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Abstract

High-quality point clouds have practical significance for
point-based rendering, semantic understanding, and sur-
face reconstruction. Upsampling sparse, noisy and non-
uniform point clouds for a denser and more regular ap-
proximation of target objects is a desirable but challeng-
ing task. Most existing methods duplicate point features for
upsampling, constraining the upsampling scales at a fixed
rate. In this work, the arbitrary point clouds upsampling
rates are achieved via edge-vector based affine combina-
tions, and a novel design of Edge-Vector based Approxima-
tion for Flexible-scale Point clouds Upsampling (PU-EVA)
is proposed. The edge-vector based approximation encodes
neighboring connectivity via affine combinations based on
edge vectors, and restricts the approximation error within
a second-order term of Taylor’s Expansion. Moreover, the
EVA upsampling decouples the upsampling scales with net-
work architecture, achieving the arbitrary upsampling rates
in one-time training. Qualitative and quantitative evalua-
tions demonstrate that the proposed PU-EVA outperforms
the state-of-the-arts in terms of proximity-to-surface, distri-
bution uniformity, and geometric details preservation.

1. Introduction
With increasing capability of acquiring point clouds as

a direct approximation of an object or scene surface from
3D scanning sensors, typical applications processing raw
points are prevailing, such as point-based semantic under-
standing [3, 9, 24, 25, 27], point clouds rendering [4, 13]
and surface reconstruction [19, 29], etc. Hence, the qual-
ity of input points is critical for the digital designs. How-
ever, a couple of varying artifacts, including occlusion, light
∗Equal contributions as co-first author
†Corresponding author

Figure 1. Point cloud upsampling results of an elephant by us-
ing (a) PU-Net [34], (b) 3PU [32], (c) PU-GAN [16] and (d) our
PU-EVA. Note that our PU-EVA with edge-vector based approx-
imation generates points more uniform with fine-grained details,
compared to other state-of-the-arts.

reflection, surface materials, sensor resolutions and view-
ing angles, hinder high-quality practical acquisition of point
clouds. It is desirable to upsample raw point clouds for a
better description of an underlying surface, by converting
the sparse, noisy, and non-uniform points into the dense,
regular and uniform ones.

Intuitively, as a similar task in 2D computer vision, im-
age super-resolution [15, 18, 23, 26, 31] is supposedly to
lend well-developed techniques for point clouds upsam-
pling. Nevertheless, the intrinsic irregularity of point clouds
makes effective implementations for image interpolations
not applicable in 3D world. Based on this, different crite-
ria should also be considered for point clouds upsampling.
First, the upsampled points should lie on or be close to the
underlying surfaces of target objects. Next, the upsampled
results should distribute uniformly, instead of being clus-
tered together. Last, the generated points should preserve
geometric details of the target objects.

The previous works often upsample points by simply du-
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plicating point features and disentangling them in place via
a set of MLPs [16, 32, 34]. The strategy may lead the gen-
erated points cluster around original ones and loss geomet-
ric details of the target objects. To overcome the issues,
we are motivated to develop an upsampling strategy by for-
mulating it as a problem of surface approximation based
on edge-vector affine combinations. According to linear
approximation theorem, the new points are upsampled in
each small local neighborhood of the underlying surfaces.
Here, edges as a concept inspired by EdgeConv [28], con-
nect each center point to its neighboring points within the
local neighborhood. The edge vectors encode feature of
the oriented edges pointing from center points. The affine
combinations interpolate new points based on the edge vec-
tors via coefficients determined by a similarity matrix. Dif-
ferent from straightforward feature duplications for point
upsampling, the edge-vector based approximation interpo-
lates new points with endowing neighboring geometric in-
formation, and restricts the approximation error within a
second-order term. To implement the motivation, we pro-
pose a novel design of Edge-Vector based Approximation
for Flexible-scale Point clouds Upsampling (PU-EVA). The
proposed PU-EVA decouples the upsampling scales with
network architecture, making the upsampling rate flexible
in one-time end-to-end training. To sum up, the contribu-
tions of proposed PU-EVA is listed as below.

1. The proposed PU-EVA achieves arbitrary upsampling
scales via edge-vectors based affine combinations,
making the upsampling rate decouple with network ar-
chitectures;

2. The edge-vector based affine combinations upsample
new points by endowing geometric information of the
target objects, which benefits upsampling performance
in sharp regions and areas with fine-grained details;

3. The proposed upsampling unit restricts the approxi-
mation error in a second-order term within each lo-
cal neighborhood in light of linear approximation the-
orem.

2. Related work
2.1. Optimization-based upsampling methods

One of the earliest optimization-based methods gen-
erates a set of triangles for the sample points by using
three-dimensional Voronoi diagram and Delaunay triangu-
lation [2]. A parametric-free method of point resampling
and surface approximation is developed by using a lo-
cally optimal projection operator (LOP) in [17]. However,
the LOP-based methods require surface smoothness, giving
rise to performance struggling around sharp edges and cor-
ners. To this end, an edge-aware point clouds resampling

(EAR) method uses implicit models to preserve sharp fea-
tures, by resampling points away from edges and upsam-
pling them progressively to approach the edge singulari-
ties [11], whereas the performance of EAR heavily depends
on the given normal values and parameter tuning. For point
clouds completion and consolidation, a new representation
of associating surface points with inner points to reside
on the extracted meso-skeletons is proposed, and the op-
timization is conducted under global geometry constraints
from the meso-skeletons [30]. The method recovers regions
with holes successfully though, it is sensitive to noise and
outliers. Overall, the piece-wise smoothness assumption
of optimization-based upsampling methods makes the fine-
grained patterns missing, causing the performance of this
category of methods limited.

2.2. Learning-based upsampling methods

Inspired by data-driven approaches and their promis-
ing results, taking advantages of deep learning techniques
to model the complex geometries has been brought to at-
tention thus far. PU-Net [34], as the first learning-based
point upsampling network, learns geometry semantics of
point patches based on the framework of PointNet++ [20],
and expands the learned multi-scale features to upsample
a given point cloud. EC-Net [33] utilizes an edge-aware
technique to process point clouds and simultaneously re-
covers 3D point coordinates and point-to-edge distances by
a joint loss. 3PU [32] proposes a progressive upsampling
network using different number of neighbors in subsequent
upsampling units. PU-GAN [16] is a generative adversar-
ial network (GAN) [8] based point cloud upsampling net-
work. It focuses on boosting the quantitative performance
of upsampled point clouds by constructing an up-down-up
expansion unit, a self-attention unit as well as a compound
loss. PU-GCN [21] is built upon Graph Convolutional Net-
works (GCNs), and multiple designed upsampling modules
can be incorporated into other upsampling pipelines. One
of the main limitations of these learning-based upsampling
methods is that the upsampling rate is fixed during each
training, limiting their applications to the real-world up-
sampling tasks. Our proposed upsampling strategy decou-
ples the upsampling rate with network architecture, with an
edge-vector based approximation solution to generate new
points by encoding neighboring connectivity, achieving ar-
bitrary the upsampling rates in one-time training.

3. Theoretical formulation

Given an input sparse point cloud P ={
pi ∈ R3|(pxi , p

y
i , p

z
i )
}N
i=1

, where N is the number
of points. The objective is to generate more points
PR =

{
pr ∈ R3|(pxr , pyr , pzr)

}RN

r=1
approximating the
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Figure 2. Edge-vector based approximation for point clouds up-
sampling. (a) Ground truth points. (b) Input sparse point in vicin-
ity NK (pi), centered at red point pi and surrounded by k near-
est yellow neighbor points pi,k. (c) Points upsampling via edge-
vector based approximation. Arrows with different colors repre-
sent the edge-vectors with different significance to the green up-
sampled point pr .

underlying surface, where R is the upsampling rate1.
As show in Figure 2, consider a small vicinityNK(pi) ⊆

P centered at pi (red point) and enclosed by K nearest
neighbors pi,k (yellow points), we assume that NK(pi)
is local smoothness at point pi. According to the im-
plicit function theorem [10], the vicinity satisfies f (pi,k) =
0,∀pi,k ∈ NK(pi), where f(·) is a smooth implicit func-
tion. If the partial derivative ∂f

∂pz exists, the local surface
can be expressed explicitly by a height function F : R2 →
R : pz = F (px, py).

We start from constructing pxr and pyr of the upsampling
points in local region, which is,

(pxr , p
y
r) =

K∑
k=1

wk (pxi,k, p
y
i,k), (1)

with non-negative coefficients wk. Theoretically, given pxr
and pyr , pzr can be obtained via the height function F (·).
However, the analytical solution of a continuous function is
too computational expensive to acquire. The corresponding
numerical solution can be approximated via Taylor’s
expansion at point pi as, pz = F (pxi , p

y
i ) +∇F (pxi , p

y
i )
> ·

(px − pxi , py − p
y
i ) + O((px − pxi , py − p

y
i )

2
) =

Fa(px, py) + O((px − pxi , py − p
y
i )

2
). A linear

function Fa(·) can be defined as Fa(px, py) ,
F (pxi , p

y
i ) + ∇F (pxi , p

y
i )
> · (px − pxi , py − p

y
i ). By

omitting the second-order error term in Taylor’s expansion,
pzr on the surface can be approximated as,

pzr ≈ Fa(pxr , p
y
r) = Fa

(
K∑

k=1

wk (pxi,k, p
y
i,k)

)

=

K∑
k=1

wkFa(pxi,k, p
y
i,k) ≈

K∑
k=1

wkp
z
i,k.

(2)

1In our formulation, cursive letter P represents point clouds, and bold
letter p represents point coordinates.

To this end, PR is approximated via affine combinations in
each NK(pi) with avoiding gradient calculations:

pr =

K∑
k=1

wkpi,k, s.t.
K∑

k=1

wk = 1,∀wk > 0. (3)

The coefficients of the affine combination wk are obtained
by a similarity matrix S based onK neighboring points and
their R randomly selected anchors points,

wk = fsoftmax(g · h>), (4)

where fsoftmax denotes softmax function, g =
{φ1 (∆Fi,r) |g ∈ RN×R×C1} and h = {φ2 (∆Fi,k) |h ∈
RN×K×C1} are high dimensional features of edge vectors
mapped by convolutional operators φ1(·) and φ2(·) in
dimension channel C1. The edge vectors ∆Fi,r and ∆Fi,k

are features of oriented edges pointing to K neighboring
points and R anchor points, respectively. The similarity
matrix S consists of the significance of each neighboring
point to the upsampled point, which are showed by different
colors of arrows in Figure 2 (c). The weighted sum of
neighboring connectivities is then used to interpolate new
points, as shown in green point of Figure 2 (c).

4. Proposed method

Motivated by the theoretical formulation in Section 3, a
novel data-driven framework for point clouds upsampling
in an end-to-end fashion is proposed, dubbed edge-vector
based approximation for flexible-scale point clouds upsam-
pling (PU-EVA), which consists three elements: dense fea-
ture extraction, edge-vector based approximation upsam-
pling, and coordinate reconstruction, as shown in Figure 3.

4.1. Dense feature extraction

In feature extraction unit, the structure-aware features
V = {vi}Ni=1 of N × C are extracted from input sparse
point cloud P . A dense dynamic feature extraction method
in [32] is used, where EdgeConv [28] with skip-connections
are adopted as basic blocks. The local neighborhood of fea-
ture space is defined and assembled by KNN in terms of
feature similarity. A series of densely connected MLPs and
max-pool are then utilized to update the non-local order in-
variant point features dynamically. To leverage features ex-
tracted from different layers, skip-connections are applied
both within and between those dense blocks. Within a dense
block, the output of each MLP is passed to all subsequent
MLPs; and between the dense blocks, each block’s output
is fed as input to the following blocks. This mechanism of
skip-connections takes full advantage of information acorss
different levels, improving the learned geometric features
from multiple scales.
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Figure 3. Architecture of PU-EVA network, consisting of three components: feature extraction, points upsampling and coordinate re-
construction. It takes spare input (N points) and produces denser point clouds (RN points) by a carefully designed edge-vector based
approximation, where R is the upsampling rate. The Chamfer Distance (CD loss) and the uniform loss are adopt jointly in the end-to-end
training.

4.2. Edge-vector based approximation upsampling

The core of point clouds upsampling is the upsam-
pling unit, which normally is treated as feature expan-
sion. Different from the straightforward feature duplication,
the proposed Edge-Vector based Approximation (EVA) up-
smapling unit interpolates new points by encoding geomet-
ric information around local neighborhood, as shown in the
middle part Figure 3. Specifically, the edge vectors ∆Fi,k

based on K neighboring points are computed as,

∆Fi,k =(vi,k − vi)⊕ vi,k ⊕ vi

⊕ (pi,k − pi)⊕ pi,k ⊕ pi ⊕ di,k,
(5)

where pi and vi are point coordinates and point features ex-
tracted from dense feature extraction (see Section 4.1), and
di,k are Euclidean distances between center point and the
surrounding points. Similarly, the edge vectors ∆Fi,r are
obtained based on R anchor points. The R anchor points
are randomly selected from K neighboring points in each
iteration, the correlations between them are calculated as el-
ements of similarity matrix S. Followed by the 1×1 convo-
lutional operators φ and ψ, the edge vectors are mapped into
high dimensional feature space as h = {φ2 (∆Fi,k) |h ∈
RN×K×C1}, g = {φ1 (∆Fi,r) |g ∈ RN×R×C1}, and
l = {ψ (∆Fi,k) |l ∈ RN×K×C2}. By obtaining coeffi-
cients of similarity matrix S based on g and h, the affine
combinations around the neighborhood points NK (pi) are
implemented to determine new points. Furthermore, the lo-
cal feature l introduces displacement error of neighborhood
and tiles up to encourage new points describing sharp edges

or tiny structures of the latent target objects better. Since R
anchor points are randomly selected in each iteration, mak-
ing all possible combinations of neighboring connectivities
are captured during training, the generated points can be R
times of original one in inference stage. In this way, the
dimension of similarity matrix N ×R×K for affine com-
binations of feature expansion decouples with the network
architecture, the upsampling rate R can be set as an arbi-
trary positive integer smaller than K.

4.3. Coordinate reconstruction

The expanded features in (Sec. 4.2) are then recon-
structed to output dense point clouds PR, see bottom of
Figure 3. In our implementation, we adopt regression of
displacement error E by the learned neighborhood feature.
The concatenated feature Fcon from EVA upsampling unit
contains full neighborhood information. It is then fed as
input of coordinate reconstructor to estimate displacement
error E via a chain of MLPs. Here, E can be considered as
the second-order error term of Taylor’s expansion, whose
theoretical explanation can be found in section 3. The final
coordinates of output points are then computed by adding
the generated new points P ′R to the estimated error E, re-
sulting in the desired dense point clouds PR.

5. Experiments

In this section, several experiments are conducted to
compare our method with state-of-the-art point upsampling
methods quantitatively and qualitatively, and various as-

16211



Methods Sparse (256) input Medium (2,048) input Dense (4,096) input
(10−3) CD HD P2F CD HD P2F CD HD P2F
EAR [12] - - - 0.520 7.370 5.820 - - -
PU-Net [34] 2.461 15.370 13.099 0.720 8.940 6.840 0.247 2.802 12.033
3PU [32] 2.177 12.672 10.328 0.490 6.110 3.960 0.446 4.225 4.281
PU-GAN [16] 2.072 16.592 8.055 0.280 4.640 2.330 0.131 1.284 1.687
Ours 1.784 13.939 8.727 0.266 3.070 2.362 0.123 1.394 1.416

Table 1. Quantitative comparison of proximity-to-surface with various input point resolutions.

Figure 4. Comparison of point clouds upsampling (4×) and surface reconstruction with state-of-the-art methods (c-f) from inputs (a).

pects of our model are evaluated.

5.1. Experimental setup

We train all these upsampling methods based on a bench-
mark dataset mentioned in [16] for fair comparison, in
which 147 objects covering a rich variety of shapes are col-
lected. The same 120 objects are used as training data, and
the remaining are used for testing by following [16]. For

quantitative comparison, the referenced ground truth point
distributionQ of 8,192 points on the patch is sampled from
original meshes by Poisson disk sampling [6]. During the
training, the input spare point clouds Pi is selected ran-
domly from Q on-the-fly. In testing, 6× points are ran-
domly selected from ground truth first, then 4× points are
further sampled by Farthest Point Sampling (FPS) [7]. K
and R are set as 12 and 6 respectively to obtain the neigh-
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Methods Uniformity for different p
(10−3) 0.4% 0.6% 0.8% 1.0% 1.2%
EAR [12] 16.84 20.27 23.98 26.15 29.18
PU-Net [34] 29.74 31.33 33.86 36.94 40.43
3PU [32] 7.51 7.41 8.35 9.62 11.13
PU-GAN [16] 3.38 3.49 3.44 3.91 4.64
Ours 2.26 2.10 2.51 3.16 3.94

Table 2. Quantitative comparison of uniformity for different p.

borhood vicinity NK (pi) and the anchor points. Data aug-
mentation techniques are also applied to rotate, shift and
scale data randomly to avoid over-fitting. Throughout the
experiments, we train PU-EVA for 120 epochs with a mini
batch size 32 on GPU NVIDIA 2080Ti. All models con-
verge before the maximum epochs. The models from the
last epoch are used to evaluate the performance.

5.2. Loss function and evaluation metrics

5.2.1 Loss function

CD loss in [1] measures the similarity between up-
sampled point clouds Pr ⊆ R3 and the ground truth
Q ⊆ R3, which encourages the upsampled points lie on
or be closer to the underlying surface: LCD(Pr,Q) =
1
Pr

∑
p∈Pr

min
q∈Q
‖p− q‖22 + 1

Q
∑

q∈Q minp∈Pr

‖q − p‖22.

Uniform loss adopted in [16] are defined as
Uimbalance(Sj) =

(|Sj |−n̂)2
n̂ , and Uclutter(Sj) =∑|Sj |

k=1
(dj,k−d̂)2

d̂
, where {Sj |j = 1 . . .M} is acquired

by cropping with a ball query of radius rd around a seed
point on a patch of Pr, n̂ represents the expected number
of points in Sj , dj,k indicates the distance between each
point in Sj and its nearest neighbor pj,k and d̂ is the
expected point-to-neighbor distance. The uniform loss is
then formulated as Luni =

∑M
j=1 Uimbalance(Sj) ·Uclutter(Sj).

Overall, our PU-EVA network is trained end-to-end by
minimizing the joint loss function:

L(θ) = αLCD + βLuni + γ ‖θ‖2 . (6)

where θ denotes the parameters in our PU-EVA network,
α and β balance the CD loss and the uniform loss, and γ
indicates the multiplier of weight decay.

5.2.2 Evaluation metrics

Four evaluation metrics are employed for quantitative com-
parison of proximity-to-surface and distribution uniformity.
To measure the deviations between upsampled points and
ground truth, three commonly used metrics Chamfer dis-
tance (CD), Hausdorff distance (HD) [5, 22], and point-to-
surface distance (P2F) are adopted to compute the distances
between an upsampled point pr and its closet points from

Methods σ = 0 σ = 0.01 σ = 0.02
(10−3) CD HD CD HD CD HD
PU-GAN [16] 0.280 4.640 0.512 6.496 0.912 11.326
Ours 0.266 3.070 0.464 5.501 0.864 9.178

Table 3. Quantitative comparison of upsampling results with dif-
ferent additive Gaussian noise levels.

ground truth. To compare the uniformity, Luni is utilized
with α, β and γ set as 150, 10 and 1 empirically. Accord-
ing to rd =

√
p, p is set as 0.4%, 0.6%, 0.8%, 1.0%, and

1.2%, respectively. In the implementation, M is chosen as
1,000, and the actual mesh of testing model is used to find
Sj geodesically instead of cropping Sj by ball query. All
these metrics are compared over the whole point cloud, and
the smaller values indicate the better upsampling quality.

5.3. Quantitative and qualitative comparison

5.3.1 Quantitative results

Table 1 summarizes quantitative comparison of the pro-
posed PU-EVA and other state-of-the-arts, i.e., EAR [12],
PU-Net [32], 3PU [32] and PU-GAN [16], in terms of
proximity-to-surface. The comparison is based on ×4 up-
sampling rate, various input resolutions are evaluated, con-
taining sparse points (256), medium points (2,048), and
dense points (4,096), respectively. PU-EVA achieves the
best performance with the lowest deviations from surface
consistently according to all three metrics across the input
resolutions, which means points generated from our method
are closer to the ground truth. Besides, the upsampling rates
of PU-Net [32] and PU-GAN [16] are tangled with the net-
work architectures, with features expanded by replication
and rearrangement, neglecting the complex geometric in-
formation contained in the latent object surface. Although
3PU [32] shows a competitive capability to deal with flex-
ible upsampling rates, the training process is complicated
and more subsets are required for a higher upsampling rate,
which is still should be in powers of 2.

Table 2 reports quantitative comparison of points distri-
bution uniformity for different p. We compare with opti-
mization based EAR [12] and three deep learning based
methods, i.e., PU-Net [32], 3PU [32] and PU-GAN [16].
The uniformity of our results stays the lowest for all dif-
ferent p, indicating that PU-EVA obtains the best distribu-
tion uniformity compared to state-of-the-arts over varying
scales. Furthermore, the performance of EAR [12] heavily
depends on normal values and parameter tuning.

5.3.2 Qualitative results

The visual comparison of point clouds upsampling and sur-
face reconstruction (using [14]) is shown in Figure 4, in
which (a) is 2,048 random input points, (b) is the ground
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Figure 5. Point clouds upsampling of PU-EVA with various upsampling rate.

Figure 6. Qualitative comparison of upsampling results with dif-
ferent additive Gaussian noise levels: 0, 0.01 and 0.02 from left to
right, respectively.

truth points uniformly-sampled from the original meshes
of testing models, (c-f) are state-of-the-art methods PU-
Net [32], 3PU [32] and PU-GAN [16], and (d) is our PU-
EVA. The expanded features of PU-Net [32] are too simi-

lar to the inputs, which affects the upsampling quality, as
shown in Figure 4 (c). Comparing with (c-e), our PU-EVA
produces more uniform point clouds with less noise. Ac-
cording to the blown-up views of upsampled results, PU-
EVA renders fine-grained details better, e.g. ox’s ear (top)
and statue’s leg (bottom). The reconstructed surfaces are
smoother with less wrinkles or bulges while maintain the
complex structures of the original shape. To sum up, the
proposed PU-EVA generates points with less noise and con-
taining more details.

Figure 5 illustrates the upsampling results of the pro-
posed PU-EVA with various upsampling rate, in which (a)
is 2,048 random input points, (b) is 8,192 Poisson-sampled
ground truth points, (c-f) are upsampling results in four
rates, R=2, R=6, R=7 and R=8. Note that all the upsam-
pling results are obtained in one-time training with R=4,
and the upsampling results of rates bigger than the training
rate still create point clouds fidelity to ground truth. Our
PU-EVA interpolates new points based on edge-vectors to
decouple the network architecture with feature expansion,
making it flexible to achieve arbitrary upsampling rates.
More upsampling results of real-scanned data and some
failure cases are given in the supplementary material.

5.4. Robustness test

Robustness against varying levels of input noise. We
evaluate the robustness of proposed PU-EVA by compar-
ing with the state-of-the-art method, PU-GAN [16], against
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Figure 7. Upsampling results with varying sizes of input.

varying levels of input noise. Figure 6 and Table 3 demon-
strate the comparison of upsampling results with additive
Gaussian noises, the different additive noise levels of input
point clouds are σ = 0, 0.01, 0.02, from left to right, re-
spectively. Compared with PU-GAN [16] upsampled point
clouds, the proposed PU-EVA generates points approximat-
ing surfaces better, especially in the cases with heavier noise
contamination. Furthermore, with the additive Gaussian
noise levels increasing, the proposed PU-EVA shows a sta-
ble performance, indicating robustness of the upsampling
method. Robustness against varying sizes of input. Fig-
ure 7 illustrates the upsampling results with respect to vary-
ing sizes of the input point clouds. We sample four sets of
test samples, which are 4,096, 2,048, 1,024, and 512 points,
respectively. The bottom row of Figure 7 shows the corre-
sponding ×4 upsampled outputs. We can witness that even
for the sparsest input points in the rightmost column, our
PU-EVA acquires competitive upsampling results.

5.5. Ablation study

To justify the approximation accuracy of the second-
order error term, the performances of PU-EVA with and
without it are compared. The comparison is based on ×4
upsampling rate, various input resolutions are evaluated,
containing sparse points (256), medium points (2,048), and
dense points (4,096), respectively. The quantitative results
are shown in Table 4. The upsampling results of PU-EVA
with the second-order error term declines both CD and HD
distances, indicating its ability to drive upsampling points
approaching the underlying surface.

To explore the efficacy of proposed EVA upsampling
unit, we conduct ablation study to compare with different
upsampling units. Specifically, direct point feature dupli-
cation upsampling, and the best upsampling unit in PU-
GCN [21], named NodeShuffle, are adopted for compari-
son. The direct point feature duplication follows the net-

2nd-order Error Term Sparse (256) Medium (2,048) Dense (4,096)
(10−3) CD HD CD HD CD HD
without 2.318 18.713 0.312 4.622 0.157 5.535
with 1.784 13.939 0.266 3.070 0.123 1.394

Table 4. Quantitative comparison for PU-EVA with and without
the second-order error term from sparse to dense input point reso-
lutions.

Upsampling Unit Sparse (256) input Medium (2,048) input Dense (4,096) input
(10−3) CD HD CD HD CD HD
Feature Duplication 2.94 24.67 0.38 3.99 0.13 4.47
NodeShuffle [21] 1.86 15.56 0.27 4.66 0.12 3.11
EVA Upsmapling 1.78 13.93 0.26 3.07 0.12 1.39

Table 5. Quantitative comparison of different upsampling units
from sparse to dense input point resolutions.

work architecture of Feature Expansion module in PU-
Net [34], while keeps rest of network the same as PU-EVA.
Table 5 summarizes quantitative comparison in terms of sur-
face deviations. According to all three metrics, the proposed
EVA upsmapling unit achieves the best performance with
the lowest deviation from surface consistently across the in-
put point resolutions, convincing our upsampling unit en-
courages points to approximate the underlying surface bet-
ter. The qualitative comparison is given in the supplemen-
tary material.

6. Conclusion

This work is motivated to approximate underlying sur-
face for point clouds upsampling. To this end, we first an-
alyze the linear approximation theorem by Taylor’s expan-
sion, and identify edge-vector based approximation as an
important controlling factor that determines the quality of
upsampled results. Based on the analysis, we have proposed
a novel network design of PU-EVA. Qualitative and quanti-
tative evaluations demonstrate that the proposed PU-EVA
outperforms the state-of-the-arts by generating smoother
and more uniform dense point clouds maintaining more
fine-grained details. In future research, we are interested
in acquiring better upsampling results adaptive to the un-
derlying geometric properties.
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