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Abstract

Deep learning-based 3D object detection has achieved
unprecedented success with the advent of large-scale au-
tonomous driving datasets. However, drastic performance
degradation remains a critical challenge for cross-domain
deployment. In addition, existing 3D domain adaptive de-
tection methods often assume prior access to the target do-
main annotations, which is rarely feasible in the real world.
To address this challenge, we study a more realistic set-
ting, unsupervised 3D domain adaptive detection, which
only utilizes source domain annotations. 1) We first com-
prehensively investigate the major underlying factors of the
domain gap in 3D detection. Our key insight is that geomet-
ric mismatch is the key factor of domain shift. 2) Then, we
propose a novel and unified framework, Multi-Level Con-
sistency Network (MLC-Net), which employs a teacher-
student paradigm to generate adaptive and reliable pseudo-
targets. MLC-Net exploits point-, instance- and neural
statistics-level consistency to facilitate cross-domain trans-
fer. Extensive experiments demonstrate that MLC-Net out-
performs existing state-of-the-art methods (including those
using additional target domain information) on standard
benchmarks. Notably, our approach is detector-agnostic,
which achieves consistent gains on both single- and two-
stage 3D detectors. Code will be released.

1. Introduction

With the prevalent use of LiDARs for autonomous vehi-
cles and mobile robots, 3D object detection on point clouds
has drawn increasing research attention. Large-scale 3D ob-
ject detection datasets [11, 35, 3] in recent years has em-
powered deep learning-based models [32, 42, 41, 21, 31,
43, 25, 34, 33, 50, 45] to achieve remarkable success. How-
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Figure 1: Visualization of detection results for domain adapta-
tion from KITTI to Waymo dataset. Left: Predictions of base-
line model trained on KITTI dataset and directly tested on Waymo
dataset. The model can classify and localize the objects, but
produces inaccurate box scale due to geometric mismatch. The
predicted boxes are therefore noticeably smaller than the ground
truth. Right: Predictions of our domain-adaptive MLC-Net, which
demonstrates accurate bounding box scale even though MLC-Net
is trained without access to any target domain annotations. Best
viewed in color.

ever, deep learning models trained on one dataset (source
domain) often suffer tremendous performance degradation
when evaluated on another dataset (target domain). We in-
vestigate the bounding box scale mismatch problem (e.g.,
vehicle size in the U.S. is noticeably larger than that in Ger-
many), which is found to be a major contributor to the do-
main gap, in alignment with previous work [38]. This is
unique to 3D detection: compared to 2D bounding boxes
that can have a large variety of size, depending on the dis-
tance of the object from the camera, 3D bounding boxes
have a more consistent size in the same dataset, regard-
less of the objects’ location relative to the LiDAR sensor.
Hence, the detector tends to memorize a narrow and dataset-
specific distribution of bounding box size from the source
domain (Figure 2).

Unfortunately, existing works are inadequate to address
the domain gap with a realistic setup. Recent methods on
domain adaptive 3D detection either require some labeled
data from the target domain for finetuning or utilize some
additional statistics (such as the mean size) of the target
domain [38]. However, such knowledge of the target do-
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Figure 2: A study on the domain shift for 3D detection. Here we take KITTI as the source dataset and Waymo as the target dataset. Our key
insights include: 1) distribution of object dimensions varies drastically across datasets, indicating geometric mismatch can be a key factor
for the domain gap; 2) directly applying a model trained on KITTI to Waymo (referred to as the baseline in the figure) is ineffective: the
model continues to predict box dimensions close to the source domain; 3) our MLC-Net is effective in addressing the geometric mismatch,
and the distributions of its predictions on the target domain accurately align with the ground truth. Best viewed in color.

main is not always available. In addition, popular 2D unsu-
pervised domain adaptation methods that leverage feature
alignment techniques [8, 29, 48, 15, 6, 14, 40, 19, 22, 17,
46, 18, 47, 37] to mitigate domain shift are not readily trans-
ferable to 3D detection. While these methods are effective
in handling domain gaps due to lighting, color, and texture
variations, such information is unavailable in point clouds.
Instead, point clouds pose unique challenges such as the ge-
ometric mismatch discussed above.

Therefore, we propose MLC-Net for unsupervised do-
main adaptive 3D detection. MLC-Net is designed to tackle
two major challenges. First, to create meaningful scale-
adaptive targets to facilitate the learning, MLC-Net em-
ploys the mean teacher [36] learning paradigm. The teacher
model is essentially a temporal ensemble of student mod-
els: the parameters of the teacher model are updated by
an exponential moving average window on student mod-
els of preceding iterations. Our analyses show that the
mean teacher produces accurate and stable supervision for
the student model without any prior knowledge of the tar-
get domain. To the best of our knowledge, we are the
first to introduce the mean teacher paradigm in unsuper-
vised domain adaptive 3D detection. Second, to design
scale-related consistency losses and construct useful cor-
respondences of teacher-student predictions to initiate gra-
dient flow, we design MLC-Net to enforce consistency at
three levels. 1) Point-level. As point clouds are unstruc-
tured, point-based region proposals or equivalents [32, 42]
are common. Hence, we sample the same subset of points
and share them between the teacher and student. We re-
tain the indices of the points that allow 3D augmentation
methods to be applied without losing the correspondences.
2) Instance-level. Matching region proposals can be erro-
neous, especially at the initial stage when the quality of re-
gion proposals is substandard. Hence, we resort to transfer-
ring teacher region proposals to students to circumvent the
matching process. 3) Neural statistics-level. As the teacher

model only accesses the target domain input, the mismatch
between the batch statistics hinders effective learning. We
thus transfer the student’s statistics, which is gathered from
both the source and the target domain, to the teacher to
achieve a more stable training behavior.

MLC-Net shows remarkable compatibility with popular
mainstream 3D detectors, allowing us to implement it on
both two-stage [32] and single-stage [42] detectors. More-
over, we verify our design through rigorous experiments
across multiple widely used 3D object detection datasets
[11, 35, 3]. Our method outperforms baselines by convinc-
ing margins, even surprisingly surpassing existing methods
that utilize additional information. In summary, our main
contributions are:

• We formulate and study unsupervised domain adaptive
3D detection, a pragmatic, yet underexplored task that
requires no annotations of the target domain. We com-
prehensively investigate the major underlying factors
of the domain gap in 3D detection and find geometric
mismatch is the key factor.

• We propose a concise yet effective mean-teacher
paradigm that leverages three levels of consistency to
facilitate cross-domain transfer, achieving a significant
performance boost that is consistent across multiple
popular public datasets.

• We validate our hypothesis on the unique challenges
associated with point clouds and verify our proposed
approach with comprehensive evaluations, which we
hope would lay a strong foundation for future research.

2. Related Works
LiDAR-based 3D Detection. LiDAR-based 3D detection
methods mainly come from two categories, namely grid-
based methods and point-based methods. Grid-based ap-
proaches convert the whole point cloud scene to voxels
of fixed size and process the input with 2D or 3D CNN.
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MV3D [7] first projects point clouds to bird-eye view im-
ages to generate proposals. PointPilar [21] performs vox-
elization on point clouds and converts the representation to
2D. VoxelNet [49] obtains voxel representations by apply-
ing PointNet [27] to points and processes the features with
3D convolution. SECOND [41] applies 3D sparse convo-
lution [12] to improve the efficiency. PV-RCNN [31] pro-
poses to combine voxelization and point-based set abstrac-
tion to obtain more discriminative features. On the other
hand, point-based methods directly extract features from
raw point cloud input. F-PointNet [26] applies PointNet
[27] to perform 3D detection based on 2D bounding boxes.
PointRCNN [32] proposes a two-stage framework to gener-
ate box bounding proposals from the whole point clouds and
refine them with feature pooling. 3DSSD [42] proposes to
use F-FPS for better point sampling to achieve single-stage
detection. In this work, we conduct focused discussion with
PointRCNN as the base model but we show our method is
also compatible to single-stage detector (3DSSD) in Sup-
plementary Material.

Point Cloud Domain Adaptation. While extensive re-
searches have been conducted on domain adaptation tasks
with 2D image data, the 3D point cloud domain adaptation
field has relatively small literature. PointDAN [28] pro-
poses to jointly align local and global features using dis-
crepancy loss and adversarial training for point cloud clas-
sification. Achituve et. al. [1] introduces an additional
self-supervised reconstruction task to improve the classifi-
cation performance on the target domain. Yi et. al. [44]
designs a sparse voxel completion network to perform point
cloud completion for domain adaptive semantic segmenta-
tion. Jaritz et. al. [20] leverages multi-modal information
by projecting point cloud to 2D images and train models
jointly. For object detection, [38] identifies the major do-
main gap of object size mismatch among autonomous driv-
ing datasets and proposes to mitigate the gap by leveraging
target domain object scale statistics. SF-UDA [30] com-
putes motion coherence over consecutive frames to select
the best scale for the target domain. Our proposed method
works under a similar setup to [38] but does not require tar-
get domain geometric statistics.

Mean Teacher. The mean teacher framework [36] is
first proposed for semi-supervised learning. Many vari-
ants [9, 2, 39] have been proposed to further improve its
performance. Furthermore, the framework has also been
applied to other fields such as domain adaptation [10, 4]
and self-supervised learning [16, 13, 24] where labeled data
is scarce or unavailable. Specifically, the mean teacher
framework incorporates one trainable student model and
a non-trainable teacher model whose weights are obtained
from the exponential moving average of the student model’s
weights. The student model is optimized based on the con-
sistency loss between the student and teacher network pre-

dictions. In particular, although [4] also employs the mean
teacher paradigm for the detection task by aligning region-
level features, point cloud detection models are substan-
tially different from 2D detectors and our proposed method
differs by incorporating multi-level consistency.

3. Our Approach
In this section, we formulate the 3D point cloud do-

main adaptive detection problem (Section 3.1), and pro-
vide an overview of our MLC-Net (Section 3.2), followed
by the details of our mean-teacher paradigm (Section 3.3).
Finally, we explain the details of the point-level (Section
3.4), instance-level (Section 3.5), and statistics-level (Sec-
tion 3.6) consistency of our MLC-Net.

3.1. Problem Definition

Under the unsupervised domain adaptation setting, we
have access to point cloud data from one labeled source do-
main Ds = {xi

s, y
i
s}

Ns

i=1 and one unlabeled target domain
Dt = {xi

t}
Nt

i=1, where Ns and Nt are the number of sam-
ples from the source and target domains, respectively. Each
point cloud scene xi ∈ Rn×3 consists of n points with their
3D coordinates while yi denotes the label of the correspond-
ing training sample from the source domain. y is in the form
of object class k and 3D bounding box parameterized by the
center location of the bounding box (cx, cy, cz), the size in
each dimension (dx, dy, dz), and the orientation η. The goal
of the domain adaptive detection task is to train a model F
based on Ds and Dt and maximize the performance on Dt.

3.2. Framework Overview

We illustrate MLC-Net in Figure 3. The labeled source
input xs is used for standard supervised training of the stu-
dent model F with loss Lsource. For each unlabeled tar-
get domain example xt, we perturb it by applying random
augmentation h to obtain x̂t. The perturbed and origi-
nal point cloud inputs are passed to the student model and
teacher model respectively to get their point-level box pro-
posals R̂t and Rt where point-level consistency is applied.
Subsequently, teacher proposals are augmented with h and
passed to the student model for box refinement, to obtain
Ŝt. Together with teacher’s instance-level predictions St,
the instance-level consistency is applied. The overall con-
sistency loss Lconsist is computed as:

Lconsist = Lpt,cls + Lpt,box + Lins,cls + Lins,box (1)

where pt, ins, cls and box stand for point-level, instance-
level, classification and box regression respectively. These
loss components are elaborated in Section 3.4 and 3.5. In
each iteration, the student model is updated through gradi-
ent descent with the total loss L, which is a weighted sum
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Figure 3: The network architecture of our proposed MLC-Net. MLC-Net leverages the mean-teacher [36] paradigm where the teacher is
the exponential moving average (hence the name mean-teacher) of the student model and is updated at every iteration. This mean-teacher
design provides high-quality pseudo labels to facilitate smooth learning of the student model. Towards the goal, we design consistency
enforced at three levels. First, at point-level, 3D proposals are associated based on point correspondences, which are established by
sampling the same set of points from the target domain for both the student and teacher models; second, at instance-level, the teacher
3D proposals are passed to the student Box Refinement Network, and the correspondences between 3D box predictions from two models
are naturally maintained; third, at neural statistics-level, we discover non-learnable parameters in batch normalization layers demonstrate
significant domain shift, and thus align the teacher’s parameters with the student’s. We highlight the efficacy of MLC-Net and further
discuss our design motivations in Section 3. Best viewed in color.

of Lsource and Lconsist:

L = λLsource + Lconsist (2)

where λ is the weight coefficient. The learnable parameters
of the student model are then used to update the correspond-
ing teacher model parameters, where the details can be
found in Section 3.3. In addition, we enforce non-learnable
parameters to be aligned between the teacher and the stu-
dent via neural statistics-consistency (Section 3.6).

MLC-Net achieves two major design goals towards ef-
fective unsupervised 3D domain adaptive detection. First,
to generate accurate and robust pseudo targets without any
access to the target domain annotation or statistical informa-
tion. MLC-Net leverages a mean teacher paradigm where
the teacher model can be regarded as a temporal ensemble
of student models, allowing it to produce high-quality pre-
dictions and guide the learning of the student. Second, to
design effective consistency losses at point-, instance- and
neural statistics-level that enhance adaptability to scale vari-
ation, and construct the teacher-student correspondences
that allow the back-propagated gradient to flow through
the correct routes. Although we conduct most analysis on
PointRCNN as the representative of two-stage 3D detectors,
we highlight that our method is generic and can be easily
extended to single-stage detection models such as 3DSSD
with modest modifications (see Supplementary Material).

3.3. Mean Teacher

Motivated by the success of the mean teacher paradigm
[36] in semi-supervised learning and self-supervised learn-
ing, we apply it to our point cloud domain adaptive detec-
tion task as illustrated in Figure 3. The framework consists
of a student model F and a teacher model F ′ with the same
network architecture but different weights θ and θ′ , respec-
tively. The weights of the teacher model are updated by
taking the exponential moving average of the student model
weights:

θ′ = mθ′ + (1−m)θ (3)

where m is known as the momentum which is usually a
number close to 1, e.g. 0.99. Figure 5 shows that the teacher
model constantly provides effective supervision to the stu-
dent model via high-quality pseudo targets. Hence, by en-
forcing the consistency between the student and the teacher,
the student learns domain-invariant representations to adapt
to the unlabeled target domain, guided by the pseudo labels.
We show in Table 5 that the mean teacher significantly im-
proves model performance compared to baseline.

3.4. Point-Level Consistency

The point-level consistency loss is calculated between
the first-stage box proposals of the student and teacher mod-
els. One of the key challenges for formulating consistency
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is to find the correspondence between the student and the
teacher. Unlike image pixels that are arranged in regular
lattices, points reside in continuous 3D space which lacks
structure [27]. Hence, constructing point correspondences
can be problematic (Table 3). Instead, we circumvent the
difficulty by feeding the teacher and the student two identi-
cal sets of points at the very beginning and trace the point
indices to maintain correspondences.

Specifically, for each target domain example, we sample
M points from the point cloud scene to obtain the teacher
input xt and apply random augmentation h on a replicated
set to obtain x̂t with x̂t = h(xt). h consists of random
global scaling of the point cloud scenes and can be regarded
as applying displacements on individual points, without dis-
rupting the point correspondences. As a result, each point
p ∈ xt corresponds to a point p̂ ∈ x̂t, and this relation-
ship holds for the point-level predictions of the region pro-
posal network FRPN . We denote the first stage prediction
as R = FRPN (x). Note that the point correspondences are
transferred to box proposals as each point generates one box
proposal. R consists of class prediction Rc and box regres-
sion Rb. For the class predictions, we define the consistency
loss as the Kullback-Leibler (KL) divergence between each
point pair from xt and x̂t:

Lpt,cls =
1

|xt|
∑

DKL(R̂
c
t ||Rc

t) (4)

where |xt| stands for the number of points in xt.
More importantly, we enforce consistency between

bounding box regression predictions to address geometric
mismatch. For the bounding box predictions, we only com-
pute the consistency over points belonging to the objects
because the background points do not generate meaning-
ful bounding boxes. We obtain a set of points Ppos which
fall inside the bounding boxes of the final predictions of
both the student and teacher networks with Ppos = {(p ∈
NMS(Ŝt)) ∩ (p ∈ NMS(St))}, where Ŝt and St are the
refined bounding box predictions after second stage (see
Section 3.5). We then compute the point-level box consis-
tency loss as:

Lpt,box =
1

|Ppos|
∑

pi∈Ppos

d(R̂
c(i)
t , h(R

c(i)
t )) (5)

where d is the smooth L1 loss and h is the random augmen-
tation applied to the input xt. We apply the same augmen-
tation to the teacher bounding box predictions to align with
the scale of the student point cloud scene before computing
the consistency.

3.5. Instance-Level Consistency

In the second stage, NMS is performed on R to obtain
N high-confidence region proposals denoted as G for each

point cloud scene. We highlight that the association be-
tween region proposals from the student and teacher mod-
els are lost in the NMS process due to the differences be-
tween R̂t and Rt. To match the instance-level predictions
for consistency computation, a common method is to per-
form greedy matching based on IoU between teacher and
student region proposals. However, such matching is not
robust due to the large number of noisy predictions, which
leads to ineffective learning as shown experimentally in Ta-
ble 3. Hence, we adopt a simple approach by replicating the
teacher region proposals to the student model and applying
the input augmentation h to match the scale of the student
model. Subsequently, we disturb the region proposals by
applying random RoI augmentation ξ for the sets of region
proposals before they are used for feature pooling. The mo-
tivation of this operation is to force the models to output
consistent predictions given non-identical region proposals
and prevent convergence to trivial solutions. Formally, the
above process can be described as f̂t = pool(ξ(h(Gt)))
and ft = pool(ξ′(Gt)) for the student and teacher models,
respectively, where f denotes the instance-level features
obtained from feature pooling as described in [32]. The
pooled features are then passed to the box refinement net-
work FBRN for box refinement to obtain the second stage
predictions S = FBRN (f). Similar to the first stage predic-
tion R, S consists of the class prediction Sc as well as the
bounding box prediction Sb. We define the instance-level
class consistency as the difference between Ŝc

t and Sc
t :

Lins,cls =
1

|Gt|
∑

DKL(Ŝ
c
t ||Sc

t ) (6)

where |Gt| denotes the number of region proposals. On the
other hand, to compute the instance-level box consistency
loss, we first obtain a set of positive predictions Spos =

{(Ŝc
t > ε) ∩ (Sc

t > ε)} by selecting bounding boxes with
classification predictions larger than a probability threshold
ε. We then apply h to Sb

t to match the scale and compute
the instance-level box consistency loss based on the discrep-
ancy between Ŝb

t and Sb
t for the selected predictions:

Lins,box =
1

|Spos|
∑

Si
t∈Spos

d(Ŝ
b(i)
t , S

b(i)
t ) (7)

3.6. Neural Statistics-Level Consistency

As pointed out in [23, 5] that the mismatch in batch nor-
malization statistics between teacher and student models
could lead to suboptimal model performance, in our case,
while the student model takes both source domain data xs

and target domain data x̂t as input, the teacher model only
has access to the target data xt. The distribution shift lying
between source and target data could lead to mismatched
batch statistics between the batch normalization (BN) lay-
ers of the student and teacher models. This mismatch could
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cause misaligned normalization and in turn, leads to an un-
stable training process with degraded performance or even
divergence. We provide an in-depth analysis regarding this
matter in Section 4.4.

To mitigate this issue, we propose to use the running
statistics of the student model BN layers for the teacher
model during the training process. Specifically, for each BN
layer in the student model, the batch mean µ and variance
σ are used to update the running statistics at every iteration:

µ′ = (1− α)µ′ + αµ (8)
σ′ = (1− α)σ′ + ασ (9)

where µ′ and σ′ are the running mean of µ and σ and α is the
BN momentum that controls the speed of batch statistics up-
dating the running statistics. For the teacher model, we use
µ′ and σ′ instead of the batch statistics for all the BN layers
to normalize the layer inputs. We argue that this modifica-
tion closes the gap caused by domain mismatch and leads to
more stable training behavior. We empirically demonstrate
the effectiveness by comparing the performance under dif-
ferent BN settings in Section 4.3.

4. Experiments
We first introduce the popular autonomous driving

datasets including KITTI [11], Waymo Open Dataset [35],
and nuScenes [3] used in the experiments (Section 4.1).
We then benchmark MLC-Net across datasets where MLC-
Net achieves consistent performance boost in Section 4.2.
Moreover, we ablate MLC-Net to give a comprehensive as-
sessment of its submodules and justify our design choices in
Section 4.3. Finally, we further investigate the challenges
of unsupervised domain adaptive 3D detection and show
MLC-Net successfully addresses them. We further analyse
the problems in 3D domain adaptive detection and our so-
lutions in Section 4.4. Due to space constraint, we include
the implementation details in the Supplementary Material.

4.1. Datasets

We follow [38] to evaluate MLC-Net on various source-
target combinations with the following datasets.
KITTI. KITTI [11] is a popular autonomous driving dataset
that consists of 3,712 training samples and 3,769 validation
samples. The 3D bounding box annotations are only pro-
vided for objects within the Field of View (FoV) of the front
camera. Therefore, points outside of the FoV are ignored
during training and evaluation. We use the official KITTI
evaluation metrics for evaluation where the objects are cat-
egorized into three levels (Easy, Moderate, and Hard) and
the mean average precision is evaluated.
Waymo Open Dataset. The Waymo Open Dataset (re-
ferred to as Waymo) [35] is a large-scale benchmark that

contains 122,000 training samples and 30,407 validation
samples. We subsample 1/10 of the training and valida-
tion set. To align the input convention, we apply the same
front camera FoV as the KITTI dataset. The official Waymo
evaluation metrics including mean average precision (AP)
and mean average precision weighted by heading (APH) are
used to benchmark the performance for objects of two dif-
ficulty levels (L1 and L2).
nuScenes. The nuScenes [3] dataset consists of 28,130
training samples and 6,019 validation samples. We subsam-
ple the training dataset by 50% and use the entire valida-
tion set. We also apply the same FoV on the input as other
datasets. We adopt the official evaluation metrics of trans-
lation, scale, and orientation errors, with the addition of the
commonly used average precision based on 3D IoU with a
threshold of 0.7 to reflect the overall detection accuracy.

4.2. Benchmarking Results

As an emerging research area, the cross-domain point
cloud detection topic has relatively small literature. To the
best of our knowledge, [38] is the most relevant work that
has a similar setting as our study. We compare our method
with two normalization methods proposed in [38], namely
Output Transformation (OT) and Statistical Normalization
(SN), where the former transforms the predictions by an off-
set and the latter trains the detector with scale-normalized
input. Moreover, we also compare with the adversarial fea-
ture alignment method, which is commonly used on image-
based tasks, by adapting DA-Faster [8] to our PointRCNN
[32] base model. We also provide Direct Transfer and
Wide-Range Augmentation as baselines. Figure 1 displays
a qualitative comparison of the detection results before and
after domain adaptation with our proposed method. More
results can be found in the Supplementary Material.

Table 1 demonstrates the cross-domain detection perfor-
mance on four source-target domain pairs, MLC-Net out-
performs all unsupervised baselines by convincing margins.
We highlight that our method adapts scale for each instance
instead of applying a global shift, allowing us to surpass
state-of-the-art methods that utilize target domain object
scale statistics.

4.3. Ablation Study

To evaluate the effectiveness of the components of MLC-
Net, we conduct ablation studies on KITTI → Waymo
transfer with PointRCNN as the base model.

Effectiveness of Point/Instance-Level Consistency. We
study the effects of different components of the proposed
consistency loss. Table 2 reports the experimental results
when different combinations of loss components are ap-
plied. It is observed that for both point-level consistency
and instance-level consistency, the box consistency clearly
has a larger contribution as compared to the class consis-
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Table 1: Performance of MLC-Net on four source-target pairs in comparison with various baselines and state-of-the-art methods. MLC-
Net outperforms all baselines and even surpasses SOTA methods that utilize target domain annotation information (indicated by †). Direct
transfer: the model trained on the source domain is directly tested on the target domain. Wide-Range Aug: baseline method with random
scaling augmentation of a wide range which potentially includes the target domain scales. It is thus validated the drastic performance
degradation cannot be fully mitigated by simple data augmentation. DA-Faster[8]: a representative method based on adversarial feature
alignment, a common technique used in 2D domain adaptation. # indicates the implementation is adapted from 2D to 3D. However, feature
alignment is unable to solve the geometric mismatch, which we argue is unique to 3D detection. The state-of-the-art work [38] proposes to
perform output transformation (OT) to scale predictions and statistical normalization (SN) for scale-adjusted training examples. Both OT
and SN require known target domain statistics. MLC-Net, albeit being fully unsupervised, even surpasses these methods on key metrics:
APH/L2 (Waymo), AP3D (nuScenes), and AP Moderate (KITTI).

KITTI → Waymo Waymo → KITTI
Methods AP/L1 APH/L1 AP/L2 APH/L2 Methods Easy Moderate Hard

Direct Transfer 9.17 8.99 7.94 7.78 Direct Transfer 20.22 21.43 20.49
Wide-Range Aug 18.61 18.18 16.77 16.40 Wide-Range Aug 30.23 31.49 32.85
DA-Faster [8]# 6.96 6.87 6.42 6.33 DA-Faster [8]# 4.42 5.55 5.53

OT [38]† 26.48 25.84 23.85 23.29 OT [38]† 39.78 37.82 39.55
SN [38]† 30.69 30.06 27.23 26.67 SN [38]† 61.93 58.07 58.44

Ours 38.21 37.74 34.46 34.04 Ours 69.35 59.44 56.29
KITTI → nuScenes nuScenes → KITTI

Methods ATE ASE AOE AP3D Methods Easy Moderate Hard
Direct Transfer 0.207 0.248 0.212 13.01 Direct Transfer 49.13 39.56 35.51

Wide-Range Aug 0.200 0.228 0.211 16.01 Wide-Range Aug 58.71 45.37 43.03
DA-Faster [8]# 0.247 0.253 0.292 10.77 DA-Faster [8]# 52.25 40.62 35.90

OT [38]† 0.207 0.220 0.212 14.67 OT [38]† 23.13 27.26 29.10
SN [38]† 0.227 0.168 0.368 23.15 SN [38]† 44.81 45.15 47.60

Ours 0.197 0.179 0.197 23.47 Ours 71.26 55.42 48.99

Table 2: Ablation study of point-level and instance-level con-
sistency loss components. Results show loss components are
highly complementary; the joint use of all four losses at two lev-
els achieves the best performance. More importantly, we find that
the bounding box regression loss, which is directly associated with
bounding box scale, benefits the performance more than the clas-
sification loss. This further validates our stance that geometric
mismatch is a key domain gap for 3D detection.

Lpt,cls Lpt,box Lins,cls Lins,box AP/L1 APH/L1 AP/L2 APH/L2
18.61 18.18 16.77 16.40

✓ 20.34 19.91 18.07 17.70
✓ 30.34 29.69 27.08 26.49

✓ ✓ 31.00 30.39 27.64 27.09
✓ 21.12 20.87 18.79 18.57

✓ 33.21 32.44 29.95 29.26
✓ ✓ 34.95 34.53 31.43 31.05

✓ ✓ ✓ ✓ 38.21 37.74 34.46 34.04

tency. This observation indicates that the scale difference is
a major source of the domain gap between source and tar-
get domains with different object size distributions, which
is also in line with the previous work [38]. It also shows that
our proposed box consistency regularization method effec-
tively mitigates this gap. In addition, all losses are comple-
mentary to one another: the best result is achieved when all
four of them are used.

Furthermore, we compare MLC-Net with two alternative
approaches for point and box matching respectively in Ta-
ble 3. Compared to these baseline approaches, MLC-Net
replicates the input point clouds and the region proposals

Table 3: Ablation study of point-level and instance-level match-
ing methods. Nearest Point: a baseline for point match where a
point in the student input is matched to the nearest point in the
teacher input using Euclidean distance. Max IoU Box: a baseline
for box matching where a student box prediction is matched to the
teacher pseudo label with the largest IoU. Ours: input point clouds
or region proposals of the student are replicated from the teacher.
We highlight that our matching method ensures accurate one-to-
one correspondence, which is critical to effective teacher-student
learning.

Matching Method AP/L1 APH/L1 AP/L2 APH/L2
Nearest Point 2.93 2.86 2.65 2.58
Max IoU Box 26.95 26.66 24.18 23.92

Ours 38.21 37.74 34.46 34.04

before they are passed to the student and teacher models to
eradicate any noise which may arise from inaccurate match-
ing. The results highlight the importance of correspondence
in constructing meaningful consistency losses for effective
unsupervised learning.

Effectiveness of Neural Statistics-Level Consistency. We
also experiment on the effectiveness of neural statistics-
level consistency by comparing the performance when such
alignment is enabled and disabled. From Table 4 we can
see that when neural statistics-level consistency is disabled,
the model performance severely drops. As analyzed in Sec-
tion 3.6, when neural statistics-level consistency is not in
place, the teacher model BN layers normalize the input fea-
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Table 4: Ablation study of neural statistics-level consistency in-
dicates that MLC-Net effectively closes the domain gap due to
neural statistics mismatch. Disabled: no consistency is enforced.
Separate: the student model performs BN separately for source
and target domain inputs to align with the teacher model. Enabled:
our proposed neural statistics-level alignment.

Setting AP/L1 APH/L1 AP/L2 APH/L2
Disabled 2.79 2.74 2.54 2.49
Separate 29.88 29.45 26.85 26.48
Enabled 38.21 37.74 34.46 34.04

Table 5: Ablation study of the exponential moving average (EMA)
update scheme in mean teacher paradigm. The performance sig-
nificantly degrades when the exponential moving average update
is disabled, highlighting the importance of the mean teacher design
in producing meaningful targets.

EMA AP/L1 APH/L1 AP/L2 APH/L2
Disabled 8.95 8.66 8.35 8.08
Enabled 38.21 37.74 34.46 34.04

tures using batch statistics that are obtained from only tar-
get data, while the student model performs BN with statis-
tics from both source and target domains. This misalign-
ment creates a significant gap. As a result, the consistency
computation between the student and teacher predictions is
invalidated. We also compare with the approach that the
student model performs separate BN for source and target
data. In this case, although the normalization for target in-
put is performed with target statistics for both models, the
mismatched normalization of source and target inputs leads
to suboptimal performance as compared to MLC-Net.
Effectiveness of Mean Teacher. The teacher model is es-
sentially a temporal ensemble of student models at different
time stamps. We study the effectiveness of the mean teacher
paradigm by comparing the performance when the expo-
nential moving average update is enabled or disabled. Table
5 shows that it is important to employ the moving average
update mechanism for the teacher to generate meaningful
supervisions to guide the student model, and the removal of
such mechanism leads to performance deterioration.

4.4. Further Analysis

Analysis of Distribution Shift. We highlight that the ge-
ometric mismatch is a significant issue for cross-domain
deployment of 3D detection models. In Figure 2, the ob-
ject dimension (length, width, and height) distributions are
drastically different across domains with a relatively small
overlap. The baseline, trained on the source domain, is not
able to generalize to the target domain as the distribution of
its dimension prediction is still close to that of the source
domain. In contrast, MLC-Net is able to adapt to the new
domain by predicting highly similar geometric distribution
as the target domain.
Analysis of Neural Statistics Mismatch. Figure 4 shows
that inputs from different domains have very different dis-

Figure 4: Neural statistics mismatch across domains. We plot the
distributions of batch mean and batch variance. Significant mis-
alignment in batch statistics between source and target domains is
observed, which highlights the necessity of neural statistics-level
consistency.

Figure 5: Teacher and student model performance against itera-
tion. Not only does the teacher model constantly outperform the
student, its performance curve is also smoother. Hence, the teacher
model, which can be regarded as a temporal ensemble of the stu-
dent model, is able to produce more stable and accurate pseudo
labels to supervise the student model.

tributions of batch statistics, which explains the tremendous
performance drop when our proposed neural statistics-level
consistency is not applied to align the statistics (Table 4).
Analysis of Teacher/Student Paradigm. In Figure 5,
the teacher model in MLC-Net demonstrates stronger per-
formance during the training process until convergence.
Moreover, the teacher model exhibits a smoother learning
curve. This validates the effectiveness of our mean-teacher
paradigm to create accurate and reliable supervision for ro-
bust optimization of the student model.

5. Conclusion
We study unsupervised 3D domain adaptive detection

that requires no target domain annotation or annotation-
related statistics. We validate that geometric mismatch is
a major contributor to the domain shift and propose MLC-
Net that leverages a teacher-student paradigm for robust and
reliable pseudo label generation via point-, instance- and
neural statistics-level consistency to enforce effective trans-
fer. MLC-Net outperforms all the baselines by convincing
margins, and even surpasses methods that require additional
target information.
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