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Abstract

The growing use of deep learning for a wide range of
data problems has highlighted the need to understand and
diagnose these models appropriately, making deep learning
interpretation techniques an essential tool for data analysts.
The numerous model interpretation methods proposed in re-
cent years are generally based on heuristics, with little or no
theoretical guarantees. Here, we present a statistical frame-
work for saliency estimation for black-box computer vision
models. Our proposed model-agnostic estimation procedure,
which is statistically consistent and capable of passing sanity
checks, has polynomial-time computational efficiency since
it only requires solving a linear program. An upper bound is
established on the number of model evaluations needed to
recover regions of importance with high probability through
our theoretical analysis. Furthermore, a new perturbation
scheme is presented for the estimation of local gradients that
is more efficient than commonly used random perturbation
schemes. The validity and excellence of our new method are
demonstrated experimentally via sensitivity analyses.

1. Introduction
Although deep learning models have achieved exceptional

predictive performance for many tasks, these complex and
often intractable models can be difficult to interpret and
understand. This is a major barrier hindering their wider
adoption, especially in domains such as medicine where
models need to be qualitatively understood and/or verified
for robustness.

In order to address these issues, a number of interpretation
approaches have been proposed, many of which are based
on visualizations that either quantify the effect of particular
neurons or features, or create new images that maximize the
target score for specific classes [13, 26, 33]. One popular ap-
proach is to build saliency maps by attributing the gradients
of the neural network to the input image through various
procedures, or by finding perturbations that significantly
change the output[2, 4, 12, 15, 19, 24, 25, 28, 29, 30, 34].
Another option is to treat the deep learner as a black-box.

Examples in this domain include Baehrens, et al. [5] who
use a Parzen window classifier to approximate the target
classifier locally, and Riberio et al. [23], who introduce the
LIME procedure that relies on a sparse linear model that
is fit to model predictions of perturbed inputs. Lundberg
and Lee [17] have proposed SHapley Additive exPlanation
(SHAP), which combines the Shapley value from game the-
ory with additive feature attribution methods, highlighting
the connections between the SHAP procedure and existing
methods such as LRP, LIME and DeepLIFT. Similarly, Chen
et al. [10] have built L- and C-Shapley procedures that re-
liably approximate the Shapley values in linear time with
respect to the number of features.

The majority of the methods listed above are heuristics
constructed according to certain desirable qualities. How-
ever, in none of these methods, is it clear what the main
estimand is, whether it can be consistently estimated or if
(and how) the estimand can be computed more efficiently.
In fact, according to recent research by Adebayo et al. [1],
most methods with good visual inspection lack sensitivity
to the model and the data generating process, a theoretical
explanation for why guided back-propagation and deconvo-
lutional methods perform image recovery is provided by Nie
et al. [20]. These findings remind us of the importance of
constructing saliency estimation methods that are founded on
solid theoretical guarantees. This motivation is not straight-
forward; recent work by Burns et al. [7] propose a saliency
estimation technique that includes theoretical guarantees
based on the false discovery rate, i.e. FDR control. Al-
though their procedure is very promising from a statistical
perspective and theoretically valid under a very general set of
assumptions, it requires human input and incurs a significant
computational load as it uses a generative model to fill in
certain regions of the target image.

In this work, we propose a statistically valid technique
for model-agnostic saliency estimation, and prove its con-
sistency under reasonable assumptions. Furthermore, our
method passes the sanity checks given by Adebayo et al. [1].
Our analysis provides valuable insights into possible ways
to improve the accuracy and reliability of our approach. Our
main contributions are as follows:
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• We introduce a new and innovative saliency estimation
framework for CNNs and propose a new local explana-
tion method based on input perturbation. Our procedure
only requires solving a linear program, and hence the
estimates can be computed very efficiently. Further-
more, the optimization can be recast as a “parametric
simplex” problem [31], which allows the computation
of the full solution path in an expedient manner.

• We establish the conditions under which the significant
pixels in the input can be identified with high probabil-
ity and present finite-sample convergence rates that can
be used to determine the number of necessary model
evaluations.

• We determine that the noise distribution for the per-
turbation has a substantial effect on the convergence
rate and propose a new perturbation scheme that uses a
highly correlated Gaussian, rather than the widely used
independent Gaussian distribution.

We present our notation in the next Section. We define
the saliency parameter of interest (i.e. the estimand), the
linearly estimated gradient (LEG), and introduce our new
statistical framework in Section 3. In Section 4, we propose
a regularized estimation procedure for LEG that penalizes
the anisotropic total-variation. Our theoretical results are
provided in Section 5 and the results of our numerical com-
parisons are shown in Section 6.

2. Notation
For a matrix B, we use vec(B) and vec−1(B) to denote

its vectorization and inverse vectorization, respectively. The
transpose of a matrix B is given by BT and we use B+ for
its pseudo-inverse . The largest and smallest eigenvalue of a
symmetric matrix B are denoted by λmax(B) and λmin(B).
For a set S, we use SC to denote its complement. For a
vector u ∈ Rp and a set S ⊆ [1, . . . , p], we use uS to refer
to its components indexed by elements in S. The q-norm
for a vector u is given by ∥u∥q and we use ∥B∥Fr for the
Frobenius norm of a matrix B. The vector of size p whose
values are all equal to 1 is denoted by 1p. Similarly, we use
1p1×p2 and 0p1×p2 to denote a p1 × p2 matrix whose entries
are equal to 1 and 0, respectively. Finally, for a continuous
distribution F , we use F + x0 to denote a distribution that is
mean-shifted by x0, i.e. F (z) = G(z − x0) for all z, where
G = F + x0.

3. Linearly Estimated Gradient
In gradient-based saliency approaches, the main goal is

to recover the gradient of the deep learner with respect to
the input. More specifically, let f(x) be a deep learner,
f : X → [0, 1], where X is the input space. For instance,

for the MNIST dataset that contains 28 by 28 sized images
of hand-written digits from 0 to 9, X = [0, 255]28×28. We
assume that the model output is the probability for a specific
class, e.g., f(x) = Pmodel(x is a 9). However, this can be
modified to check for comparative quantities by setting the
output f(x) equal the difference of two class probabilities,
that is by writing

f(x) := f9(x)−f7(x) = Pmodel(x is a 9)−Pmodel(x is a 7).
(1)

Then, local saliency is defined as the derivative of f(·) with
respect to the input, evaluated at a point of interest x0 ∈ X ,
i.e. ∇xf(x)|x=x0

. However, in practice, local saliency
is often too noisy and one instead uses an average of the
gradient around x0 [25, 29].

In order to study the saliency procedure from a statis-
tical perspective, we start by defining an estimand, whose
definition is motivated by the LIME procedure [23].

Definition 1 (LEG). For a continuous distribution F , an
initial point x0 ∈ X with X ⊂ Rp1×p2 , and a function
f : X → [−1, 1], the linearly estimated gradient (LEG),
γ(f, x0, F ) ∈ Rp1×p2 is given by

γ(f, x0, F ) = argmin
g

Ex∼F+x0

[(
f(x)− f(x0)

− vec(g)T vec(x0 − x)
)2]

. (2)

LEG is based on a first-order Taylor series expansion
of the function f(x) around the point of interest x0. The
estimand is a proxy for the local gradient, and is the coeffi-
cient that gives the best linear approximation, in terms of the
squared error, among all possible choices. The distribution
F determines the range of points the analyst wants to con-
sider. We visually demonstrate LEG on two toy examples
with a single pixel (i.e. p1 = p2 = 1) in Figure 1. When the
perturbation is taken to be a Gaussian distribution with inde-
pendent entries, LEG behaves similar to SmoothGrad [29]
which uses the average saliency score of multiple images
that are generated by adding random perturbations to the
initial image. LEG does not rely on saliency scores, which
require full knowledge about the underlying deep learner,
and instead finds the best linear approximation evaluated
for possible perturbations. Thus, if the underlying function,
f(x), is linear over the neighborhood around x0, then the
SmoothGrad estimand and LEG would be exactly the same.
Yeh et al. [32] proposed a generalized metric called infidelity
to unify existing explanations including SmoothGrad. In this
respective, LEG defines a valid and novel infidelity measure
for black box models.

Furthermore, LEG belongs to the class of model interpre-
tation techniques that rely on local smoothing. Interpretation
methods in this class are known to be more reliable against
adversarial manipulations [11], more faithful to the model
[32], tend to pass sanity checks [1], and perform better on
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(a) Gradient vs. LEG

  

(b) Effect of F on LEG

Figure 1: Visual demonstrations of LEG for a single input.
LEG seeks to find a local linear approximation of f(x) in a
neighborhood around x0; choice of the distribution, F , de-
termines the size of the neighborhood. In Figure 1a, we com-
pare LEG to the gradient, which is very localized. If f(x) is
a highly varying function, then the gradient is too noisy, and
the saliency score provided by LEG is more meaningful. In
Figure 1b, we show LEG for two different distributions. For
the distribution with a larger variance, LEG evaluates the
input’s effect on the output for a larger neighborhood around
x0.

benchmarks that measure the accuracy change after removal
of relevant pixels [16].

We note that the variance of F has a large effect on
LEG. As F converges to a point mass at 0, if f(x) is twice
continuously differentiable in the neighborhood of x0, then
γ → ∇xf(x). On the other hand, if F has high variance,
then samples from F + x0 are substantially different from
x0 and LEG might no longer be useful for interpreting the
model at x0. However, with some assumption on the distri-
bution F , LEG has an analytical solution as the next lemma
shows.

Lemma 1. Let Z be the random variable with a centered
distribution F , i.e., Z ∼ F and E[Z] = 0p1×p2 . Assume
that covariance of vec(Z) exists, and is positive-definite. Let
Σ = Cov(vec(Z)), then

γ(f,x0, F ) =

vec−1
(
Σ−1Ez∼F [(f(x0 + z)− f(x0)) vec(z)]

)
. (3)

Proof of the lemma is provided in the Appendix.
Lemma 1 shows that the LEG can be written as an affine

transformation of a high dimensional integral where the
integrand is

∫
(f(x0 + z)− f(x0)) zdF (z). This analysis

also suggests an empirical estimate for the LEG, by replacing
the expectation with the empirical mean. The empirical mean
can be obtained by sampling x from F+x0, calculating f(x),
and then applying Lemma 1. More formally, let x1, . . . , xn

be random samples from F + x0, and let y1, . . . , yn be the
function evaluations with yi = f(xi). Further, let ỹi =
f(xi)− f(x0) and zi = xi − x0. Then, the empirical LEG
estimate is given by

γ̂(f, x0, F ) = vec−1

(
Σ−1

[
1

n

n∑
i=1

vec (ỹizi)

])
. (4)

As the function f(x) is bounded and F has a positive-
definite covariance matrix, then it follows that as n → ∞,
γ̂ → γ. However, classical linear model theory [22] shows
that rate of the convergence is very slow, on the order of

1
λmin(Σ)

√
p1p2/n, where p1 and p2 are the dimensions of X .

This severely limits the practicality of the empirical approach.
In the next section, we propose to use regularization in order
to obtain faster convergence rate.

4. Efficient Estimation of LEG
For interpretation of image classifiers, one expects that

the saliency scores are located at a certain region, i.e., a con-
tiguous body or a union of such bodies. This idea has lead to
various procedures that estimate saliency scores by penaliz-
ing the local differences of the solution, often utilizing some
form of the total variation (TV) penalty [15]. The approach
is very sensible from a practical point of view: Firstly, it
produces estimates that are easy to interpret as the impor-
tant regions can be easily identified; secondly, penalization
significantly shrinks the variance of the estimate and helps
produce reliable solutions with fewer model evaluations.

In light of the above, we propose to estimate the LEG
coefficient with an anisotropic L1 TV penalty.

Definition 2 (LEG-TV). For a hyperparameter, L ≥ 0, the
TV-penalized LEG estimate is given as γ̃ = vec−1(g) where
g is the solution of the following linear program

min
g

∥Dg∥1

s.t.

∥∥∥∥∥D+T

(
1

n

n∑
i=1

vec (ỹizi)− Σg

)∥∥∥∥∥
∞

≤ L, (5)

where D ∈ R(2p1p2−p1−p2)×(p1p2) is the differencing matrix
with Di,j = 1, Di,k = −1 if the jth and the kth component
of g are connected on the two dimensional grid.

Our method is based on the “high confidence set” ap-
proach which has been successful in numerous applications
in high dimensional statistics [8, 9, 14]. The set of g that sat-
isfy the constraint in the formulation is our high confidence
set; if L is chosen properly, this set contains the true LEG
coefficient, γ(f, x0, F ), with high probability1. This setup
ensures that the distance between γ and γ̃ is small. When
combined with the TV penalty in the objective function, the
procedure seeks to find a solution that both belongs to the
confidence set and has sparse differences on the grid. Thus,

1See Lemma 2 in the Appendix.
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the estimator is extremely effective at recovering γ that has
small total variation. In Figure 2, we show two resulting esti-
mates of the method with 10k model evaluations per channel
for a VGG-19 [27] network and LEG-TV estimates do give
us a sparser explanation and better visualization2. For the
distribution F , we use a multivariate Gaussian distribution
with the proposed perturbation scheme in Section 5.2. We
compute γ̃ separately for each channel, and then sum the
absolute values of the different channels to obtain the final
saliency score.

The proposed method enjoys low computational complex-
ity. The problem in equation 5 is a linear program and can
be solved in polynomial time, for instance by using a primal-
dual interior-point method for which the time complexity is
O
(
(p1p2)

3.5
)

[21]. However, in practice, solutions can be
obtained much faster using simplex solvers. In our imple-
mentations, we use MOSEK, a commercial grade simplex
solver by ApS [3], and are able to obtain a solution in less
than 3 seconds on a standard 8-core PC for a problem of
size p1 = p2 = 28. Additionally, the alternative formulation
(provided in the Appendix) can be solved using paramet-
ric simplex approaches which yield the whole solution path
in L [31]. In practice, this approach can save substantial
computational costs, when L needs to be tuned for best
performance according to specific criteria.

We note that the procedure does not require any knowl-
edge about the underlying neural network and is com-
pletely model-agnostic. In fact, in applications where se-
curity or privacy could be a concern and returning multiple
prediction values needs to be avoided, the term given by∑n

i=1 vec (ỹizi) can be computed on the side and supplied
alongside the prediction.

5. Theoretical Analysis and Implementation
In this section, we analyze the procedure from a theoret-

ical perspective and derive finite sample convergence rates
of the proposed LEG-TV estimator. Our results provides
an upper bound on how the error of the estimator changes
with respect to the complexity of the true parameter, given
by its sparsity in the TV-norm, and the number of input
perturbations. These results hold under specific conditions,
whose implications we study in Section 5.2. As we noted
earlier, this insight is used to derive the ideal perturbation
distribution under these conditions.

5.1. Consistency

We first present our condition, which has a major role in
the convergence rate of our estimator. The condition is akin
to the restricted eigenvalue condition [6] with adjustments
specific to our problem.

2Please see https://github.com/Paradise1008/LEG for
more examples, our source code, and a tutorial on how to create your
own LEG estimator

(a) Origin (b) LEG (c) LEG-TV

Figure 2: LEG estimates for ImageNet images classified by
VGG-19. Both approaches select pixels that are critical for
the label, such as nose and ear of golden retriever, bottom of
cone and scoop of ice-cream. LEG-TV, compared to LEG,
provides a more human readable estimate of local saliency.

Assumption 1. Let D+ be the pseudo-inverse of the dif-
ferencing matrix D, and denote the elements of singular
value decomposition of D as U,Θ, V where D = UΘV T .
Furthermore, denote the last p1p2 − p1 − p2 columns of U
that correspond to zero singular values as U2. We define
the differencing error as ∆ = D(γ̂ − γ⋆) and ∆S as the
elements of ∆ in set S. For the covariance matrix Σ, and
any set S with size s, it holds that κ > 0, where

κ = inf
∥∆S∥1 ≥ ∥∆SC∥1

UT
2 ∆ = 0

∆TD+T
ΣD+∆

∥∆∥22
. (6)

The following theorem is our main result.

Theorem 1. Let γ∗ = γ(f, x0, F ) and Σ = Cov (vec(Z)),
where Z ∼ F and E[Z] = 0p1×p2

. Let γ̃ be the LEG-TV es-
timate with L =

√
2∥D+∥1 log (p1p2/ϵ) /n. If Assumption

1 holds for the covariance matrix Σ with constant κ, then
with probability 1− ϵ,

∥∥γ∗ − γ̃ −m1p1
1Tp2

∥∥2
Fr
≤ 1

κ

Cp

Cd

√
s log p1p2/ϵ

n
,

where m ∈ R is a mean shift parameter, s is the number of
non-zero elements in Dγ∗, Cp = 4

√
2∥D+∥1 ∝ p

1/4
1 p

1/4
2

and Cd is the minimal positive singular value of D.

The proof uses the “high confidence set” approach of Fan
[14]. In the proof, we first establish that, for an appropriately
chosen value of L, γ∗ = γ(f, x0, F ) satisfies the constraint
in equation 5 with high probability. Then, we make use
of TV sparsity of γ̃ and γ∗ to argue that the two quantities
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cannot be too far away from each other, since both are in the
constraint set. The full proof is provided in the Appendix.

Our theorem has two major implications:

1. We can recover the true parameter as the number of
model evaluations increase. That is, TV penalized LEG
is a statistically consistent model interpretation scheme.
Furthermore, our result states that, ignoring the log
terms, one needs n = O(s (p1p2)

1/2
) many model

evaluations to reliably recover γ∗.

2. Our bound depends on the constant κ, which further
depends on the choice of Σ for the perturbation scheme.
It is possible to obtain faster rates of convergence with
a carefully tuned choice of Σ. As a side note, since γ∗

also depends on Σ, the estimand changes when Σ is
adjusted. In other words, our result states that certain
estimands require fewer samples.

We note that our procedure identifies the LEG coefficient
up to a mean shift parameter, m, which is the average of the
true LEG coefficient γ. In practice, the average can be con-
sistently estimated (for instance, using the empirical version
of LEG in equation 4), and the mean can be subtracted to
yield consistent estimates for γ. However, in our numerical
studies, we see that this mean shift is almost non-existent:
LEG-TV yields solutions that has no mean differences with
the LEG coefficient, which we define as the solution of the
empirical version as n → ∞.

5.2. Perturbation Scheme

In our main result, we established that the convergence
of our estimator depends on the quantity κ which is related
to the spectral properties of Σ. In this subsection we explore
the ramifications of the assumption.

Our main result in Theorem 1 states that the rate of conver-
gence to the true LEG coefficient is inversely proportional
to the term κ. Thus, perturbation schemes for which the
restricted eigenvalues are large, as defined in Definition 1,
yield saliency maps that require less samples to estimate the
LEG. We note that most of the saliency estimation proce-
dures that make use of perturbations take these perturbations
to be independent, which results in a covariance matrix that
is equal to the identity matrix, Σ = σ2I(p1p2)×(p1p2) for
some σ2 > 0. For LEG estimation without penalization, i.e.,
using equation 2, this choice is also optimal as the conver-
gence rate for the empirical estimate depends on 1/λmin(Σ).
However, when one seeks to find an estimate for which the
solution is sparse in the TV norm, this choice is no longer
ideal as demonstrated by our theorem.

In order to choose the covariance matrix of our pertur-
bation scheme in a manner that maximizes the bound in
equation 6, one also needs some prior information about the
size of S, s. As that requires estimation of s, and a complex

Figure 3: Selected eigenvectors of the proposed Σ. The
eigenvectors, which contain the principal directions of the
distribution, resemble the basis for 2D Haar wavelets[18].

optimization procedure, we instead propose a heuristic: we
choose Σ so that its eigenvectors match D+∆ for vectors ∆
with unit-norm and UT

2 ∆ = 0. This choice fixes p1p2 − 1
many of the eigenvectors of Σ. For the last eigenvector, we
use the one vector as it is orthogonal to the rest of the eigen-
vectors. Our proposed perturbation scheme is as follows:

1. Compute the singular value decomposition of D, and
let D = UΘV T .

2. Let Σ = σ2
(
VΘ2V T + 1

p1p2
1p1p21

T
p1p2

)
for some

choice of σ2 > 0.

As D+ = VΘ+UT , with the proposed Σ, the numerator
in equation 6 reduces to σ2∆T∆ and hence κ = σ2. With-
out any additional assumptions on S, this is the maximal
value for κ. We plot some of the eigenvectors for our pro-
posed Σ with p1 = p2 = 28 in Figure 3. These eigenvectors
are the principal directions of the perturbation distribution
F , and the samples drawn from F contain a combination
of these directions. We see that samples drawn from this
distribution will have sharp contrasts at certain locations.
This result is very intuitive: The perturbation scheme is cre-
ated for a specific problem where boundaries for objects are
assumed to exist, and large jumps in the magnitude of the
distribution help our method recover these boundaries effi-
ciently. The demonstration of the perturbation scheme using
Gaussian noise and its visual comparison with independent
perturbation are provided in the Appendix.

5.3. Implementation Details

LEG-TV procedure has two tuning parameters: (i) F ,
which determines the structure of the perturbation; and (ii)
L, which controls the sparsity of the chosen interpretation.

Regarding F , we propose to use a multivariate Gaussian
distribution as it is easy to sample from. For Σ, we propose a
theoretically driven heuristic for determining the correlation
structure of Σ in Section 5.2. However, the choice of the
magnitude of Σ, i.e. σ2, should be chosen discreetly. If
this quantity is chosen too low, then the added perturbations
are small in magnitude, and the predictions of the neural
network do not change, resulting in a LEG near zero. On
the other hand, with a very large value of σ2, the sample
images are dominated by extreme pixel intensities which
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looks like random noise without retaining any information of
the original image. Thus it can not be considered belonging
to some small neighborhood of the target image. In our
implementations, we find that setting σ to be around 0.02 for
results in reasonable solutions respectively. We determine
this range by computing perturbations of various sizes on
numerous images for both experiments. The provided range
is found to create perturbations large enough to change the
prediction probabilities but small enough to avoid major
changes in the image.

For the choice of L, we propose two solutions: The first
is the theoretically suggested quantity given in Theorem 1,
although this often results in estimates that are too conser-
vative. Our second method is a heuristic based on some of
the quantities in the optimization problem and we use this
for our demonstrations. We set L = KLLmax where K is
a constant between 0 and 1 and Lmax is the smallest value
of L for which the solution in equation 5 would result with
g = 0; i.e. Lmax = n−1∥D+T (

∑n
i=1 vec(ỹizi)) ∥. We use

KL = 0.1 or KL = 0.3 in our implementations. We note
that one can obtain solutions for all L by using a parametric
simplex solver [31], or by starting with a large initial L, and
then using the solution of the program as a warm-start for
a smaller choice of L. Both approaches return the solution
path for all L, and might be more desirable in practice than
relying on heuristics.

6. Experiments
In this section, we compare our procedure with other in-

terpretability techniques. We first present the results of a
sensitivity analysis in which the most salient regions accord-
ing to each interpretation method are masked, and the change
in the masked images’ classification score is recorded. In
this analysis, more effective interpretability techniques are
expected to better identify the important regions, and thus
images masked according to better approaches should have
lower scores. In the second subsection, we run a sanity check,
in which we perturb the parameters of the deep learner in
a cascading manner starting from the last layer. For this
exercise, we follow the setup proposed by Adebayo et al. [1],
and find that our technique passes the sanity checks - i.e.,
it fails to provide interpretations for neural networks with
randomly chosen parameters.

6.1. Setup

In our analyses, we utilize a pre-trained VGG-19 image
classifier trained on ImageNet as the deep learner. We com-
pare our approach with three other popular model agnostic
methods, C-Shapley, KernelSHAP, and LIME. In addition to
the three techniques, we also provide results for GradCAM
as a reference point for a method that requires knowledge
about the underlying model. All model agnostic methods
are based on 6,000 model evaluations. We take 8x8 patches

as the single features for LEG, LEG-TV and C-Shapley,
following Yeh et al. [32]’s argument that this setting can
improve the computational complexity and capture spatial
relationship in images. The other two techniques, LIME and
KernelSHAP, treat segmentation as “superpixels”, and hence
cannot utilize large patches.

6.2. Sensitivity analysis

Evaluating explanations is an inescapably subjective task.
Sensitivity analyses seek to address this issue by providing a
quantitative framework for comparing evaluations and are
widely used in contrasting different interpretation techniques.
In the sensitivity analysis, first, various interpretation models
are used to identify regions of high saliency, and then the
identified regions are masked in order of decreasing impor-
tance by changing the pixels. Finally, the difference in the
score due to the masking is computed via the log-odds which
is given as:

LOR = log

(
Pc(x

′)/(1− Pc(x
′))

Pc(x0)/(1− Pc(x0)

)
,

where Pc(x
′) is the prediction probability of the masked

image x′ for the class C, and C is the top prediction class of
the model for the original image x0. The previous procedure
is repeated by varying the amount of masked regions and
finally the change in the log-odds is plotted with respect to
the size of the masked region. Methods that can accurately
identify salient regions will have a faster reduction in log-
odds, and hence an interpretation technique can be said to
over-perform one another if the former achieves a faster
reduction in log-odds than the latter.

We note that, although the presented sensitivity analysis
procedure is commonly employed in the literature, the mask-
ing task makes the setup ambiguous: we find that different
masking approaches can yield different results. Most mask-
ing techniques shift the pixel to a given baseline, although
this can mean that inconsistent performance assessments
are achieved using different masking techniques. Rather
than adopting a single masking technique to carry out the
sensitivity analysis for this study, we therefore summarize
several meaningful masking techniques, described below,
and analyze the results achieved by each in turn to gain a
comprehensive understanding of the local explanations.

• Distance-K Masking: Masks the pixel by modifying
the intensity by ±K, i.e. S′

ij = Sij ±K. The sign of
K is determined by the sign of the saliency. If K is
large enough, it assigns pixels with positive saliency to
black and negative saliency to white.

• Fixed-value Masking: Masks pixels using a fixed color
vector such as (0, 0, 0) and (255, 255, 255), which are
known named as black-out and white-out, respectively.
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(d) Noise masking
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Figure 4: Sensitivity results of LEG, LEG-TV, LIME, KernelSHAP, CShap and GradCam with different masking techniques.

Figure 5: Examples of LEG-TV estimates shown by different
masking techniques with 10% masked.

The mean value vector of the image is also applied in
most circumstances.

• Noise Masking : Masks the pixel by some random
pixel intensity in the range [0,255]. As this randomness
may lead to considerable differences between trials, it
is best to average these trials to reduce the variance.

Each of these masking techniques can be described as
a form of contamination of the original image. Figure 5
presents the contaminated images under various masking
techniques. We note that the most commonly utilized mask-
ing methods, black-out and white-out will have issues when
a large part of the image is black (or white). Distance-K
mask darkens the picture with respect to the original pixel
intensity, and simulates having different levels of brightness,
and thus it can preserve some color and edge patterns. Noise
mask eliminates both the color and edge patterns but may
not be stable due to the randomization.

We present the results of sensitivity analysis with the
four different masking techniques in Figure 4 for 500 im-
ages collected randomly from ImageNet’s test dataset. LEG
and LEG-TV achieve the best performance on Distance-100
and the black-out scheme, while KernelSHAP performs best
on mean vector, all deliver excellent performance on noise
masking. Note that with Distance-100 masking, as shown in
Figure 4(a), KernelSHAP and LIME gain a sharp drop with
the initial 2% perturbation, after which they flatten out and
are eventually overtaken by LEG. This naturally raises the
question of whether it is still possible to compare different
explanations when such a crossover occurs. We argue that

Figure 6: Examples of 10% images masked for all methods.

instead of investigating how fast the prediction for the tar-
get class decreases near zero perturbations, an explanation
should be able to efficiently discover the minimal amount
needed to change the classification result obtained by the
method used for supervised learning on computer vision.
With that aim, we propose a new metric named the key
masking size, denoted by Skey , which is defined as the mini-
mum masking size that causes the target model to deliver a
different classification result.

We compute Skey under distance-100, black-out, mean
and noise masking settings. The results are summarized in
Table 1. We observe that LEG and LEG-TV achieve the
lowest key size in Distance-100 and black-out schemes, and
under mean and noise masking it performs close to the best
performer, KernelSHAP. We note that KernelSHAP relies on
a segmentation hyperparameter, and its performance wildly
varies with respect to the choice of the hyperparameter - we
demonstrate this on an additional study in the Appendix with
examples from the MNIST dataset.

The visual analysis also indicates that pixels identified
by LEG-TV are visually more meaningful from a human
perspective. We demonstrate this in Figure 6, where we
plot the top 10% most salient pixels according to different
procedures for three randomly selected images in the dataset.
In the first image, LEG-TV is able to select different parts of
the gibbon. In the second image, LEG and LEG-TV not only
figure out the body howler monkey hidden in the background,
but also part of the upper limb. However, KernelSHAP
and LIME only discover the body part, GradCam and C-

751



Methods Masking Techniques

Dist-100 Black-out Mean Noise
LEG 0.163 0.062 0.118 0.069

(0.012) (0.005) (0.006) (0.004)
LEG-TV 0.170 0.056 0.116 0.068

(0.012) (0.004) (0.006) (0.004)
KernelSHAP 0.251 0.059 0.074 0.060

(0.017) (0.004) (0.004) (0.003)
LIME 0.269 0.111 0.161 0.084

(0.016) (0.008) (0.010) (0.006)
C-Shapley 0.380 0.101 0.131 0.105

(0.018) (0.006) (0.007) (0.006)
GradCam 0.318 0.086 0.115 0.089

(0.018) (0.006) (0.007) (0.006)

Table 1: Average minimal perturbation size, S̄key, that
changes the top prediction class under different masking
schemes for VGG-19 using 500 randomly chosen samples
in ImageNet. Standard errors are provided in parentheses.

Shapley completely fail. In the last image, LEG and LEG-
TV can detect the location of the monarch butterfly, as well
as the area of blooms in the background which indicates
potential background bias in the models. We also see that
KernelSHAP, C-Shapley and GradCam have a tendency to
choose compact areas while LEG-TV tends to mask non-
contiguous regions despite the smoothness penalty in the
formulation.

6.3. Sanity Check

Adebayo et al. [1] tests the validity of saliency estimation
procedures by varying the weights of the neural network.
In a technique named, “cascading randomization”, authors
replace the fitted weights of a CNN layer by layer starting
from the final layer, and compute the saliency scores with
each change. Clearly, a deep learner with randomly chosen
weights should have no prediction power, and interpretations
based on it should be meaningless. We expect LEG-TV
tends to get zero saliency score for all of the pixels through
cascading randomization. Small artifacts that might arise
in this process, such as positive or negative saliency scores
with no spatial structure, should be smoothed over due to the
TV penalty in the end.

To verify our intuition, we perform a cascading random-
ization on the weights of a VGG-19 network. The network
weights are replaced by random numbers in a cascading or-
der, starting from the last layer. We generate the dataset for
this analysis by randomly selecting 30 images from the web
that have matching class categories in ImageNet3 The results
of our experiment for four images are shown in Figure 7. For
all of the images in our analysis, LEG-TV estimate loses its

3This step ensures that we avoid using any images that might have been
used to train the network.

Figure 7: Results of the sanity check with cascading random-
ization.

pattern gradually after the first or the second perturbation,
and the estimate is reduced to either zero or random noise
after randomization of the first convolutional layer. That is,
after the weights are perturbed, the LEG-TV method fails to
detect any signal that could be used for interpretation. These
results show that the interpretation provided by our proposed
method is both reliable and dependent on the classifier. In
order to distinguish whether the effect is due to the formu-
lation of LEG or the total variation penalty, we also repeat
the sanity checks using LEG and a very small L coefficient
to impose a minimally smooth estimate. The results of this
analysis, which are provided in the Appendix, suggest that
the robustness of the LEG approach with respect to the sanity
checks is due to the reliability of the underlying estimate,
and not solely due to the penalties imposed.

7. Conclusion

In this paper, we propose a linearly estimated gradient
(LEG) saliency estimation framework for black-box com-
puter vision models that is gradient-weight based and model-
agnostic. To the best of our knowledge, this is the first work
that aims to address the model agnostic saliency method
with statistical consistency. We further propose a new com-
putationally efficient estimator (LEG-TV) using graphical
representations of data. In addition to performing a theoret-
ical analysis of the convergence rate, we propose a novel
structured Gaussian noise approach that is capable of accel-
erating the convergence rate substantially. Our experimental
results reveal that our proposed models, LEG and LEG-TV,
consistently deliver a better performance than other model-
specific or model-agnostic methods. In summary, our pro-
posed framework is computationally efficient, requires no
prior knowledge about the models, and can guarantee sta-
tistical consistency, clearly demonstrating its promise as an
essential saliency estimation framework for those working
in a wide range of model interpretation fields.
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