
asa. For the initialization method we assume that the pixels
are orthogonal, so we have

projection ofu = u;v;1 " as radially symmetricg(u) = gives
u;v; (r(u)) >, where the radius of the retinal point is [e] u=[e] T(e)diag(a; ; 1= )Hx
r(u)= " uZ+ v2. (8)

=[e] diag(a; ; O)Hk:

The radial line[e] u is eliminated from by taking the
inner product ofu with (8), and can be eliminated since
it is non-zero. Denote the rows dfl such thatH =

hy h, hs . Then (8) simplies to

Back-Projection with Division Model We parameterize
() with the division model. It has a good ability to model

signi cant lens distortions and was used in [34] for sh-

eye and catadioptric lenses with elds-of-view greater than

180 . The model is de ned as U [e] ahix:hyx;0s > =0:

_ X on which can be rearranged to give the radial fundamental ma-
(N=1+  or @ hgnllinde
- trix F; for omni-directional cameras
= 2
. . ) L ar;p  arppy aty
Function () is not invertible in general; however, we ule] 4r r t.5%x =0: 9
i i .~ max 21 22 y X =0 ( )
assume that there is only a single raot 2 [0;r™], 0 0 0
where r™* is the image diagonal. More precisely, let | {z }
X = Xy:w " and leth(') be the function projecting F
to the retinal plane, The aspect ratio is modeled, but cannot be recovered with-
out additional constraints. The radial fundamental matrix
N S S F is rank two by construction, and the center of projection
h)= X Yl )

e is a basis for the left null space Bf.
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3. Obtaining the Initial Estimate

The methods proposed in this section ensure that a goodh .
initial guess of the camera model is made. The parametersm

are recovered by a sequence of linear solvers (see Fig. 1).
The back-projection model of (1) corresponds image points
to ray directions in the camera coordinate system. Given

this correspondence, we show that regressing the commonly
used projection models can be done easily. This enables .

the search for good initial guesses for the target projection =
model in a sampling framework, which increases the robust-
ness of the method.

3.1. Solving the Radial Fundamental Matrix

The radial fundamental matrix is estimated to recover the
center of projection and camera pose. The epipolar con-
straint on the radial fundamental mattx Fx = 0 in (9)
can be written as a linear constraintn

X uvec(F)=0: (10)

Following the classic solver for the fundamental matrix in

[16], we use at least seven image-to-target point correspon-

dences, denotefdu; $ x; g, to compute the null space of
stacked constraints of the form (10). The nonlinear con-
straintdetF = O is enforced to recover at most three real
solutions from the null space. The fundamental matrix con-
sistent with the most correspondences is kept.

3.2. Solving the Center of Projection and Pose

As shown in (9), the center of projection is a basis for the
left null space of

e=null F: (11)

There is a scale ambiguity, denote itbetween the radial
fundamental matrid, as formulated in (9) and the funda-
mental matrix~ recovered by the seven-point method,

F= K whereF= fj (12)

Letraz;r3; be the unknown components of the rotation
vectorsr; andr,. Ifwe letS=  ldiag(a !;1;1), then

rp =S fa; fg,r3 " . We use the orthonormality af;
andr ;, to put quadratic constraints on the unknowns,

kS(fa1; f11;r31)” K3 = KS(f 22;

and fo1; frirar S fao

f12:r32)” K3

> (13)
=0:

f12;r32

There are four unknowns but only three constraint equa-

tions. Additional constraints are needed to recover the as-

pect ratio. The unknownfs; a;r 31;rs2;tz; 1;:5; ngcan
be jointly recovered by solving a system of polynomial

Projection center error [px| Rotation error [deg]
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0

e

=
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1
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Figure 2: Correcting corners improves the initial guess.

We evaluate the accuracy of the center of projection, camera
pose and rewarped points using the original and corrected
corners. Evaluation is done over 1000 experiments at each
noise level. Solid curves are median errors, and shaded re-
gions are interquartile ranges.

3.3. Corner Correction

Corner correction is de ned such that given the radial
fundamental matri¥;, and correspondenag $ X;, the
corrected corneris = u+ ,, where ,, is the smallest
displacement such that satis es the epipolar constraint
u” Fx = 0. The target ducialsf x; g are assumed cor-
rect since they are noiseless. It can be shown [16] that the
corrected cornan; is recovered by projecting the measured
corneru; onto the epiline ok;,
Ui = Projg , (ui): (14)

We re ne the radial fundamental matri by minimiz-
ing the displacements with non-linear least squares. Eight
correspondences are suf cient for correcting the sampled
corners [16], but it is reasonable to use more since we
expect a high inlier ratio for a calibration capture. The
rank-two constraint is encoded with the parameterization

Fr =[e] hi;h3;0;3 " . Then the re ned fundamental
matrix is recovered by solving

e ;hy;h, =argmin "

e;hishy

(15)

uj
[

and reconstructing, frome ;h;;h,. The noisy detected
corners are corrected according to (14) udig

Evaluation of Corrected Corners Synthetic scenes were
used to measure the accuracy gains to camera model es-
The camera was ran-
Image resolution was

timation from corner correction.
domly posed to view a chessboard.

equations (see Sec. A in Supplemental); however, we chose.200 800pixels, focal lengt00pixels, and the center of

to sample over the interval of aspect rat&2 [0:5; 2] and
recoverf ;r 31;rs2gfrom (13).

projection was displaced t&Z00, 500 . We added different
levels white noise to the corners: 2 f 0;0:1;0:2;::;;29.
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Camera models were t using either the original or cor- _Degree Initial RMS [px], inl. [%] Re ned RMS [px], inl. [%]

rected corners for 1000 images. Clockwise from the top 2 5.342, 2%%"9412 005247579160386
left, Fig. 2 reports (i) the distance between the estimated g 4516 26, ' 7 '

and ground truth center-of-projection, (ii) the smallest an- g 7.429, 13.307 1.020, 93.660
gle of rotation required to correct the estimated orientation, _10 12.804, 8.448 4812, 61.267

(iii) the distance between the estimated and ground-truthtapie 2: Model selection for the division model.A poly-
camera position, and (iv) the RMS reprojection error be- yomia| of degree four gives the best results overall.

tween an image grid and the reprojection of scene points

by the estimated camera that should project onto the imaggatio are used to assess the accuracy of each model's ini-
grid. Fig. 2 shows that correcting corners reduces mediantial guess and re ned solution across the entire dataset. Ta-
errors of rotation, translation and RMS reprojection error by ble 2 shows that models of degrees eight and ten signi -

319%, 28%, and33%on average. cantly deviate from the optimal result, suggesting that they
] o o are over- tting. The fourth-degree division model parame-
3.4. Solving the Remaining Intrinsics and Depth terized byf 1; » gisthe simplest model that is suf ciently

The homographyH mapping from the camera coordi- exible to provide a good initial guess. We estimate the
nate system to coordinates of the retinal plane can bePack-projection function (1) using (3) with = 2.
used to solve for the remaining parameterg({Au) = . . N
diag(f: f; 1)FHx: Note thats andf in Acannot be disentan- Model-to-Model Regression A radial projection func-
gled without additional knowledge about the camera suchion: denoted (R;Z), can always be parameterized by
as the pixel size. Further, we assume that this information oW it maps a point at radiug from the optical axis and

is unavailable, and Iét  sf . An unknown is eliminated depthZ from the principal plane to the retinal plane (see
through the cross product Table 1). This parameterization admits a universal way to

0 1 regress radially-symmetric projection functions against the
x0 division model.
g diag(f %f L1u® @ yo A=p; (16) If the user-selected projection model does not have the
20+ t, division model for its radial pro le, then the following op-

timization must be performed

whereu® = diag(a %1, 1)T( e)u, x° = h7x, y°

h3x, andz® = rg3;;r3;0 x. Reparameterizingy = X ( (re; (r)) r)?! min; (18)
«=f 2 1 and collecting terms in (16) gives a system linear K
in the unknowns where radiiry = £2r™> are uniformly sampled from
2 _ 30 i1oo0 1 zero to the maximum radius™, which is xed to the
: ~ : half-diagonal of the image. All regressions are linear for
X0 X% o xGPN O uZB T Buf 2 the models in Table 1 with the exception of the DS model.
yo yiofi02 " yioriozm VO CC T ByO Z0 See Sec. B in Supplemental for the details and example of
. N : regression against the Kannala-Brandt model.
t, :

(17) 4. Robust Estimation Framework
wherer 2= r(u?) is the radius of the point?.
In this section we propose a calibration framework that

Model Selection for the Division Model The degree of s robust to corner detection errors, works with either one
division model () de ned in (3) needs to be chosen such or multiple calibration boards, and handles the partial visi-
that it can approximate the extreme radial pro les of sh- bility of board ducials across the calibration capture. The
eye and catadioptric rigs, and so that it does not over-robustness of the method is, in part, achieved using the cam-
t to noisy measurements for narrow eld-of-view lenses. era geometry estimators proposed in Sec. 3. With these es-
Clearly these are competing goals. We evaluatéd for timators, an accurate estimate of any of the board models
polynomials of even degrees from two to ten. Model selec- listed in Table 1 can be recovered from a sample of noisy
tion is performed on the dataset introduced in Sec. 5, whichcorner detections. However, corner extraction can fail due
contains a wide range of lenses as well as catadioptric rigs.to the detector’s inability to localize highly-distorted saddle

The camera model of (1) is estimated linearly from sam- points [14]. The grid search can also fail at the extents of
pled corner correspondences (dendtdtial in Table 2) as  a sheye image because of highly-distorted neighborhoods.
outlined above and twith non-linear least squares (denoted Occlusions can also create false corners. We incorporate
Re nedin Table 2) using all corners for each calibration the solvers of Sec. 3 into a RANSAC-based framework to
capture. The weighted RMS reprojection error and inlier handle bad detections [10]. The method ts camera models
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OV-Plane  130108MP, 0:478 px RMS OV-Corner Cam4 0:770 px RMS OV-Cube Caml 0:268 px RMS

Figure 3:Projection of calibration target from estimated calibration. Detected corners are red crosses, target projected
using initial calibration are blue squares and using the nal calibration are cyan circles.

Dataset #cam., #img. DFOVrange Max.img. size OpenCV-BC Kalibr-BC Ours-BC
Kalibr 8, 140+60 110 268 1680 1680 RMS [px], inl. [%]
OCamcCalib 9, 79+40 130 266 3840 2880 CamO 0.886, 90.9 0.945, 87.3 0.704, 96.1
UZH-DAVIS 4, 140 + 60 124 148 346 260 Caml 0.781, 95.2 0.893, 88.8 0.674, 98.0
UZH-Snapdragon 4, 140 + 60 144 166 640 480 Cam2 0.773, 96.1 0.756, 95.6 0.720, 96.9
OV-Corner 8,280+120 109 109 1280 800 Cam3 0.733, 97.0 0.953, 87.6 0.710, 96.4
QOV-Cube 4, 105+ 49 159 183 1280 800 Cam4 0.757, 97.3 0.828, 93.6 0.679, 97.6
OV-Plane 4, 92+41 88 187 1280 800 Camb 0.772, 96.4 0.831, 91.7 0.759, 96.0
. . . . . Camé6 0.715, 954 0.748, 94.5 0.677, 96.0
Table 3: Calibration dataset details. Train-test split of Cam7 0.701, 96.6 0.855. 90.6  0.641, 97.5

the images is indicated by. The diagonal eld of view

(DFOV) is approximated using intrinsic calibration. Table 4:Pose evaluation for the BC modelOV-Corner

test images used.
sampled from corner-to-board correspondences. The mod
els are scored with a robust objective. During sampling,
the best-so-far model is kept and re ned with a maximum-
likelihood estimator, which is inspired by the local opti-

intrinsics are used to rectify the unused planar boards in all
of the images. The pose of the remaining boards is com-
puted using P3P (Perspective-3-Point [29]) from three sam-
pled recti ed-corner-to-board correspondences. The board

mization step in [4]. The output of the modelis amaximum-  ,oseq for the capture session are added to the camera model
likelihood t of camera intrinsics and extrinsics. The esti- to give a RANSAC model proposal.

mators proposed in Sec. 3 are linear, so they are fastand aré g yeprojection error is evaluated against the entire cal-
well-suited for use in the model proposal step of RANSAC. ipration capture with the robust objective
Algorithm 1 in Sec. C of Supplemental may be helpful as X
a cross-reference for the next paragraphs that specify the J ()= (d( Rk tx Xi)iux); (19
method. iik

The input to the method is a set of 2D-3D correspon-

dences that match corner detections with board ducials, Where () is the selected projection functiod( ; ) is the
which we denoteX; $ ujc . Indicesi andj indicate Euclidean distance,( ) is the the Huber loss function [19],

a particular duciali on planej, andk indicates the im-  @nd = f KR tj gare the calibration parameters. In
age of the corner detectiany, of ducial X; . For each ~ the case of multiple planar targets, the poBgs tjx are
RANSAC iteration, we sample an image a plang visi- constructed using the absolute poses of the camiyats;,

ble in imagek, and a non-minimal sample @# correspon- and the relative poses of the boards with respect to the ref-

. p.+b
dences that are used to compute the radial fundamental ma€rence boards’; t?,

trix, center of projection, and corner correction according to _ Wﬁb o = I{t-b+ s

(10), (11), and (14). The utilized sample sizeldfcorre- Ri Ik ke

spondences was cross-validated. If RANSAC encounters a best-so-far calibration pro-
The aspectratio is a necessary parameter for the pose angosal, then the model re nement step() ! min ,is

intrinsics estimators. If the camera has non-square pixels orinvoked. The axis-angle representation is used to minimally
an anamorphic lens, we sample an aspect ratio from the inparameterize the rotations for the bundle adjustment. Pro-
terval[0:5; 2]. Pose and intrinsics are estimated as derived in posals are ranked by their inlier ratio, and the inlier ratio is
(13) and (17). The radial pro le of the user-selected camera computed according to

model is regressed against the radial pro le of the division 1 X
model using (18), if the division model is not the desired | ()= _— Lk 4 d Rk tik Xij Uik
model. The model-to-model regression generates the cam- M ijk

era geometry portion of the RANSAC model proposal. The (20)















