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Abstract

Recent advances in deep generative models have led to

immense progress in 3D shape synthesis. While existing

models are able to synthesize shapes represented as voxels,

point-clouds, or implicit functions, these methods only indi-

rectly enforce the plausibility of the final 3D shape surface.

Here we present a 3D shape synthesis framework (SurfGen)

that directly applies adversarial training to the object sur-

face. Our approach uses a differentiable spherical projec-

tion layer to capture and represent the explicit zero isosur-

face of an implicit 3D generator as functions defined on the

unit sphere. By processing the spherical representation of

3D object surfaces with a spherical CNN in an adversarial

setting, our generator can better learn the statistics of nat-

ural shape surfaces. We evaluate our model on large-scale

shape datasets, and demonstrate that the end-to-end trained

model is capable of generating high fidelity 3D shapes with

diverse topology.

1. Introduction

Shape generation is primarily concerned with the syn-

thesis of diverse, realistic, and novel shapes. High fidelity

models of 3D shapes are key to creating immersive virtual

worlds, and are important to many disciplines, including ar-

chitecture, visual effects, and training robots in simulated

navigation.

With the introduction of large scale 3D object datasets

such as ShapeNet [6] and ModelNet [62], there has been

significant progress towards building generative models of

3D shapes. The predominant approach is to perform train-

ing using representations that are straightforward for neural

networks to work with, such as voxel grids, point clouds,

or implicit functions. This is in contrast to the majority

of graphics & simulation tasks, which require an triangle

mesh representation of a shape. When learned in an adver-

sarial setting, the discriminator in these frameworks only

indirectly ensure the realism of the object surface.

A major barrier in training a neural network on object

surfaces is the inherent irregularity and discrete nature of

3D surfaces. Different objects within the same object class

can have vastly different topologies, and can be character-

ized by different internal connectivity when represented as

a triangle mesh. Our key insight is that a discriminator ap-

plied to the surface should focus on the geometric properties

Figure 1. Examples of chairs with complex structure generated by

our model trained on ShapeNet [6] chair class.

of the surface (curvature, orientation, topology, etc.), while

ignoring properties that are irrelevant to the shape. Here

we propose to transform object surfaces to spherical maps

computed with a differentiable function fM→S . A spherical

map is a surface representation defined on discrete samples

from the surface of a sphere. The values at each pixel repre-

sents a minimal distance of the object surface along a ray, as

well as the surface occupancy along the ray. The spherical

map is appealing because it is a singular representation that

captures the surface geometry of a shape. Given a spherical

map, we then utilize a network with spherical convolution

layers to complete our discriminator.

We propose SurfGen, an end-to-end generative model of

3D shapes that is trained with a discriminator which op-

erates on the explicit zero isosurface of an implicit shape

function. We demonstrate that applying adversarial training

on the surface of an object leads to generated highly real-

istic shapes. This results in an approach that can generate

high quality shapes with arbitrary topology and resolution.

Examples of shapes generated by our model are shown in

Figure 1.

In summary our contributions are three fold:

• We introduce a spherical projection operator that takes

as input an explicit triangle mesh, and is fully differen-

tiable w.r.t. the vertices.

• We propose SurfGen, an end-to-end differentiable 3D

shape synthesis framework which applies an adversar-

ial objective on the zero isosurface of the generator.

• We demonstrate our model can synthesize realistic,

high quality shapes that have diverse topology.
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2. Related Work

Our method is related to prior work on learning statistical

models for 3D shape analysis and generation. In this section

we will discuss deep learning based models for 3D shapes,

spherical projections, and differentiable rendering.

Deep learning for 3D shapes. Recent advances in deep

learning have enabled models capable of image-guided

shape reconstruction and novel shape synthesis. 3D-R2N2

[9] proposed learning a recurrent model for voxel based re-

construction with multiple views, [16, 19, 60, 69] further

improved image based voxel reconstruction. Due to mem-

ory constraints, these methods are usually limited in terms

of their resolution. Methods have also been proposed to

generate point clouds from images [14, 56], however the

unordered nature of point clouds limits the fidelity of the

final 3D reconstructions. Some approaches have been pro-

posed to deform a mesh template [23, 57, 49], or a set of sur-

face patches [18]. These techniques are typically limited to

modeling shapes of fixed topology, or produce meshes that

require post-processing to become usable. It has become

possible recently to regress implicit functions in the form of

binary occupancy or signed distances [63, 8, 38, 41]. Simi-

larly, other forms of learned 3D priors have been applied to

convert or refine existing shape representations [59, 4, 13].

Generative models for 3D shapes. Modern generative

models for 3D shapes generally utilize an adversarial con-

straint, take a variational approach, or use flow-based mod-

els. Of note, [62] design a deep belief network to synthe-

size novel shapes when trained on a large-scale dataset. [61]

proposed using a generative adversarial network (GAN) for

voxels. [1, 68] proposes learning latent-GANs [37] for point

clouds, while [28] proposes an autoencoding objective to

stabilize the training of point cloud generative models. Sim-

ilarly [15, 53, 46] advocate for modified generators to im-

prove point cloud generation. Implicit generative models

based on latent-GANs [8], and point cloud discriminators

[27] have also been proposed. While these methods are ca-

pable of generating high resolution shapes, they still strug-

gle with thin structures and implausible objects.

Spherical representations. A spherical representation

captures information about a shape on the surface of a

sphere. For the purpose of shape retrieval, [2, 25, 54] rep-

resent shapes as spherical distance functions, [66] captures

the number of surface intersections. Spherical representa-

tions have also been used in modern deep learning systems

for object recognition [5]. [69] uses a non-differentiable

spherical representation computed from voxel grids to fa-

cilitate 3D shape reconstruction in the projected spherical

space, demonstrating the effectiveness of spherical projec-

tions for shape synthesis. In our work, we propose a fully

differentiable spherical projection to capture the statistics of

surfaces, allowing for the end-to-end training of our gener-

ator.

Differentiable rendering. A spherical projection can be

viewed as a rendering operation using a non-linear projec-

tion operator. Because the rendering operation is normally

discrete, it does not provide usable error gradients for op-

timization. A variety of mesh [10, 33, 29, 24, 31, 8, 43],

point-cloud, and implicit [32, 40, 39, 48] based differen-

tiable renderers have been proposed. [24] developed an

approximation of gradient for rasterization. [50] proposes

learning high frequency faces details using a differentiable

renderer. [35] also demonstrated the feasibility of differen-

tiable rendering in 3D scene optimization. [64] proposed a

differentiable volume sampling method which can approxi-

mate the ray tracing algorithm. Other works such as [22, 21]

also implemented differentiable operation for single image

3D shape reconstruction tasks. Our work enables gradient

based optimization in a spherical projection layer, allowing

a generator to be optimized by error signals defined in the

spherical domain.

3. Approach

We propose SurfGen, an end-to-end fully differen-

tiable framework for the generation of 3D shapes. Key to

our model, is a differentiable spherical projection operator

which allows surfaces to be represented as a spherical pro-

jection map, where an adversarial loss can be naturally ap-

plied. Our model is illustrated in Figure 2.

3.1. 3D Shape Generator

We adopt DeepSDF [41] as the generator in our model.

In this generator, each shape is represented by an im-

plicit signed distance function (SDF). For each point p =
(px, py, pz) and a given shape s, the SDF encodes the dis-

tance of the point to the nearest surface: SDFs(p) = d, d ∈
R. The sign of d encodes if the point is inside (negative) or

outside (outside) a given shape. Our generator gψ is trained

to map a randomly sampled latent code z and a position p

to a corresponding SDF value:

gψ(z,p) ≈ SDFs(p) (1)

The surface of a shape is implicitly represented by the zero

isosurface of the SDF.

3.2. Differentiable triangle mesh extraction

In order to apply a discriminator to the surface of an ob-

ject represented as an implicit SDF, we need to first find the

zero isosurface. We choose to utilize marching cubes [34]
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Figure 2. Components of our model. Top: During test time, we sample a random code and extract the triangle mesh; Bottom: During

training, we extract the surface of the shape represented as a triangle mesh, and compute the differentiable spherical projection of the

surface. The spherical surface map is fed to a spherical discriminator. Note that we do not utilize an encoder during training.

to extract an explicit triangle mesh from the signed distance

function. While sphere tracing can also be utilized to ex-

tract the zero isosurface from a signed distance function,

we found the required speed-accuracy trade-off unsuitable

for use in training.

Instead, we use the MeshSDF method proposed in [44]

for differentiable isosurface extraction. During training, we

evaluate our signed distance function generator gψ on an

euclidean grid of size 1283 in the range of [−1, 1], and use

marching cubes (MC) to extract the surface as a triangle

mesh M = (V, F ), where V = {vj}
M
j=1 is the set of mesh

vertices represented in R
3, and F represents the set of tri-

angle faces enclosed by the edges.

We use the loss from a discriminator Dφ to compute a

gradient with respect to the vertices V from the zero isosur-

face. For a discriminator loss L differentiable w.r.t. vertices

V , the gradient with respect to generator weights ψ can be

computed by evaluating:

n(v) = ∇gψ(v, z) for v ∈ V (2)

∂L

∂ψ
= −

∂L

∂v
· n(v) for v ∈ V (3)

This approach to differentiable surface extraction allows

discriminator gradients present on the vertices V to mod-

ify surface shape and topology by changing the underly-

ing signed distance function. We refer readers to [44] for a

proof and discussion of this method.

3.3. Differentiable spherical surface projection

In this section, we present our diffentiable spherical pro-

jection layer. Consider a 3D object parameterized as a tri-

angle mesh M = (V, F ). Because surfaces themselves can

vary in topology, and meshes can themselves vary in inter-

nal connectivity, it is non-trivial to train a neural network on

the surface on an object.

Our spherical projection layer fM→S transforms an ir-

regular 3D mesh into a regular spherical domain. The

support of the spherical representation is defined as dis-

crete samples on the unit sphere S2 with θ ∈ [0, 2π] and

φ ∈ [0, π]. There are two major challenges to adopting

such a framework. First, the pixel coordinates lie on the

surface of a sphere parameterized by (θ, φ), which prevents

the use of a projection matrix to express the vertex transfor-

mations. Second, the rasterization and z-buffer algorithm

are discrete operations, which causes discontinuities in the

back-propagated gradients as triangles change in depth or

move laterally. We use a similar approach to those pre-

sented in [31, 7] to enable a differentiable spherical surface

projection function.

Because of the non-linear projection, we utilize ray-

casting to find intersections of the object surface with rays

that originate from the unit sphere. Each ray Ri is defined

as a six tuple representing origin and direction in euclidean

coordinates:

−→
Ri = (Ox, Oy, Oz, Dx, Dy, Dz)i (4)

We modify the ray-intersection kernel to output direct in-

tersections, as well as ”near misses” where the ray is within

distance r of a triangle. The ray-intersection kernel is re-

peated such that the k nearest hits along each ray are re-

trieved:

(−→pji , Fj)
k

j=1
= rayintersectk,r(M, Ri) (5)

At an intersection location −→pji inside triangle j for Ri,

we compute a pixel attribute uij as an barycentric interpola-

tion of vertex attributes
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Figure 3. Qualitative results for shapes generated by our SurfGen model; In comparison with samples from other works evaluated on the

same testing set: VAD loss only [67], ShapeGAN w/ voxel [27] discriminator, ShapeGAN w/ PointNet discriminator [27], and DeepSDF

with a latent generator [1, 8].

1Pixel on sphere

pj
i

(a) (b) (c)

Pixel on sphere

Figure 4. Differentiable spherical projection from the perspective

of a ray. (a) The search region of each ray includes the triangle

(solid) and a small ”radius” r neighborhood (transparent). (b) Di-

rect hits inside a triangle allows us to interpolate depth. (c) ”Near

miss” hits in the neighborhood of a triangle allows for occupancy

to be computed.

uij = wij,0 · uj,0 + wij,1 · uj,1 + wij,2 · uj,2 (6)

wij,k = Ωk(
−→pji ,

−→vj,0,
−→vj,1,

−→vj,2); k = {0, 1, 2} (7)

where the barycentric weights are computed using the dif-

ferentiable function Ω. When computing a spherical depth

projection, we set the attributes to be the (x, y, z) coordinate

of each vertex in triangle j:

(uj,0, uj,1, uj,1) = (vj,0, vj,1, vj,2) (8)

Beyond the spherical depth map, the spherical silhouette of

a shape can also be computed such that it is differentiable.

We utilize ”near miss” rays that do not intersect inside a tri-

angle, but has a point on that ray p
′

ji
that is within distance

r outside of a triangle. We compute the squared euclidean

distance between the ray and the closest point on the trian-
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Figure 5. Visualization of radial and orthographic projections.

These depth projections reflect the surface distance from the origin

of the ray.

gle:

d(p
′

ji , Fj) = min
p∈Fj

∥

∥

∥
p− p

′

ji

∥

∥

∥

2

2
(9)

αij = exp
−d(p

′

ji
, Fj)

δ
(10)

Where δ is a hyper-parameter that controls how fast the

influence decays as a function of distance. We use a product

based function to aggregate all the near miss collisions for

a given ray:

αi = 1−
∏

j

(1− αij) (11)

A ray is illustrated in Figure 4. This allows for the ef-

ficient computation of spherical depth and occupancy maps

in a way that is fully differentiable with respect to the vertex

attributes.

3.4. Choice of sampling and projection

Sampling on a Sphere. A discretization of the sphere

needs to be selected prior to spherical projection. Com-

mon sampling schemes includes Driscoll and Healy [12],

icosahedral [58], and HEALPix [17]; which use rectangu-

lar, icosahedral, and equal area sampling respectively. Due

to our efficient ray-casting based implementation, the dif-

ferentiable spherical projection layer can work with any dis-

cretization of the sphere. In practice, the HEALPix based

sampling with 12, 288 points is used due to the balanced

area assigned to each point on the sphere.

Choice of Projection. Our spherical projection layer can

model arbitrary projections. The most simple projection

operator is the radial spherical projection, which gives a

ray direction to be (Dx, Dy, Dz) = −(Ox, Oy, Oz), where

O is discrete sample on the sphere. It was shown in [69],

that a radial projection may have poor coverage of a shape

due to self-occlusions. They address this by combining the

spherical representation with an additional non-radial pro-

jection. Taking inspiration from orthographic map projec-

tions, we propose orthographic spherical projection where

(Dx, Dy, Dz) = −(0, 0, Oz), where z is assumed to be the

gravity aligned (top-down) axis. Our full spherical projec-

tion combines the spherical depth map from radial & ortho-

graphic spherical projections, and use the silhouette map

from the orthographic projection. The radial silhouette map

is omitted since most radial rays have direct intersections

within a triangle face, and do not provide a useful training

signal. We show how the projections compare in Figure 5.

3.5. Discriminator Implementation

Network Architecture. As our spherical maps are dis-

crete samples on a unit sphere and non-euclidean, we can-

not use a regular 2D or 3D convolution. We implement our

discriminator using the graph-based spherical convolution

layers proposed by [11]. Our discriminator takes as input

the 3 spherical maps described in section 3.4. The network

consists of 5 residual spherical blocks that each perform av-

erage pooling to reduce the total number of spherical sam-

ples by a factor of 4, as well as a single self-attention layer

in the discriminator. We average pool the final 12 pixels,

256 channel spherical maps, and use fully connected lay-

ers to produce the scalar discriminator output. We utilize

Instance Normalization [52] and Leaky ReLU [36] in the

discriminator.

3.6. Overall model

The straightfoward approach to training an implicit gen-

erator with a surface discriminator would be to update the

implicit generator and surface discriminator in an alternate

fashion. However, unlike the SDF which is defined for all

p ∈ R
3, the surface only exists at select locations. We need

to constrain the generator such that the location of the iso-

surface is within the spherical projection layer, and ideally

approximate to the desired shape. Methods using geometric

initializations [3], meta-learning [47], and variational meth-

ods [20] have been proposed to stabilize training and accel-

erate convergence. We choose to regularize our generator

with a variational autodecoder (VAD) [20] loss alongside

our adversarial criterion. This VAD-GAN setup preserves

the generator+discriminator structure of a generative adver-

sarial network (GAN) during training, only requiring the ad-

dition of a light-weight embedding layer to the model, while

significantly outperforming the original VAD only objec-

tive.

During training, we sample a latent code z from the ap-

proximate posterior for a given shape xj modeled as a mul-

tivariate Gaussian with diagonal covariance:

q(z|xj) := N (z;µj , σ
2
j · I) (12)
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Figure 6. We optimize a MSE loss on the spherical representation between the target and initial shape. From top to bottom: the top view

of the radial projection, the bottom view of the radial projection, rendered SDF output. This shows that our spherical surface projection

can induce topology and shape changes.

We use the reparameterization trick [26] to allow for di-

rect optimization of latent parameters µj , σj , and set zj =
µj+σj⊙ǫ, where ǫ ∼ N (0, I). During training, the genera-

tor and latent parameters are trained to minimize the the ad-

versarial objective LGAN and maximize the evidence lower

bound of the marginal likelihood (ELBO):

log pθ(x) ≥ E
z∼q(z|x)

[

log p(x|z)

]

−DKL(q(z|x)||p(z))

p(x|z) = −E
p

[

LSDF

(

gψ(z,p), SDFs(p))

)]

(13)

Equation 13 could be approximated by sampling from 3D

space following a certain distribution defined in [41]. For

the final results, we use clamped version of L1 loss for

LSDF (·). To stabilize GAN training, we employ standard

hinge GAN loss Lhinge [30, 51] with a small amount of fea-

ture matching loss Lfeat [45] applied to the first four dis-

criminator feature maps.

In summary, the overall objective is summarized in

Equation 15 where we use α = 1, β = 1 and γ = 1e−5,

λ = 0.5.

LGAN = Lhinge + λLfeat (14)

Ltotal = αLGAN + βLSDF + γDKL (15)

In order to facilitate stable training, we zero the gradi-

ents in the generated depth maps where there is no surface

occupancy in the corresponding target shape:

Depthgrad[Otarget < 1.0] = 0 (16)

To ensure that surface gradients w.r.t. the SDF generator

are within the same magnitude as the other losses, we scale

the gradient from Equation 3 with a constant ω = 1e−4.

Our model is implemented using Pytorch, with the ray

casting implemented in embree [55, 42], and marching

cubes implemented in CUDA [65].

Chamfer EMD

Iterations 5 10 30 5 10 30

Radial Depth 0.0486 0.0327 0.0032 0.0389 0.0244 0.0029

Ortho Depth 0.0496 0.0335 0.0024 0.0384 0.0234 0.0026

Radial silhouette 0.0584 0.0590 0.0587 0.0446 0.0443 0.0433

Ortho silhouette 0.0556 0.0528 0.0460 0.0443 0.0373 0.0322

Combined 0.0478 0.0329 0.0022 0.0356 0.0219 0.0010

Table 1. We compare the effectiveness of four spherical features

in terms of Chamfer and earth movers distance (EMD) during the

optimization process. Combined indicates the radial depth, ortho

depth, and ortho silhouette are used together. Bold indicates best

method at each iteration.

4. Experiments

4.1. Validating end­to­end optimization

We first verify the differentiability of our spherical pro-

jection layer. Using the data from [44], we train a generator

network gψ to approximate the signed distance function of

two shapes: a genus zero cow, and a genus one rubber duck.

The generator learns to associate a latent code with a corre-

sponding implicit distance field. The loss during optimiza-

tion is the pixel-wise mean squared error (MSE) between

the current and target spherical projections:

1

N
(fM→S(gψ(z))− Starget)

2 (17)

The gradients are backpropagated and are used to optimize

the latent code z. As shown in Figure 6, our spherical pro-

jection layer can modify the underlying implicit represen-

tation, and can change both the shape and topology of an

object.

We quantitatively compare the effect of using radial

depth, radial silhouette, orthographic depth, orthographic

silhouette, as well as combined (radial depth + orthographic

depth + orthographic silhouette) as features for our opti-

mization in Table 1. Because few rays in the radial projec-
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MMD (↓) COV (%, ↑)

Category Model Discriminator JSD (↓) CD EMD CD EMD

Airplane

ShapeGAN-Voxel Voxel 0.2848 0.0193 0.1818 0.0794 0.0918
ShapeGAN-PN PointNet 0.2393 0.0119 0.1670 0.1066 0.1191
Latent-GAN Latent 0.3643 0.0138 0.1871 0.0843 0.0893
VAD-SDF None 0.2221 0.0103 0.1500 0.1141 0.1190
SurfGen (ours) Surface 0.1586 0.0074 0.1371 0.1191 0.1215

Chair

ShapeGAN-Voxel Voxel 0.0307 0.0231 0.2042 0.3408 0.3537
ShapeGAN-PN PointNet 0.0304 0.0152 0.1711 0.3641 0.3868
Latent-GAN Latent 0.0394 0.0125 0.1660 0.3742 0.3667
VAD-SDF None 0.0846 0.0142 0.1662 0.2051 0.2180
SurfGen (ours) Surface 0.0287 0.0095 0.1440 0.3812 0.3586

Car

ShapeGAN-Voxel Voxel 0.0336 0.0056 0.1221 0.3181 0.2869
ShapeGAN-PN PointNet 0.0259 0.0051 0.1061 0.3409 0.3579
Latent-GAN Latent 0.0649 0.0061 0.1292 0.2784 0.2556
VAD-SDF None 0.0568 0.0048 0.1063 0.2414 0.2585
SurfGen (ours) Surface 0.0463 0.0038 0.0982 0.2755 0.3267

Table 2. Generation results across ShapeNet classes; ↓ indicates that a lower value is better, ↑ indicates a higher value is better.

tion experience a ”near miss” for the shape, the radial sil-

houette does not provide useful gradients for the optimiza-

tion process. The loss that uses the three combined features

provides the fastest convergence when measured by cham-

fer distance or earth movers distance. The final projection

used in our shape generation experiment uses the combined

features.

4.2. Shape Generation

Data preparation. All models are trained on one of three

categories from ShapeNet.v2 [6]: airplane, car, and chair.

To ensure comparability, we use the official training split.

Each shape is centered and normalized to the unit sphere.

We utilize the improved signed distance generation method

proposed by the authors of ShapeGAN. Each shape is ren-

dered from 50 equidistance views, the depth buffer is pro-

jected into object space to compute the surface point cloud.

A point is considered to be outside the shape if it is seen by

any camera. Shapes are discarded if fewer than 0.5% of the

points are inside. We apply a small negative offset (2e−3) to

SDF values during training to facilitate surface extraction.

This results in 2788, 2452, 4550 shapes in the training set

for the airplane, car, and chair categories respectively. We

use the same sampling scheme used in DeepSDF. For the

ground truth test set, we uniformly query points in a unit

sphere, and randomly select 2048 points thresholded to lie

near the surface.

Baselines. We compare against four alternative models

for implicit shape generation: two variants of Shape-

GAN [27] which use a voxel and PointNet as discriminator,

a latent-GAN trained on DeepSDF embeddings, and a VAD

based SDF model which does not utilize our surface dis-

criminator. We use the VAD layer implementation provided

in [20]. For the latent-GAN, VAD, and our SurfGen model,

(a)

(b)

(c)

Figure 7. Multiple views of synthesized shapes by our model.

we use the DeepSDF network as backbone. For ShapeGAN

the author provided code and hyperparameters are used.

Evaluation and metrics. Every mesh is extracted using

marching cubes at 2563 resolution, and 2048 points are ran-

domly sampled from each mesh. The results are compared

using the metrics introduced by [1]. Minimum matching

distance (MMD) measures the distance of a shape from the

test set to its nearest neighbor, and can be understood to be

a proxy for fidelity. Coverage (COV) measures the fraction

of the test set that are the nearest neighbor to a sample in

the generated set, and can be understood to be a proxy for

diversity. For each measure, the distance metric can either

be chamfer distance (CD) or earth movers distance (EMD).
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Figure 8. The effect of manipulating individual dimensions of the

latent vector

Results. Qualitative results for shapes generated by each

method are shown in Figure 3 and Figure 7, while quantita-

tive results are shown in Table 2. Shapes generated by our

model have high-quality surfaces that are largely free from

the high frequency artifacts present in Latent-GAN, and the

block like artifacts from the two ShapeGAN variants. We

also observe many thin shell like artifacts on VAD synthe-

sized airplanes. For the chair class, the VAD only method

struggles to capture shapes with complicated geometry, and

generally synthesizes chairs with no thin parts.

SurfGen has the lowest MMD value across all evaluated

classes for both CD & EMD, this indicates that our methods

synthesizes shapes are closely matched to samples from the

test set. SurfGen produces high coverage for the airplane

class, while it is tied for coverage in the chair class. Our

method is less competitive in the car class. A possible rea-

son is the lack of high frequency geometry normally present

on the outside surface of cars. This causes cars to be diffi-

cult to learn using a surface based adversarial loss.

4.3. Latent Analysis

Individual latent dimensions. We explore if individual

dimensions in our latent space have semantic meaning.

Given a randomly sampled latent code, we select a dimen-

sion and increase its value in small increments. Our results

are shown in Figure 8. We observe that changing certain

dimensions can induce structural changes in a shape.

Interpolating between latents. In Figure 9, we demon-

strate that shapes can smoothly change as we linearly inter-
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Figure 9. Visualization of the shape as we linearly interpolate be-

tween two randomly sampled latent vectors.

Figure 10. Two failure cases that exhibit ring like artifacts near the

wing.

polate between two randomly sampled latent vectors, even

between shapes that have different topologies.

Computational efficiency. For a batch of 8 shapes, on a

dual Nvidia 3090 system the grid query step at 1283

resolution takes approximately 2, 500 ms, while marching

cubes takes 90 ms. The spherical projection takes around

600 ms on a 12 core CPU. For G and D combined, the for-

ward and backwards pass for a single batch takes around 5
seconds total.

4.4. Failure Cases

Certain shapes do not have well behaved spherical pro-

jections. In the most common case, we observe that this is

mostly due to a shape having protrusions along the grav-

ity aligned axis that significantly affect the centering of a

shape into a unit sphere. The issue is most prominent in

airplanes, while this is to a large degree mitigated by us-

ing the orthographic projection, we observe rare ring-like

artifacts in airplanes as shown in Figure 10 that seem to

be induced by the spherical discriminator. As part of future

work, it may make sense to investigate the integration of the

surface discriminator with discriminators directly applied to

the implicit field.

5. Conclusion

In this paper, we have introduced a novel shape synthe-

sis method that allows a discriminator to focus directly on

the surface on a generated shape. Our method is capable

of generating diverse high quality shapes with complex ge-

ometry. Our model has diverse downstream applications as

part of a larger 3D synthesis pipeline. We hope our work

will inspire future research in 3D shape synthesis.
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zstein. Scene representation networks: Continuous 3d-

structure-aware neural scene representations. arXiv preprint

arXiv:1906.01618, 2019. 2

[49] Edward J Smith, Scott Fujimoto, Adriana Romero,

and David Meger. Geometrics: Exploiting geomet-

ric structure for graph-encoded objects. arXiv preprint

arXiv:1901.11461, 2019. 2

[50] Ayush Tewari, Michael Zollhöfer, Pablo Garrido, Florian
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