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Abstract

This work studies the Tensor Robust Principal Compo-
nent Analysis (TRPCA) problem, which aims to exactly re-
cover the low-rank and sparse components from their sum.
Our model is motivated by the recently proposed linear
transforms based tensor-tensor product and tensor SVD. We
define a new transforms depended tensor rank and the cor-
responding tensor nuclear norm. Then we solve the TR-
PCA problem by convex optimization whose objective is a
weighted combination of the new tensor nuclear norm and
ℓ1-norm. In theory, we prove that under some incoherence
conditions, the convex program exactly recovers the under-
lying low-rank and sparse components with high probabil-
ity. Our new TRPCA is much more general since it allows
to use any invertible linear transforms. Thus, we have more
choices in practice for different tasks and different type of
data. Numerical experiments verify our results and the ap-
plication on image recovery demonstrates the superiority of
our method.

1. Introduction

Tensors are the higher-order generalization of vectors
and matrices. They have many applications in many ar-
eas, and an in depth survey can be found in [12]. Tensor
decompositions give a concise representation of the under-
lying structure of data, revealing the low-dimensional sub-
space of data. These decompositions are now widely used
in many application areas such as computer vision [26], web
data mining [6], and signal processing [23].

Tensor decomposition faces several challenges: arbitrary
outliers, missing data/partial observations, and computa-
tional efficiency. Tensor decomposition resembles Princi-
pal Component Analysis (PCA) for matrices in many ways.
The two commonly used decompositions are the CP and
Tucker decomposition [12]. It is known that PCA is sen-
sitive to outliers and gross corruptions, since the CP and
Tucker decompositions are also based on least-squares ap-

proximation. Algorithms based on nonconvex formula-
tions have been proposed to robustify tensor decomposi-
tions [5, 1]. However, they suffer from the lack of global
optimality guarantee and statistical guarantee.

This work studies the Tensor Robust PCA (TRPCA)
problem by convex optimization. Assume that a tensor X
can be decomposed as X = L0+E0, where L0 is low-rank
and E0 is sparse. TRPCA aims to recover L0 and E0 from
X . We focus on the convex model which can be solved ex-
actly and efficiently, and the solutions own the theoretical
guarantee. TRPCA extends the known Robust PCA [3]

min
L,E

∥L∥∗ + λ∥E∥1, s.t. X = L+E, (1)

where ∥L∥∗ denotes the matrix nuclear norm, ∥E∥1 de-
notes the ℓ1-norm and λ > 0. It is proved that the solution
to (1) exactly recovers the underlying low-rank and sparse
components [3]. RPCA has many applications in image and
video analysis [9, 21].

It is natural to consider the tensor extension of RPCA.
However, existed tensor models have several limitations in
theory or computation. The main issues lie in the definitions
of tensor rank. There have different tensor SVD decompo-
sitions which lead to different tensor rank definitions. Then
they lead to different tensor RPCA models. Compared with
the matrix RPCA, the tensor RPCA models have several
limitations. The tensor CP rank is defined as the small-
est number of rank one tensors decomposition. However,
the CP rank and its best convex relaxation are NP-hard to
compute [7]. These issues make the low CP rank tensor
recovery problem challenging. The tensor Tucker rank is
more widely studied as it is tractable. The sum-of-nuclear-
norms (SNN) is served as a simple convex surrogate for ten-
sor Tucker rank. This idea has been successfully applied to
various problems [13, 24]. The first theoretical guarantee
for SNN minimization is given in [25]. It has been fur-
ther enhanced in [20, 8]. However, these results are still
suboptimal since SNN is not a tight convex relaxation of
the Tucker rank. For exact tensor completion, the required
sample complexity of SNN is much higher than the degrees
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of freedom. This is different from the matrix nuclear norm
minimization which leads to order optimal sampling com-
plexity [4]. Intuitively, the limitation of SNN is that it is not
a tight convex relaxation of the Tucker rank.

Recently, based on the tensor-tensor product (t-
product) [11] which generalizes the matrix-matrix prod-
uct, a new tensor tubal rank and Tensor Nuclear Norm
(TNN) have been proposed and applied to tensor comple-
tion [17, 22, 18] and tensor RPCA [15, 16]. Compared
with the Tucker rank based SNN model, the main advantage
of the t-product induced TNN models is that they own the
same tight recovery bound as the matrix cases. Also, unlike
the CP rank, the tubal rank and TNN are computable.

Motivated by a more general t-product definition per-
formed on any invertible linear transforms [10], we pro-
pose a more general TRPCA model induced by the new t-
product. We show that when the invertible linear transform
given by the matrix L further satisfies

L⊤L = LL⊤ = ℓI,

for some constant ℓ > 0, we can define a new transform
based tensor nuclear norm. Equipped with it, we then can
solve the TRPCA problem by convex optimization

min
L, E

∥L∥∗ + λ∥S∥1, s.t. X = L+ S. (2)

Above, the tensor nuclear norm is defined in Section 3. In
theory, we prove that, under certain incoherence conditions,
the solution to (2) exactly recovers the underlying low-rank
L0 and sparse S0 components with high probability. Differ-
ent from the TRPCA in [16] which uses the discrete Fourier
transform, our model is much more flexible as it is allowed
to use any invertible linear transforms. Note that our TR-
PCA does not reduces to the model in [16] since we restrict
L in Rn3×n3 while the discrete Fourier transform matrix is
complex. This also leads to several key differences in the
theoretical proofs from [16].

The rest of this paper is structured as follows. Section 2
gives some notations and presents the new tensor nuclear
norm induced by the t-product under linear transforms. Sec-
tion 3 introduces the tensor nuclear norm induced by the
t-product under linear transforms. Section 4 presents the
theoretical guarantee of the new tensor nuclear norm based
convex TRPCA model. Numerical experiments conducted
on both synthesis and real world data are presented in Sec-
tion 5. We finally conclude this work in Section 6.

2. Transforms based T-product
2.1. Notations

We introduce some notations and definitions used
in [16]. We denote scalars by lowercase letters, e.g., a, vec-
tor by boldface lowercase letters, e.g., a, matrices by bold-
face capital letters, e.g., A, and tensors by boldface Euler

script letters, e.g., A. For a 3-way tensor A ∈ Rn1×n2×n3 ,
we denote its (i, j, k)-th entry as Aijk or aijk and use
the Matlab notation A(i, :, :), A(:, i, :) and A(:, :, i) to de-
note respectively the i-th horizontal, lateral and frontal slice
[12]. More often, the frontal slice A(:, :, i) is denoted com-
pactly as A(i). The tube is denoted as A(i, j, :). The in-
ner product between A and B in Rn1×n2 is defined as
⟨A,B⟩ = Tr(A⊤B), where A⊤ denotes the transpose and
Tr(·) denotes the matrix trace. The inner product between
A and B is defined as ⟨A,B⟩ =

∑n3

i=1

〈
A(i),B(i)

〉
. We

denote In as the n × n sized identity matrix. We de-
note the Frobenius norm as ∥A∥F =

√∑
ijk a

2
ijk, the

ℓ1-norm as ∥A∥1 =
∑

ijk |aijk|, and the infinity norm as
∥A∥∞ = maxijk |aijk|, respectively. The above norms re-
duce to the vector or matrix norms if A is a vector or a
matrix. For v ∈ Rn, the ℓ2-norm is ∥v∥2 =

√∑
i v

2
i .

The spectral norm of A is ∥A∥ = maxi σi(A), where
σi(A)’s are the singular values. The matrix nuclear norm
is ∥A∥∗ =

∑
i σi(A).

2.2. T-product under Linear Transform

The t-product is defined based on the block circulant ma-
trix and unfolded tensor [11]. It is equivalent to the matrix-
matrix product under the discrete Fourier transform. We
denote R = P ⊙Q as the frontal-slice-wise product (Def-
inition 2.1 in [10]), i.e., R(i) = P (i)Q(i), i = 1, · · · , n3.
Let

Ā = A×3 F n3
, (3)

where ×3 denotes the mode-3 product (see Definition 2.5
in [10]) and F n3

is the Discrete Fourier Transform (DFT)
matrix. We denote Ā ∈ Cn1n3×n2n3 as

Ā = bdiag(Ā) =


Ā(1)

Ā(2)

. . .
Ā(n3)

 ,

where bdiag is an operator which maps Ā to Ā. Let A ∈
Rn1×n2×n3 and B ∈ Rn2×l×n3 . Then the t-product [11]
can be equivalently defined as

C = A ∗B ⇔ C̄ = Ā⊙ B̄ ⇔ C̄ = ĀB̄. (4)

Instead of using the specific discrete Fourier transform,
a more general definition of t-product is proposed based on
any invertible linear transform L [10]. In this work, we con-
sider the linear transform L : Rn1×n2×n3 → Rn1×n2×n3

which gives Ā by performing a linear transform on A along
the 3-rd dimension, i.e.,

Ā = L(A) = A×3 L, (5)
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where the linear transform L is given by L ∈ Rn3×n3 which
is invertible. We also have the inverse mapping given by

L−1(A) = A×3 L
−1. (6)

Note that we restrict L to be a real matrix in this work for
two reasons. First, in practice, the real linear transform
guarantees that the t-product of two real tensors is also real.
Thus, the solution/output of the TRPCA model (2) is real.
This is important for real applications. Second, in theory,
the proofs of the exact recovery guarantee in Section 4.2 is
not applicable to the complex linear transforms. It will af-
fect the definitions of the tensor basis. See more detailed
discussions after Theorem 2.

We have the following t-product definition and other re-
lated concepts under linear transform L.

Definition 1 (T-product) [10] Let L be any invertible lin-
ear transform in (5), A ∈ Rn1×n2×n3 and B ∈ Rn2×l×n3 .
The t-product of A and B under L, denoted as C = A∗LB,
is defined such that L(C) = L(A)⊙ L(B).

For any invertible linear transform L in (5), we have the
following tensor concepts extended from the matrix cases.

Definition 2 (Tensor transpose) [10] Let L be any invert-
ible linear transform in (5), and A ∈ Rn1×n2×n3 . Then the
tensor transpose of A under L, denoted as A⊤, satisfies
L(A⊤)(i) = (L(A)(i))⊤, i = 1, · · · , n3.

Definition 3 (Identity tensor) [10] Let L be any invertible
linear transform in (5). Let I ∈ Rn×n×n3 so that each
frontal slice of L(I) = Ī is a n × n sized identity matrix.
Then I = L−1(Ī) gives the identity tensor under L.

It is clear that A ∗L I = A and I ∗L A = A with appro-
priate dimensions. The tensor Ī = L(I) is a tensor with
each frontal slice being the identity matrix.

Definition 4 (Orthogonal tensor) [10] Let L be any invert-
ible linear transform in (5). A tensor Q ∈ Rn×n×n3 is or-
thogonal under L if it satisfies Q⊤ ∗LQ = Q∗LQ⊤ = I .

Definition 5 (F-diagonal Tensor) A tensor is called f-
diagonal if each of its frontal slices is a diagonal matrix.

Theorem 1 (T-SVD) [10] Let L be any invertible linear
transform in (5), and A ∈ Rn1×n2×n3 . Then it can be
factorized as

A = U ∗L S ∗L V⊤, (7)

where U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 are orthogonal,
and S ∈ Rn1×n2×n3 is an f-diagonal tensor.

Definition 6 (Tensor tubal rank) Let L be any invertible
linear transform in (5), and A ∈ Rn1×n2×n3 . The tensor
tubal rank of A under L, denoted as rankt(A), is defined

as the number of nonzero tubes of S, where S is from the
t-SVD of A = U ∗L S ∗L V⊤. We can write

rankt(A) =#{i,S(i, i, :) ̸= 0}.

For A ∈ Rn1×n2×n3 with tubal rank r, we also have
the skinny t-SVD, i.e., A = U ∗L S ∗L V⊤, where U ∈
Rn1×r×n3 , S ∈ Rr×r×n3 , and V ∈ Rn2×r×n3 , in which
U⊤∗LU = I and V⊤∗LV = I . We use the skinny t-SVD
throughout this paper.

3. Transform based Tensor Nuclear Norm
At the following, we show how to define the convex ten-

sor nuclear norm induced by the t-product under L. We can
first define the tensor spectral norm as in [15, 16].

Definition 7 (Tensor spectral norm) Let L be any invert-
ible linear transform in (5), and A ∈ Rn1×n2×n3 . The ten-
sor spectral norm of A under L is defined as ∥A∥ := ∥Ā∥.

Then the tensor nuclear norm can be defined as the dual
norm of the tensor spectral norm. To this end, we further
need the following assumption on L given in (5), i.e.,

L⊤L = LL⊤ = ℓIn3
, (8)

where ℓ > 0 is a constant. Using (8), we have

⟨A,B⟩ = 1

ℓ

〈
Ā, B̄

〉
. (9)

∥A∥F =
1√
ℓ
∥Ā∥F . (10)

For any B ∈ Rn1×n2×n3 and B̃ ∈ Rn1n3×n2n3 , we have

∥A∥∗ := sup
∥B∥≤1

⟨A,B⟩ = sup
∥B̄∥≤1

1

ℓ
⟨Ā, B̄⟩ (11)

≤1

ℓ
sup

∥B̃∥≤1

⟨Ā, B̃⟩ = 1

ℓ
∥Ā∥∗, (12)

where (11) uses (9), the inequality uses the fact that B̄ is
a block diagonal matrix in Rn1n3×n2n3 while B̃ is an arbi-
trary matrix in Rn1n3×n2n3 , and (12) uses the fact that the
matrix nuclear norm is the dual norm of the matrix spectral
norm. On the other hand, let A = U ∗L S ∗L V⊤ be the
t-SVD of A and B = U ∗L V⊤. We have

∥A∥∗ = sup
∥B∥≤1

⟨A,B⟩ ≥ ⟨U ∗L S ∗L V⊤,U ∗L V⊤⟩

=⟨U⊤ ∗L U ∗L S,V⊤ ∗L V⟩

=⟨S,I⟩ = 1

ℓ
⟨S̄, Ī⟩ = 1

ℓ
Tr(S̄) =

1

ℓ
∥Ā∥∗. (13)

Combining (11)-(12) and (13), we then have the following
definition of tensor nuclear norm.
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Definition 8 (Tensor nuclear norm) Let L be any invert-
ible linear transform in (5) and it satisfies (8), and A =
U ∗LS ∗LV⊤ be the t-SVD of A. The tensor nuclear norm
of A under L is defined as ∥A∥∗ := ⟨S,I⟩ = 1

ℓ ∥Ā∥∗.

We would like to emphasize that our condition for the
linear transform L in (8) is new for defining the tensor nu-
clear norm. In contrast, t-product only requires L to be in-
vertible.

4. TRPCA under Linear Transform with Exact
Recovery Guarantee

We can solve the convex TRPCA model in (2) by Al-
ternating Direction Method of Multipliers [2] (see details
in the supplementary material). The per-iteration cost is
O(n1n2n

2
3 + n(1)n

2
(2)n3). Assume that we are given X =

L0 + S0, where L0 is of low tubal rank and S0 is sparse.
In this section, we will theoretically show that the solution
to (2) exactly recovers both L0 and S0 with overwhelming
probability.

4.1. Tensor Incoherence Conditions

Some incoherence conditions are required to avoid some
pathological situations that the recovery is impossible. We
need to assume that the low-rank component L0 is not
sparse. To this end, we assume L0 to satisfy some inco-
herence conditions. Another identifiability issue arises if
the sparse tensor has low tubal rank. This can be avoided
by assuming that the support of S0 is uniformly distributed.
We need the following tensor basis concept for defining the
tensor incoherence conditions.

Definition 9 (Standard tensor basis) Let L be any invert-
ible linear transform in (5) and it satisfies (8). We denote
e̊i as the tensor column basis, which is a tensor of size
n×1×n3 with the entries of the (i, 1, :) tube of L(̊ei) equal-
ing 1 and the rest equaling 0. Naturally its transpose e̊⊤i is
called row basis. The other tensor basis is called tube basis
ėk, which is a tensor of size 1× 1× n3 with the (1, 1, k)-th
entry of L(ėk) equaling 1 and the rest equaling 0.

Definition 10 (Tensor incoherence conditions) Let L be
any invertible linear transform in (5) and it satisfies (8).
For L0 ∈ Rn1×n2×n3 with rankt(L0) = r and the skinny
t-SVD L0 = U ∗L S ∗L V⊤. Then L0 is said to satisfy the
tensor incoherence conditions with parameter µ if

max
i=1,··· ,n1

max
k=1,··· ,n3

∥U⊤ ∗L e̊i ∗L L(ėk)∥F ≤
√

µr

n1
, (14)

max
j=1,··· ,n2

max
k=1,··· ,n3

∥V⊤ ∗L e̊j ∗L L(ėk)∥F ≤
√

µr

n2
, (15)

and

∥U ∗L V⊤∥∞ ≤
√

µr

n1n2ℓ
. (16)

Proposition 1 With the same notations in Definition 10, if
the following conditions hold,

max
i=1,··· ,n1

∥U⊤ ∗L e̊i∥F ≤
√

µr

n1ℓ
, (17)

max
j=1,··· ,n2

∥V⊤ ∗L e̊j∥F ≤
√

µr

n2ℓ
, (18)

then (14)-(15) hold.

Proposition 1 shows that our new conditions (14)-(15)
are less restrictive than (17)-(18). And our proofs of main
results only need to use the new conditions (14)-(15).

4.2. Main Results

Define n(1) = max(n1, n2) and n(2) = min(n1, n2).
We have the following exact recovery guarantee for convex
program (2).

Theorem 2 Let L be any invertible linear transform in (5)
and it satisfies (8). Suppose L0 ∈ Rn×n×n3 obeys (14)-
(16). Fix any n × n × n3 tensor M of signs. Suppose
that the support set Ω of S0 is uniformly distributed among
all sets of cardinality m, and that sgn ([S0]ijk) = [M]ijk
for all (i, j, k) ∈ Ω. Then, there exist universal constants
c1, c2 > 0 such that with probability at least 1−c1(nn3)

−c2

(over the choice of support of S0), {L0,S0} is the unique
minimizer to (2) with λ = 1/

√
nℓ, provided that

rankt(L0) ≤
ρrn

µ(log(nn3))2
and m ≤ ρsn

2n3, (19)

where ρr and ρs are positive constants. If L0 ∈ Rn1×n2×n3

has rectangular frontal slices, TRPCA with λ = 1/
√

n(1)ℓ
succeeds with probability at least 1 − c1(n(1)n3)

−c2 ,
provided that rankt(L0) ≤ ρrn(2)

µ(log(n(1)n3))2
and m ≤

ρsn1n2n3.

Theorem 2 gives the exact recovery guarantee for convex
model (2) under certain incoherence conditions. It says that
the incoherent L0 can be recovered for rankt(L0) on the or-
der of n/(µ(log nn3)

2) and a number of nonzero entries in
S0 on the order of n2n3. For S0, we make only an assump-
tion on the random location distribution, but no assumption
about the magnitudes or signs of the nonzero entries.

We would like to emphasize that TRPCA in [16] which
uses the discrete Fourier transform cannot be regarded a
special case of ours, especially from the perspective of
the theoretical result and its proofs. The key difference is
that we restrict the linear transform within the real domain
L : Rn1×n2×n3 → Rn1×n2×n3 while the discrete Fourier
transform used in [16] is a mapping from the real domain to
the complex domain L : Rn1×n2×n3 → Cn1×n2×n3 . Note
that this domain difference is crucial in the proofs. The stan-
dard tensor basis and tensor incoherence conditions are de-
fined depended on the properties of L. Our proofs are not
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Table 1: Correct recovery for random problems of varying
size. The Discrete Cosine Transform (DCT) is used as the
invertible linear transform L.

r = rankt(L0) = 0.1n, m = ∥S0∥0 = 0.1n3

n r m rankt(L̂) ∥Ŝ∥0
∥L̂−L0∥F

∥L0∥F
∥Ŝ−S0∥F

∥S0∥F
100 10 1e5 10 102,921 2.4e−6 8.7e−10
200 20 8e5 20 833,088 6.8e−6 8.7e−10
300 30 27e5 30 2,753,084 1.8e−5 1.4e−9

r = rankt(L0) = 0.1n, m = ∥S0∥0 = 0.2n3

n r m rankt(L̂) ∥Ŝ∥0
∥L̂−L0∥F

∥L0∥F
∥Ŝ−S0∥F

∥S0∥F
100 10 2e5 10 201,090 4.0e−6 2.1e−10
200 20 16e5 20 1,600,491 5.3e−6 9.8e−10
300 30 54e5 30 5,460,221 1.8e−5 1.8e−9

Table 2: Correct recovery for random problems of varying
size. A Random Orthogonal Matrix (ROM) is used as the
invertible linear transform L.

r = rankt(L0) = 0.1n, m = ∥S0∥0 = 0.1n3

n r m rankt(L̂) ∥Ŝ∥0
∥L̂−L0∥F

∥L0∥F
∥Ŝ−S0∥F

∥S0∥F
100 10 1e5 10 103,034 2.7e−6 9.6e−9
200 20 8e5 20 833,601 7.0e−6 9.0e−10
300 30 27e5 30 2,852,933 1.8e−5 1.3e−9

r = rankt(L0) = 0.1n, m = ∥S0∥0 = 0.2n3

n r m rankt(L̂) ∥Ŝ∥0
∥L̂−L0∥F

∥L0∥F
∥Ŝ−S0∥F

∥S0∥F
100 10 2e5 10 201,070 4.3e−6 2.3e−9
200 20 16e5 20 1,614,206 5.4e−6 9.9e−10
300 30 54e5 30 5,457,874 9.6e−6 9.5e−10

applicable to the case using L : Rn1×n2×n3 → Cn1×n2×n3 .
Even the proofs in [16] cannot handle this general case ei-
ther. Their used discrete Fourier transform has some special
properties which are crucial in their proofs. In particular, in
[16], eijk = e̊i ∗ ėk ∗ e̊⊤j is the unit tensor and it satisfies
ėk ∗ e̊∗j ∗ e̊j ∗ ė∗k = I1. These two properties are important in
their proofs. However, they cannot hold simultaneously for
any L : Rn1×n2×n3 → Rn1×n2×n3 (they hold for the spe-
cial discrete Fourier transform). Our proofs have to handle
more complicated operations, e.g., L(L(eijk)), which do
not appear in [16]. Also, we use less restrictive tensor inco-
herence conditions (14)-(15). The differences in the tensor
basis and tensor incoherence conditions are fundamental,
and thus they lead to several key differences in the proofs.
Please refer to the supplementary material for more details.

5. Experiments

In this section, we conduct experiments to show that a)
program (2) indeed recovers the low-rank and sparse parts
correctly, and thus verify our result in Theorem 2; b) our
TRPCA outperforms RPCA and other TRPCA methods in
practice.
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Figure 1: Correct recovery for varying rank and sparsity. Fraction
of correct recoveries across 10 trials, as a function of rankt(L0) (x-
axis) and sparsity of S0 (y-axis). (a)-(b) sgn(S0) is random, DCT
and ROM are used as L, respectively; (c)-(d) S0 = PΩsgn(L0).
DCT and ROM are used as L, respectively.

5.1. Exact Recovery from Varying Fractions of Er-
ror

We first verify the recovery guarantee in Theorem 2 on
randomly generated tensors. Since Theorem 2 holds for
any linear transform L with L satisfying (8). So we con-
sider two cases of L: (1) Discrete Cosine Transform (DCT)
which is used in the original work of transforms based t-
product [10]. We use the Matlab command dct to generate
the DCT matrix L. (2) Random Orthogonal Matrix (ROM)
generated by the method with codes available online1. In
both cases, (8) holds with ℓ = 1. We simply consider the
tensors of size n × n × n, with n =100, 200 and 300. We
generate L0 with tubal rank r by L0 = P ∗L Q⊤, where
P and Q are n× r × n tensors with entries independently
sampled from N (0, 1/n) distribution. The support set Ω
(with size m) of S0 is chosen uniformly at random. For all
(i, j, k) ∈ Ω, let [S0]ijk = Mijk, where M is a tensor
with independent Bernoulli ±1 entries. For different size n,
we set the tubal rank of L0 as 0.1n and consider two cases
of the sparsity m = ∥S0∥0 = 0.1n3 and 0.2n3.

Table 1 and 2 report the recovery results which use DCT
and ROM as the linear transform L, respectively. It can
be seen that the tubal rank estimations of L0 are correct
in all cases and the relative errors ∥L̂−L0∥F /∥L0∥F are

1https://www.mathworks.com/matlabcentral/fileexchange/11783-
randorthmat.
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Figure 2: Comparison of the PSNR values (up) and running time (bottom) of RPCA, SNN, TRPCA, our TRPCA-DCT and
TRPCA-ROM for image denoising on 50 images. Best viewed in ×2 sized color pdf file.

very small (all around 10−5). The sparsity estimation of S0

is not as exact as the rank estimation. But the relative er-
rors ∥Ŝ − S0∥F /∥S0∥F are all very small (less than 10−8).
These results well verify our theory in Theorem 2.

5.2. Phase Transition in Tubal Rank and Sparsity

Theorem 2 shows that the recovery is correct when the
tubal rank of L0 is relatively low and S0 is relatively
sparse. Now we examine the recovery phenomenon with
varying tubal rank of L0 from varying sparsity of S0. We
consider tensors of size Rn×n×n3 , where n = 100 and
n3 = 50. We generate L0 in the same way as the previ-
ous section. We consider two distributions of the support
of S0. The first case is the Bernoulli model for the sup-
port of S0, with random signs: each entry of S0 takes on
value 0 with probability 1 − ρ, and values ±1 each with
probability ρ/2. The second case chooses the support Ω
in accordance with the Bernoulli model, but this time sets
S0 = PΩsgn(L0). We set r

n = [0.01 : 0.01 : 0.5] and
ρs = [0.01 : 0.01 : 0.5]. For each ( rn , ρs)-pair, we simulate
10 test instances and declare a trial to be successful if L̂
satisfies ∥L̂−L0∥F /∥L0∥F ≤ 10−3. Figure 1 shows the
fraction of correct recovery for each pair ( rn , ρs) for two set-
tings of S0. The white region indicates the exact recovery
while the black one indicates the failure. The experiment

shows that the recovery is correct when the tubal rank of L0

is relatively low and the errors S0 is relatively sparse. More
importantly, the results show that the used linear transforms
are not important, as long as property (8) holds. The re-
covery performances are very similar even different linear
transforms are used. This experiment further well verify
our main result in Theorem 2.

5.3. Applications to Image Recovery

The marix and tensor completion have been applied for
image recovery [16]. The main motivation is that the color
image can be well approximated by low-rank matrices or
tensors. In this experiment, we consider to apply our TR-
PCA model using DCT for image recovery, and compare
our method with state-of-the-art methods.

For any color image of size n1 × n2, we can formate it
as a tensor n1 × n2 × n3, where n3 = 3. The frontal slices
correspond to the three channels of the color images2. We
randomly select 100 color images from the Berkeley seg-
mentation dataset [19] for this test. We randomly set 10%
of pixels to random values in [0, 255], and their positions
are unknown. We compare our TRPCA model with RPCA
[3], SNN [8] and TRPCA [16], which also own the theo-

2There have different ways of tensor constructions from color images.
We observe that this way of tensor construction achieves the best perfor-
mance in practice.
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Figure 3: Performance comparison for image recovery on some sample images. (a) Original image; (b) observed image;
(c)-(f) recovered images by RPCA, SNN, TRPCA, and our TRPCA-DCT, respectively.

retical recovery guarantee. For RPCA, we apply it on each
channel separably and combine the results. For SNN, we
set λ = [15, 15, 1.5]. TRPCA [16] uses the discrete Fourier
transform. In this experiment, we use DCT and ROM as the
transforms in our new TRPCA method, denoted as TRPCA-
DCT and TRPCA-ROM, respectively. The Peak Signal-to-
Noise Ratio (PSNR) value [16] is used to evaluate the re-
covery performance. The higher PSNR value indicates bet-
ter recovery performance.

Figure 2 shows the comparison of the PSNR values and
running time of all the compared methods. Some examples
are given in Figure 3. It can be seen that in most cases,
our new TRPCA-DCT achieves the best performance. This
implies that the discrete Fourier transform used in [16]
may not be the best for this task, though the reason is not
very clear now. However, if the random orthogonal matrix
(ROM) is used as the linear transform, the results are gener-
ally bad. This is reasonable and it implies that the choice of
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the linear transform L is crucial in practice, though the best
linear transform is currently not clear. Figure 2 (b) shows
that our method is as efficient as RPCA and TRPCA.

6. Conclusions
Based on the t-product under invertible linear trans-

forms, we defined a new tensor nuclear norm and proposed
a new TRPCA model given the transforms satisfying cer-
tain conditions. We theoretically prove that the convex TR-
PCA model can recover both the low-rank and sparse com-
ponents exactly.

This work provides a new direction for the pursuit of
low-rank tensor recovery. The tensor tubal rank and tensor
nuclear norm definitions both depend on the given tensor
and the used linear transforms. The best transforms will be
task dependent. So, looking for the optimized transforms is
a very interesting future work. It is always important to ap-
ply such a new technique for some other applications, e.g.,
subspace clustering for motion segmentation and outlier de-
tection [27].
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