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Abstract

We address the problem of learning to segment actions
from weakly-annotated videos, i.e., videos accompanied by
transcripts (ordered list of actions). We propose a frame-
work in which we model actions with a union of low-
dimensional subspaces, learn the subspaces using tran-
scripts and refine video features that lend themselves to ac-
tion subspaces. To do so, we design an architecture consist-
ing of a Union-of-Subspaces Network, which is an ensemble
of autoencoders, each modeling a low-dimensional action
subspace and can capture variations of an action within
and across videos. For learning, at each iteration, we gen-
erate positive and negative soft alignment matrices using
the segmentations from the previous iteration, which we use
for discriminative training of our model. To regularize the
learning, we introduce a constraint loss that prevents im-
balanced segmentations and enforces relatively similar du-
ration of each action across videos. To have a real-time in-
ference, we develop a hierarchical segmentation framework
that uses subset selection to find representative transcripts
and hierarchically align a test video with increasingly re-
fined representative transcripts. Our experiments on three
datasets show that our method improves the state-of-the-art
action segmentation and alignment, while speeding up the
inference time by a factor of 4 to 13.1

1. Introduction
Localization and classification of human actions in long

uncurated videos has been a major challenge in video under-
standing [54, 10, 11, 27, 65, 69, 66, 59, 19]. While many
methods have studied the problem in a fully-supervised set-
ting using dense supervision [50, 57, 29, 33, 55, 67], gath-
ering framewise annotations is costly and cannot scale to
massive amounts of video data, which are available today.
As a result, there has been an increasing interest in meth-
ods that can learn from weakly-annotated videos. In par-

1Code is available at https://github.com/ZijiaLewisLu/
ICCV21-TASL.

ticular, action transcripts, which refer to sequences of ac-
tions appearing in videos without specifying their begin-
ning and ending times, are less costly to gather and can
also be obtained from video narrations or other meta data
[32, 1, 42]. This has motivated a variety of interesting ap-
proaches that learn to localize and classify actions using
transcripts [21, 2, 48, 49, 9, 73, 36, 4, 37].

Challenges. Despite tremendous advances, existing works
on weakly-supervised action learning still face major chal-
lenges. In fact, a successful class of recent methods fo-
cuses on alternating between segmentation of the training
videos using transcripts and retraining models with the ob-
tained segmentations [49, 36]. However, training a model
with the one estimated segmentation could ignore and dis-
courage other likely segmentations and propagate the initial
segmentation errors.

Moreover, existing methods often ignore the underlying
low-dimensional structures of videos. In fact, it is well
known that high-dimensional visual data, e.g., rigid and
nonrigid motions or human actions, lie in low-dimensional
subspaces [63, 12, 41, 3, 40, 38, 6]. Yet, leveraging such
low-dimensional subspaces in the weakly-supervised set-
ting has been mainly ignored, as the existing works work in
the fully-supervised or fully-unsupervised regimes and can-
not take advantage of weak supervision, e.g., transcripts.

On the other hand, inference on test videos that do not
have transcripts is often extremely costly. This comes from
the fact that existing methods require aligning the test video
with every transcript in the training set to select the most
likely transcript and the associated segmentation. This pre-
vents methods from being applicable in real-time.

Paper Contributions. In this paper, we address the
problem of weakly-supervised action segmentation by de-
veloping a Transcript-aware Action Subspace Learning
(TASL) framework that models actions with a union of low-
dimensional subspaces, learns the subspaces using weak su-
pervision (transcripts) and refines video features that lend
themselves to action subspaces. To do so, we design an ar-
chitecture consisting of a feature learning module and a new
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Figure 1: We propose a framework, referred to as Transcript-aware Action Subspace Learning (TASL), for weakly-supervised segmentation of videos.
The framework consists of a Union-of-Subspaces Network (USN), which learns to embed actions into discriminative low-dimensional subspaces, and an
efficient constrained video alignment algorithm that generates positive and negative soft alignments, which will be used for parameter learning.

Union-of-Subspaces Network (USN). USN is an ensemble
of autoencoders, each modeling a low-dimensional action
subspace, that captures variations of each action. As we
show in the experiments, depending on the semantic sim-
ilarity of actions (e.g., sharing verb or noun), the learned
subspaces will be nearly orthogonal to each other in some
directions (allowing discrimination), while intersecting in
some other directions (capturing shared information).

For learning, we alternate between segmenting training
videos using transcripts and learning models and features
from segmentations. However, instead of learning a model
to reproduce an obtained segmentation, we generate posi-
tive and negative soft alignment matrices using the optimal
segmentation, which we will use for discriminative learn-
ing of subspaces. We introduce a constraint loss to prevent
imbalanced segmentations and to enforce relatively similar
duration of each action across videos.

To have real-time inference, we develop a hierarchical
segmentation framework that uses subset selection to find
representative transcripts of training videos. We will hier-
archically align a test video with increasingly refined rep-
resentative transcripts. Our experiments on three datasets
show that our method improves the state of the art while
speeding up inference by a factor of 4 to 13.

2. Related Works
Action Segmentation with Minimal Supervision. Large
amounts of long untrimmed videos [56, 15, 73, 44, 53, 7]
along with the high cost of framewise video annotations
have motivated a large body of works in computer vision
to localize and classify actions with minimum supervision.

Weakly-supervised methods learn from ordered or un-
ordered list of actions in videos [21, 2, 48, 49, 9, 73, 36,
4, 37] or video summaries [64]. In particular, [30] inter-
prets the problem as speech recognition problem, where the
videos correspond to the audio signal and the action classes
correspond to words, hence, learns a standard HMM-GMM
model using a speech recognition toolkit. Building upon
this idea, [47] replaces the GMM by a recurrent neural net-
work, while still relying on an HMM for a coarse temporal
modeling. Also, [24, 25, 47, 30] use a two-step optimiza-

tion scheme that does not allow for direct, sequence-wise
training. [39] uses the connectionist temporal classification
(CTC) approach in combination with a statistical language
model. As an extension of the CTC approach, [21] pro-
poses ECTC that accounts for visual similarities between
the frames to avoid degenerate segmentations. [9] trains
a network on uniformly generated segmentations and itera-
tively inserting new actions into the segmentations based on
the learned network, which are then used to retrain the net-
work. Finally, [49] generates optimal segmentations using
Viterbi decoding that will be used to train a classifier. [4]
maximizes the likelihoods of all transcript-consistent seg-
mentations and minimizes those of transcript-inconsistent
ones. [36] has achieved state-of-the-art performance by op-
timizing valid segmentations that are generated by slightly
shifting action boundaries of the optimal segmentations.

Several works have also studied the weakly-supervised
learning from unordered list of actions appearing in videos.
In particular, [48, 37] extend the Viterbi decoding to the
set-supervised action segmentation problem, which alter-
nates between estimating ordering of actions and learning
a segmentation model. In contrast, [14] proposes to directly
predict the actions and their lengths via a neural network.
Finally, to completely remove the need for video annota-
tions, several recent works have studied unsupervised action
segmentations by leveraging the shared structure of videos
from similar tasks [54, 10, 11, 31, 52, 1, 51, 17].
Subspace Learning. The goal of subspace clustering is to
cluster data into underlying low-dimensional subspaces and
learn parameters of subspaces. This has been addressed us-
ing iterative methods [61, 20, 71, 60, 18, 16], which alter-
nate between estimating subspaces and clustering data, or
spectral clustering-based methods that build affinities be-
tween data points often using sparse or low-rank repre-
sentations [13, 40, 45, 35, 68, 70, 43, 5, 8]. Motivated
by advances in deep learning, recent methods have stud-
ied unsupervised feature learning for subspace clustering
[22, 72, 46]. Given that subspace clustering is an unsu-
pervised problem, existing methods cannot take advantage
of the weak supervision, when available. We propose a
method that learns a union of subspaces using transcripts.
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3. Transcript-Aware Multi-Subspace Learning
Problem Statement. Assume we have V videos and
their action transcripts {(X v, T v)}Vv=1, where X v =
(xv

1, . . . ,x
v
Nv

) denotes the collection of framewise unsu-
pervised features for the video v, which has Nv frames.
T v = (av1, . . . , a

v
nv
) denotes its transcript, which is the

ordered list of nv actions in the video. We have avi ∈
{1, 2, . . . , A}, where A denotes the total number of actions
across videos. The goal of weakly-supervised action learn-
ing is to learn an action segmentation model only using the
transcripts of the training videos and to predict the actions
of test videos. Depending on the information provided for
a test video, inference can be divided into action alignment,
where the video’s transcript is known, and action segmen-
tation, where the transcript is unknown. Indeed, action seg-
mentation can be cast as action alignment by aligning the
test video with the transcripts of training videos and select-
ing the one that has the minimum alignment cost. For sim-
plicity, we drop the superscript and subscript v in notations
(referring to video v), as it would be clear from the context.

Proposed Framework. To address the problem of weakly-
supervised action segmentation, we develop the Transcript-
aware Action Subspace Learning (TASL) framework. As
shown in figure 1, TASL alternates between aligning train-
ing videos with transcripts using the model predictions and
learning the model using current alignments. The pro-
posed model consists of a GRU as a feature learning mod-
ule and a Union-of-Subspaces Network (USN) to learn low-
dimensional subspaces of actions via an ensemble of au-
toencoders. The outputs of USN are two scores capturing
the similarity between each frame feature and each action
subspace. Using the scores, we find the optimal alignment
of a video by assigning frames to their closest subspaces
while respecting the transcript. We then use the alignments
to generate candidate valid and invalid frame labels, en-
coded via two soft alignment matrices Y p,Y n. The two
matrices are then used in the discriminative network loss
to enforce frame features have large/small embeddings on
to the likely/unlikely subspaces while increasing distances
between learned subspaces.

3.1. Discriminative USN Training

In this section, we introduce the designed network archi-
tecture and efficient discriminative loss for learning features
and low-dimensional subspaces corresponding to actions.

Proposed Architecture. First, we use a recurrent
network (here GRUs) as the feature learning module,
(h1, . . . ,hN ) = GRU

(
(x1, . . . ,xN )

)
, that captures tem-

poral dependencies between framewise unsupervised fea-
tures and transforms them into more discriminative features
lying in low-dimensional subspaces corresponding to ac-
tions. To achieve such low-dimensional embeddings, we
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Figure 2: Proposed alignment algorithm: 1) perform constrained Viterbi
decoding to obtain an optimal alignment, 2) generate positive and negative
soft alignments based on the optimal alignment.

design a Union-of-Subspaces Network (USN) that consists
of an ensemble of A autoencoders for A actions. The au-
toencoder a encodes the input feature vector ht ∈ Rp into
a low-dimensional embedding vector zt,a ∈ Rd (d � p),
which will be decoded to ĥt,a ∈ Rp. More specifically,

zt,a = W e
aht + be

a ∈ Rd, ĥt,a = W d
a zt,a + bd

a ∈ Rp,
(1)

where {W e
a ,W

d
a ,b

e
a,b

d
a} are the learnable weights of the

encoder and decoder of the action a, respectively. Here,
{zt,a} represent the d-dimension embeddings of {ht} on
the subspace of action a. With the linear decoder, {ĥt,a}
are affine transformations of {zt,a} using the same combi-
nation weights W d

a , thus, lie on the d-dimension subspace.
Therefore, subspaces are described by the column spaces of
{W d

a }. A feature ht being close to ĥt,a implies that the
frame t is close to the subspace a.

Given framewise labels from the alignments, one can
naively learn a subspace for each action a by minimizing
the distance ‖ĥt,a − ht‖2 over all frames assigned to it.
However, this has several drawbacks. First, minimizing
the distance to one subspace will not necessarily increase
the distances to other subspaces, which results in poor ac-
tion segmentation performance. Moreover, as we learn both
features and subspace parameters, minimizing the distances
alone results in shrinking weights and features towards zero,
hence, loosing distinctions between actions. Finally, the
cost does not use the information in the embeddings, zt,a.

Proposed Discriminative Training. To address the above
challenges, we develop a method that uses two complemen-
tary scores for discriminative training. Since ‖zt,a‖2 cor-
responds to the embedding norm of ht onto the subspace
a, we compute the subspace assignment score of ht to sub-
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space a by

σt,a =
e‖Qazt,a‖22∑
a′ e‖Qa′zt,a′‖22

∈ [0, 1]. (2)

Since not every direction in a subspace is necessarily use-
ful for recognition of the underlying action, e.g., directions
corresponding to intersection with other subspaces, we use
Qa ∈ Rd′×d (d′ ≤ d) to allow learning discriminative fea-
tures within each subspace a.

Given ‖ĥt,a − ht‖2 as the distance between ht and the
subspace a, we define the discriminative distance score,

ψt,a =
e−‖ĥt,a−ht‖22∑
a′ e−‖ĥt,a′−ht‖22

∈ [0, 1], (3)

whose maximization for a subspace a enforces that ht must
be close to it and far from other subspaces.

Based on network outputs, our alignment algorithm will
produce two soft label matrices (see the next subsection
for details): 1) positive soft alignments Y p ∈ [0, 1]N×A,
whose each row is the probability distribution of frame t
belonging to each action, and is computed based on optimal
alignment of the video with its transcript; 2) negative soft
alignments Y n ∈ [0, 1]N×A, whose each row is the proba-
bility distribution of frame t to undesired actions. Thus, to
learn the parameters of the GRU and USN, for each video,
we define the loss

Lvideo ,
N∑
t=1

A∑
a=1

[
− ypt,a

(
log(σt,a) + ρ log(ψt,a)

)
+ ynt,a

(
log(σt,a) + ρ log(ψt,a)

)]
,

(4)

and minimize the average of this loss over all training
videos with respect to the network parameters. Here, ρ con-
trols the trade-off between the subspace assignment score
σ and discriminative distance score ψ (here, ypt,a and ynt,a
are the (t, a)-th elements of Y p and Y n, respectively). The
loss function aims to maximize the embedding norms and
the closeness between ht and the associated subspace based
on the positive alignment Y p while minimizing those to
the incorrect subspaces based on Y n. Notice that these
two scores have complementary effects, where ψ enforces
learned subspaces to be more distinct, while σ prevents
shrinking parameters and features towards zero. One can
also choose different subspace dimensions for different ac-
tions, depending on the appearance and motion complexity
of the action. In the experiments, we explore the effect of
subspace dimensions on the performance of our method.

Remark 1 While autoencoders have been used in unsuper-
vised subspace clustering methods [22, 72, 46], their roles
are fundamentally different than our USN. In such works a

single autoencoder is used for feature learning for all data
followed by applying a self-expressive layer [22] and spec-
tral clustering on the similarities built from embeddings of
the autoencoder. The self-expressive layer learns subspaces
yet requires the entire dataset at each training iteration.
In contrast, we use a GRU for feature learning and multi-
ple autoencoders, one per action class, to learn subspaces.
Moreover, our method can be trained with video batches
and directly predict actions.

3.2. Proposed Alignment Algorithm

In this section, we discuss our algorithm to find the op-
timal alignment of a transcript with a video then to form
positive and negative soft alignments for network training.

Finding Optimal Transcript Alignment. Given the tran-
script T = (a1, . . . , an) of a video, our goal is to find the
best alignment that assigns each frame to one action in the
transcript in order. Notice that an alignment can be fully
determined by finding the lengths of actions in the tran-
script. Let li denote the length of action ai, where we must
have

∑
i li = N . To find the optimal alignment, we ob-

tain the subspace assignment scores σt,a in (2) and search
for {li}ni=1 that give the best total assignment score over the
video via an optimization algorithm, i.e., we solve

min
{li},

∑
ili=N

n∑
i=1

[
γLreg(l1, ..., ln) +

Li+li∑
t=Li+1

−log(σt,ai
)

]
.

(5)
Here, Li ,

∑i−1
j=1 lj is the total length of actions prior to

ai (we set L1 = 0), Lreg is a regularization term prevent-
ing degenerate alignments and the hyperparameter γ sets a
trade-off between negative likelihood and regularization.2

Given that our method alternates between learning sub-
spaces and features and finding alignments, it is possible
that the alignment assigns majority of the frames to one ac-
tion and few frames to other actions in the transcript, or
one action has drastically different durations across videos.
Therefore, we design Lreg to prevent such undesired solu-
tions. Let p(a) denote the estimated frequency of action a
to occur and pa(l) denote the probability of action a having
length l. We define

Lreg =

n∑
i=1

li log
(
p(ai)

)
︸ ︷︷ ︸

,L1
reg

+

n∑
i=1

− log
(
pai

(li)
)

︸ ︷︷ ︸
,L2

reg

, (6)

where L1
reg penalizes imbalanced segmentation within a

video by incurring a large cost when most frames are as-
signed to a frequent action. On the other hand, L2

reg en-
sures each action has similar lengths across videos, as it is

2It is also possible to include log(ψt,ai ) in (5), yet we found excluding
it yields better performance.
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often the case that the length of the same action is roughly
consistent in topic-related videos. We model pa(l) =
λla exp(−λa)/l! by a Poisson distribution [49] with a pa-
rameter λa denoting the mean action length. We will esti-
mate both p(a)’s and λa’s at the same step when we learn
the USN parameters (see below also for more details).

Remark 2 Notice that L1
reg and L2

reg have complementary
effects. While the alignments are balanced within a video,
durations of the one action can be different across videos.
On the other hand, while the same action’s durations are
roughly similar across videos, one could obtain imbalanced
alignments within videos. Thus, the two terms ensure bal-
ancedness within and duration consistency across videos.

Naively searching for the optimal alignment that solves
(5) is exponentially complex, due to combinatorial number
of possibilities for {li}ni=1. Therefore, we employ a con-
strained Viterbi decoding algorithm [49, 37] to efficiently
solve the problem. Specifically, the objective function of
(5) can be computed using recursive function evaluations

U(ai, t) = max
li>0

U(ai−1, t− li)−
t∑

t′=t−li

log(σt′,ai
)

+ li log(p(ai))− log(pai
(li)), (7)

where U(an, N) corresponds to the minimum objective
value. By backtracking through the recursion, we can find
the optimal alignment {l∗i }.

Constructing Positive and Negative Soft Alignments.
One can use the optimal alignment {l∗i } directly to train the
network. However, this has the drawback that a network
with enough capacity could overfit to alignment errors at
the early training stage. On the other hand, we observe
that, given the optimal alignment {l∗i }, alignments with
small shifts in action boundaries can potentially be valid
candidates as well (even humans have difficulty discerning
the boundaries between actions). Moreover, those possible
valid alignments must be preferred over invalid alignments
that use different transcripts than the ground-truth, e.g., us-
ing T ′ = (a′1, . . . , a

′
n), where a′i 6= ai for all i.

To allow our model to explore multiple candidate align-
ments and to better distinguish between alignments with
valid/invalid transcripts, we generate positive and nega-
tive soft alignment matrices, Y p ∈ [0, 1]N×A and Y n ∈
[0, 1]N×A. More specifically, starting from the optimal
alignment {l∗i }, we generate candidate valid alignments
{Rp

k} and invalid alignments {Rn
k} using [36], as shown

in figure 2. Rp
k ∈ {0, 1}N×A is a discrete label matrix en-

coding k-th alignment and similarly for Rn
k . Its (t, a) entry

equals to 1 if frame t is assigned action a(each row has only
one 1). To further incorporate the candidate alignments’
likelihood, we propose to measure the likelihood score by
computing the inner product

s(Rp
k) , 〈R

p
k,∆〉, ∆ ,

[
log(σt,a)

]
∈ RN×A

− , (8)

which measures the likelihood of the k-th alignment path
according to the learned subspace assignment scores σt,a.
We then form the positive soft alignment matrix by com-
puting the weighted average

Y p ,
∑
k

αkR
p
k, αk ,

exp(s(Rp
k))∑

j exp(s(R
p
j ))

. (9)

Similarly, we compute the score of the k-th negative align-
ment s(Rn

k ) , 〈Rn
k ,∆〉 and the negative soft alignment

matrix Y n as the weighted average of {Rn
k}. We will use

these two matrices to train our network via (4).

3.3. Learning and Inference

Our learning method alternates between the two steps
of training the networks using positive/negative soft align-
ments and computing video alignments using the trained
network. We initialize p(a) = 1/A and λa = 1. At each
iteration, we randomly sample one video and compute its
optimal alignment with its transcript, {l∗i }, as well as the
soft alignment matrices, Y p and Y n. These matrices will
be used to train the network. We use the optimal alignment
{l∗i } from the current and previous iterations to update the
estimation of p(a), as the average number of frames across
videos assigned to a, and λa, as the average length of the
action a across videos, which will affect the constrained
Viterbi decoding in the next iteration.
Inference via Representative Transcripts. During infer-
ence, for the action alignment, where we have the transcript
of a test video, we run the alignment algorithm and choose
the best Rp∗

k given by the transcript that has the maximum
likelihood score s(Rp∗

k ) as the video alignment. For ac-
tion segmentation, where the test video’s transcript is un-
known, for most datasets, we follow [49, 36] and run the
alignment with every transcript of the training videos, each
giving us a Rp∗

k with its likelihood s(Rp∗
k ). The Rp∗

k with
the highest likelihood score is chosen as the video align-
ment. However, this incurs a large computational cost if
a dataset contains thousands of unique training transcripts
(e.g., CrossTask [73] has 2,026 transcripts).

To handle large number of transcripts, we propose a hier-
archical segmentation method: 1) We use the facility loca-
tion subset selection algorithm [26] (see the supplementary
materials for more details) to group all training transcripts
into C groups based on the normalized edit distances be-
tween each pair of the transcripts, which is computed as
2 × edit(T1, T2)/(|T1| + |T2|). Here, edit(·, ·) denotes the
Levenshtein distance [34]. Thus, each group will also have
a representative transcript. 2) We run the alignment algo-
rithm between the test video and each of the C represen-
tative transcripts and find the best matching representative
that yields the new Rp∗

k with maximum likelihood score. 3)
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The video is aligned with each of the transcripts in the group
of the matched representative transcript and Rp∗

k with maxi-
mum likelihood score is chosen as the final video alignment.

Remark 3 Our method can be viewed as minimizing the
average of the unified objective function

γLreg+
1

N

∑
t,a

[
(−ypt,a + ynt,a)×

(
log(σt,a) + ρ log(ψt,a)

)]
,

(10)
over all videos with respect to the model parameters and
alignments. When training the network, we fix the label ma-
trices Y p and Y n using the given alignment, and optimize
the cost to learn the network parameters. For a learned
model, hence, with fixed network outputs, we find the align-
ment using the proposed algorithm.

4. Experiments
We evaluate the performance of our proposed TASL

method, against state-of-the-art weakly supervised action
segmentation algorithms, NNV [49] and CDFL [36], on
the Breakfast [28], Hollywood Extended [2] and CrossTask
[73] datasets. We consider both action segmentation, where
the transcripts of test videos are unknown, and action align-
ment, where the transcript of each test video is known.

Due to the alternating nature of learning from weak su-
pervision, the performance of existing methods, includ-
ing NNV and CDFL, changes for different initializations.
Therefore, current works have reported the results of their
best run [58]. For a fair comparison, we run all methods us-
ing their codes for 3 different initializations and report the
best run results as ‘Best’ performance in the tables. How-
ever, given that in the weakly-supervised setting, one cannot
in practice distinguish between good and bad initializations,
in addition, we report the averaged results over runs as the
‘Average’ performance in the tables.

Due to space limitations, complexity analysis, metrics
discussion, comparison with subspace clustering baselines
and more results are provided in supplementary materials.

4.1. Experimental Setup
Datasets. We perform experiments on three large datasets.
The Breakfast [28] dataset consists of 1,712 videos of peo-
ple performing 10 different cooking activities. It has 48
different actions, including a ‘background’ class to denote
non-action frames. On average a video has 6.9 actions
and 7.3% background frames. The Hollywood Extended[2]
dataset contains 937 videos of people performing actions
such as walk, sit and answer phone. Overall there are 16
actions and on average 2.5 actions per video, while 60.9%
of frames are background. The CrossTask [73] dataset con-
tains videos from 18 primary tasks. We use the 14 cooking-
related tasks, which include 2,552 videos and 80 different
actions. Each video has 14.4 actions on average, while
74.8% of frames correspond to background.

For Breakfast, we use the four released training/test
splits of the dataset. For Hollywood, we similarly parti-
tion the videos into four splits, each split with 10% videos
for testing and 90% for training. On these two datasets,
we report average results over splits and, similar to prior
works, use the 64-dimensional improved dense trajectory
features [62] released by [49]. For CrossTask, we use the
released training/test split, with 90% training and 10% test-
ing and downsample the released features to 64 dimensions
via PCA for consistency with respect to the other datasets.

Evaluation Metrics. For evaluation, we use 1) Mean-over-
frame (Mof), which is the percentage of frames for which
the predicted action labels are correct. 2) Intersection over
Union (IoU), defined as 1

A

∑
a |GTa ∩ Da|/|GTa ∪ Da|,

where GTa is the set of frames belonging to action a and
Da is the set of frames classified as action a. 3) IoU-bg,
which is the same as IoU but excluding the background
class. 4) Intersection over Detection (IoD), defined as
1
A

∑
a |GTa ∩ Da|/|Da| and 5) IoD-bg which is the same

as IoD but excluding the background class. Notice that IoU
and IoD account for class imbalance. These metrics are
consistent with prior works, yet differ from [9], which con-
siders having some overlap as true detection (see the supple-
mentary material for evaluation under the metrics of [9]).

Implementation Details. We consider: i) TASL(3), where
we set Qa in (2) to identity and da = 3, i.e., we directly use
the projection magnitude on each subspace to compute the
assignment scores; ii) TASL(10,3), where we learn Qa ∈
R3×10 in (2), i.e., learn a linear combination of projections
on each subspace to compute the assignment scores. We set
ρ = 0.35 for TASL(3), ρ = 0.2 for TASL(10,3) and set γ =
1 for both models. For inference, we perform hierarchical
segmentation with C = 20 on CrossTask, as it contains
2,026 training transcripts. On average each group has 100
transcripts. We do not use it for main results on Breakfast
and Hollywood for a fair comparison with prior works.

4.2. Experimental Results

Comparison of TASL with prior works. Table 1 and
2 show the performance of different methods for action
segmentation and alignment, respectively. For TASL, we
report the results of the best subspace setting on each
dataset, which is TASL(3) for Breakfast and CrossTask and
TASL(10, 3) for Hollywood (see the supplementary mate-
rials for results of both settings for all datasets). A larger
subspace dimension is more suitable for Hollywood as its
actions have more variations, such as fight person and drive
car, whereas actions in Breakfast and CrossTask have more
consistent patterns, such as stir mixture.

Notice that TASL achieves state-of-the-art performance
on all datasets for both action segmentation and alignment
tasks, demonstrating that USN effectively learns discrimi-
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Breakfast Mof IoU IoU-bg IoD IoD-bg
Best

NNV [49] 42.9 32.2 29.1 32.1 31.8
CDFL [36] 50.8 35.7 33.6 46.8 45.7
TASL(ours) 49.9 36.6 34.3 47.7 46.4

Average
NNV [49] 40.2 31.2 27.7 41.4 38.9
CDFL [36] 47.2 34.1 31.3 44.9 43.7
TASL(ours) 47.8 35.2 32.6 46.1 44.5
Hollywood Mof IoU IoU-bg IoD IoD-bg

Best
NNV [49] 44.4 23.2 13.1 34.5 17.8
CDFL [36] 40.7 22.2 15.1 36.1 19.0
TASL(ours) 46.6 25.2 15.3 37.7 21.3

Average
NNV [49] 43.1 22.2 11.8 33.7 16.2
CDFL [36] 39.9 21.6 14.1 35.3 18.0
TASL(ours) 43.7 23.4 13.6 35.7 18.3
CrossTask Mof IoU IoU-bg IoD IoD-bg

Best
NNV [49] 27.0 11.0 8.5 24.4 10.1
CDFL [36] 32.5 11.8 7.7 24.0 9.6
TASL(ours) 42.7 14.9 9.2 25.5 11.3

Average
NNV [49] 26.5 10.7 7.9 24.0 9.4
CDFL [36] 31.9 11.5 7.5 23.8 9.3
TASL(ours) 40.7 14.5 8.9 25.1 11.0

Table 1: Action Segmentation Performance on Three Datasets.
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Figure 3: Standard deviation of IoU on Breakfast actions for alignment.

native action subspaces and can adjust subspace dimensions
according to the complexity of a dataset. For the more dif-
ficult task of action segmentation, TASL exceeds CDFL by
1.1% and 1.2% at IoU and IoD respectively on Breakfast for
‘Average’. On the more challenging CrossTask dataset, our
method outperforms CDFL by 8.8% and 3% for MoF and
IoU. On Hollywood, TASL significantly improves CDFL
by 3.8% and 1.8% for MoF and IoU. However, it is still
possible to adjust the dimension of each action subspace in
our method for further improvement, as we show below.

Notice that on Breakfast, TASL obtains larger improve-
ments over the state of the art for ‘Average’ than ‘Best’.
This is due to the fact that the low-dimensional subspace
assumption for actions regularizes the training and makes
our model more robust to random initializations. Figure 3
shows the standard deviation of IoU over multiple initial-
izations on Breakfast for the alignment task, demonstrating
that TASL obtains the lowest variance on most actions.

Subspace dimension effect. Table 3 (left) shows the per-
formance of TASL can further improve by reducing the
subspace dimension for background. The first row shows

Breakfast Mof IoU IoU-bg IoD IoD-bg
Best

NNV [49] 59.5 47.0 47.7 61.7 65.0
CDFL [36] 67.6 50.5 51.3 65.1 69.5
TASL(ours) 65.8 51.0 51.9 65.5 69.1

Average
NNV [49] 55.9 45.2 45.6 60.1 63.4
CDFL [36] 62.1 47.8 48.4 63.1 67.1
TASL(ours) 64.1 49.9 50.7 64.7 68.2
Hollywood Mof IoU IoU-bg IoD IoD-bg

Best
NNV [49] 61.5 35.9 26.4 51.3 41.5
CDFL [36] 60.2 36.9 31.5 51.1 40.9
TASL(ours) 63.7 38.3 30.7 53.2 43.0

Average
NNV [49] 59.8 35.0 25.4 49.9 39.6
CDFL [36] 59.5 36.5 30.7 51.7 40.2
TASL(ours) 62.2 37.7 30.0 52.4 41.7
CrossTask Mof IoU IoU-bg IoD IoD-bg

Best
NNV [49] 34.6 15.3 11.4 27.5 14.0
CDFL [36] 46.7 17.2 11.5 28.0 14.5
TASL(ours) 57.1 19.1 11.7 28.9 15.8

Average
NNV [49] 34.3 15.1 11.3 27.1 13.4
CDFL [36] 43.4 17.0 11.3 27.6 14.3
TASL(ours) 54.6 18.8 11.5 28.2 15.2

Table 2: Action Alignment Performance on Three Datasets.

the previous results of TASL(10, 3) on Hollywood. We
change TASL(10, 3) by allowing the background subspace
dimension to be dbg ∈ {1, 3, 10} and Qbg be identity, while
keeping dimensions of other action subspaces intact. Since
background occupies 60.9% of frames in Hollywood and
contains large visual appearance variations, a larger dbg al-
lows us to capture its complex variations while preventing
overfitting (see supplementary materials for similar results
on Breakfast). In fact, with dbg=10, we further improve
IoD/IoD-bg of TASL than what we reported in Table 1 and
2. Table 3 (middle) shows the robustness of results for
changing subspace dimensions of all actions for action seg-
mentation on Breakfast. While TASL(3) has the best perfor-
mance, other dimensions achieve competitive performance
with less than 0.5% difference.

Inference with representative transcripts. Table 4 com-
pares the average inference time on a test video and the av-
erage accuracy on Breakfast using our hierarchical segmen-
tation. We set the number of groups C = 20 and, on aver-
age, each group contains about 10 transcripts. We compare
the result of hierarchically segmentation (‘Hier’) and the re-
sult of using only the representative transcripts (‘Rep’), i.e,
returning the segmentation via the best matched representa-
tive transcript. Notice that using ‘Rep’ (‘Hier’), the average
segmentation time for one video improves by a factor of 13
(4). Morevover, Both ‘Rep’ and ‘Hier’ have only less than
1% drop on IoU and IoD, showing our method can be ex-
tended to real-time application with minor accuracy loss.

Ablation studies. Table 3 (right) shows the effect of each
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Hollywood Ext. IoD IoD-bg
TASL(10,3) 35.7 18.3
dbg = 1 35.1 17.4
dbg = 3 35.5 18.0
dbg = 10 36.0 19.2

Breakfast IoU IoU-bg IoD IoD-bg
TASL(3) 35.2 32.6 46.1 44.5
TASL(5) 35.1 32.9 46.1 44.0

TASL(10,3) 35.1 32.7 46.0 44.1

σ ψ Y Lreg IoU IoU-bg IoD IoD-bg
× ◦ X X 11.0 3.1 22.0 7.8
X ◦ X X 15.5 11.0 24.8 23.0
X X × X 27.1 23.8 37.5 36.1
X X X × 3.5 0.5 7.1 5.8
X X X X 35.2 32.6 46.1 44.5

Table 3: Left: Effect of ‘Background’ subspace dimension for TASL(10, 3) on Hollywood. Middle: Effect of hierarchical segmentation for TASL(3) on
Breakfast. Right: Effect of different components of our method, TAS(3), on Breakfast. Results in all tables are for the segmentation task.
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Figure 4: Left:the largest and smallest principal angles between the subspaces learned by TASL(3) for a subset of Breakfast actions. Right: principal
angles between four pairs of action subspaces learned by TASL(3).

Breakfast Inf. Time IoU IoU-bg IoD IoD-bg
TASL(3) - Rep 0.1s 35.0 32.0 45.9 43.1
TASL(3) - Hier 0.3s 35.1 32.1 46.1 43.7

TASL(3) 1.3s 35.2 32.6 46.1 44.5

Table 4: Effect of hierarchical segmentation process for TASL(3) on
Breakfast for action segmentation.

TASL component. For the network loss in (4), we com-
pare excluding scores and training with only the optimal
alignment {l∗i } instead of soft alignments. For the Viterbi
cost in (5), we investigate excluding Lreg . We also test
ψt,a = exp(−‖ĥt,a − ht‖22), denoted with ◦ sign, to bet-
ter show the effect of our discriminative distance score in
(3). The first and second rows show that optimizing σt,a
is important to learn discriminative subspaces. Moreover,
simply minimizing the distance ‖ĥt,a − ht‖, instead of the
discriminative distance score in (3), will shrink features to-
wards zeros, thus, loses distinctive representations. On the
other hand, training TASL without positive and negative
soft alignments (third row) results in overfitting to poor ini-
tial segmentations. Finally, excluding Lreg leads to imbal-
anced segmentations and actions with inconsistent lengths,
significantly reducing the accuracy.

Learned Subspace Angles. Figure 4 (left) shows the
largest and smallest angles [23] between the learned sub-
spaces for a subset of Breakfast actions. Notice that the
largest angles are all nearly 90◦, meaning that subspaces
are mutually orthogonal in at least one dimension, which
guarantees features of actions are discriminative. Moreover,
the smallest angles show that our method captures semantic
similarities between actions (e.g., the group of similar ac-
tions on the upper left block are about ‘pouring’, and the
lower right ones are about ‘fruit’/‘orange’). Figure 4 (right)
shows subspace angles between four action pairs. Notice
that actions in (fry egg, fry pancake) or (pour water, pour
coffee) are similar, thus two angles are small. Also, (pour
water, pour sugar) are similar only in verb and have one
small angle. On the other hand, (pour water, fry pancake)
are different actions, thus all three angles are large (see sup-

plementary materials for more comprehensive results).

Quantitative Results. Figure 5 shows action segmentation
(top) and alignment (bottom) generated by NNV, CDFL and
TASL(3) against the ground-truth (GT) on two videos from
Breakfast. On both videos, TASL is more accurate at de-
tecting actions and their boundaries. Specifically, TASL ac-
curately classifies short (quick) actions, such as pour milk
in video 1 and add salt & pepper or pour oil in video 2.

background

stir_dough

take_plate

spoon_flour

pour_milk

pour_dough2pan

butter_pan

put_pancake2plate

fry_pancake

crack_egg

background

take_plate

put_egg2plate

stirfry_egg

pour_oil

add_saltnpepper

pour_egg2pan

stir_egg

crack_egg
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NNV

CDFL

TASL

GT

NNV

CDFL

TASL

Figure 5: Results of NNV, CDFL, TASL(3) against ground-truth, on two
Breakfast videos for action segmentation (top) and alignment (bottom).

5. Conclusions
We addressed learning to segment actions in videos us-

ing weakly-annotated data. We modeled actions by low-
dimensional subspaces using an ensemble of autoencoders
and proposed an efficient alignment algorithm by generat-
ing soft positive and negative alignments and introducing a
regularization to prevent unbalanced segmentations within
and across videos. We proposed an efficient method to sig-
nificantly reduce the inference time. By experiments on
Breakfast, Hollywood Extended and CrossTask datasets, we
showed our method improves the state of the art.
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