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Abstract

Most unsupervised domain adaptation methods rely on
rich prior knowledge about the source-target label set rela-
tionship, and they cannot recognize categories beyond the
source classes, which limits their applicability in practi-
cal scenarios. This paper proposes a new paradigm for
unsupervised domain adaptation, termed as Active Univer-
sal Domain Adaptation (AUDA), which removes all label
set assumptions and aims for not only recognizing target
samples from source classes but also inferring those from
target-private classes by using active learning to annotate
a small budget of target data. For AUDA, it is challenging
to jointly adapt the model to the target domain and select
informative target samples for annotations under a large
domain gap and significant semantic shift. To address the
problems, we propose an Active Universal Adaptation Net-
work (AUAN). Specifically, we first introduce Adversarial
and Diverse Curriculum Learning (ADCL), which progres-
sively aligns source and target domains to classify whether
target samples are from source classes. Then, we pro-
pose a Clustering Non-transferable Gradient Embedding
(CNTGE) strategy, which utilizes the clues of transferabil-
ity, diversity, and uncertainty to annotate target informative
sample, making it possible to infer labels for target samples
of target-private classes. Finally, we propose to jointly train
ADCL and CNTGE with target supervision to promote do-
main adaptation and target-private class recognition. Ex-
tensive experiments demonstrate that the proposed AUDA
model equipped with ADCL and CNTGE achieves signifi-
cant results on four popular benchmarks.

1. Introduction
Recent advances in deep neural networks have convinc-

ingly demonstrated the high capability of learning effec-
tive models on large datasets. The impressive achievements
heavily rely on quantities of labeled training instances,
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Figure 1. Comparison between Active Universal Domain Adapta-
tion and representative domain adaptation settings with respect to
classification tasks and assumptions on target label set. AUDA re-
moves all label set assumptions and aims for not only recognizing
target samples belonging to the shared common label set but also
inferring labels for those belong to target-private label set by using
active learning to annotate a small budget of target data.

which requires expensive and time-consuming labor work
of collection and annotation. A reasonable question is why
not directly recycling the off-the-shelf knowledge or models
from a source domain to new domains. As data from differ-
ent domains are sampled from different data distributions,
there is probably a large domain gap [60] which may de-
grade the model performance in the target domain [35, 40].
An appealing way to address this issue is Unsupervised Do-
main Adaptation (UDA) [44], which aims to learn a classifi-
cation model with source labeled data and target unlabeled
data to ensure that the learned model could perform well in
the target domain.

Most unsupervised domain adaptation methods can be
divided into four categories, namely, closed set domain
adaptation [25, 42, 47, 52, 57, 23], partial domain adapta-
tion [4, 5, 6], open set domain adaptation [36, 46, 65, 28],
and universal domain adaptation [61, 11, 45], as shown in
the top of Figure 1. Specifically, closed set domain adap-
tation [16, 30, 33] supposes that the source and target do-
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mains share the same label set. The partial domain adapta-
tion [4, 64, 6] assumes that the source label set contains the
target label set. The open set domain adaptation assumes
that common classes between two domains are known [36]
or the source label set is a subset of the target label set
[46]. Recently, Universal Domain Adaptation [61, 11, 45]
removes all assumptions about source-target label set rela-
tionship, and classifies target samples as labels contained in
the source label set or marks them as “unknown” similar to
the open set domain adaptation. However, the “unknown”
category is still unknown, which is inapplicable for practical
applications, e.g., new products recommendation or rare an-
imal/plant recognition. Therefore, it is necessary for prac-
tical domain adaptation algorithms to infer actual labels for
samples belonging to the “unknown” category.

To achieve this goal, we propose to define a new
paradigm for unsupervised domain adaptation, referred as
Active Universal Domain Adaptation (AUDA). As shown in
the bottom of Figure 1, a labeled source domain and a tar-
get domain without any explicit restrictions on the classes
are provided for model training. Classes are defined as
“known” if they belong to the source label set. Otherwise,
they are defined as “unknown”. Since target samples of “un-
known” classes are much more difficult to recognize than
the ones of “known” classes, AUDA algorithms need to
draw knowledge from the source domain to firstly recognize
the “known”/“unknown” label for the test samples from the
target domain. Then, actual class labels should be inferred
for both “known” and “unknown” samples. However, it is
nearly impossible to infer labels for the “unknown” sam-
ples without any labeled training data. Since practical ap-
plications offer the possibility of annotating a small budget
of target instances, termed as Active Learning (AL), we are
motivated to acquire labels for a subset of target data from
an oracle, especially, labels of target “unknown” samples,
to assist the unknown category inference.

To design algorithms for active universal domain adap-
tation, we are exposed to two aspects of technical chal-
lenges: (1) Without any prior knowledge of the source-
target label set relationship, there exist a large domain gap
and significant semantic shift problems in AUDA. Specifi-
cally, source and target data are sampled from different dis-
tributions and the domain gap makes it hard to recognize
“known”/“unknown” instances in the target domain. More-
over, the unexpectable semantic shift means that many un-
known classes are contained in the target domain, making
it extremely difficult to reduce the domain gap between the
shared classes. If the domain gap and semantic shift cannot
be well reduced, it is challenging for active learning to an-
notate informative instances to infer target “unknown” in-
stances. (2) During active learning, the most informative
target instances should be annotated and used for learning
to infer target “unknown” instances. Most existing AL ap-

proaches prefer to annotate instances that are highly un-
certain [10, 12, 24, 54] or diverse [49, 15]. As these ap-
proaches perform active learning without considering do-
main gap and semantic shift, uncertainty and diversity may
be wrongly estimated [34]. Therefore, directly applying the
traditional AL approaches easily lead to select outliers, re-
dundant instances, or uninformative instances for annota-
tion, which is detrimental for further reducing the domain
gap and semantic shift, and damages the performance of in-
ferring target “unknown” samples. Although the prior work
in active domain adaptation [53] tries to deal with the prob-
lem of domain gap, it dose not consider the semantic shift
problem, making it inapplicable for AUDA. As a result, it
is advisable to design active learning strategies that can an-
notate the most informative target instances with the joint
consideration of domain gap and semantic shift.

Motivated by the above observations, we propose an Ac-
tive Universal Adaptation Network, which simultaneously
adapts the model from the source domain to the target do-
main, and performs active learning towards target informa-
tive instances for unknown category inference. Specifically,
we first propose Adversarial and Diverse Curriculum Learn-
ing (ADCL), which designs an adversarial curriculum loss
and a diverse curriculum loss to align source and target do-
mains, and learn the ability of target “known”/“unknown”
instances recognition1. Thus, the negative effects of do-
main gap and semantic shift in active learning can be al-
leviated, which helps to select more informative instances
for annotation. Then, we propose an active learning strat-
egy named Clustering Non-transferable Gradient Embed-
ding (CNTGE), which utilizes the clues of transferabil-
ity, diversity, and uncertainty to annotate target samples
of target-private classes and assign pseudo labels to highly
confident target “known” instances. The labeled and pseudo
labeled target instances could provide better supervision for
ADCL, which helps to learn better curriculums. Finally,
jointly training with ADCL and CNTGE could further rein-
force the adaptation process, and learn to infer actual labels
for target “unknown” instances.

The main contributions of this paper are: (1) We in-
troduce a more practical unsupervised domain adaptation
paradigm, Active Universal Domain Adaptation, which re-
quires no assumptions about the target label set and aims for
not only recognizing target samples belonging to the shared
label set but also inferring those of target-private classes via
active learning. (2) To address the AUDA task, we pro-
pose Active Universal Adaptation Network, an end-to-end
model, which performs adversarial and diverse curriculum
learning and clustering non-transferable gradient embed-
ding to cooperatively promote domain adaptation and active

1Here, we define target samples from the common label set as the tar-
get “known” instances while others from target private label set are target
“unknown” instances.
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learning. (3) Extensive experiments demonstrate that the
proposed AUDA model equipped with ADCL and CNTGE
achieves significant classification results.

2. Related Work
Domain Adaptation. According to the assumptions of the
source-target label set, most domain adaptation approaches
can be categorized into closed set adaptation, partial do-
main adaptation, openset domain adaptation, and univer-
sal domain adaptation. Closed Set Domain Adaptation as-
sumes that the source and target domains share the same
label set, which focuses on mitigating the impact of the
domain gap between source and target domains. Solu-
tions to closed set domain adaptation mainly fall into fea-
ture adaptation [17, 31, 63, 26, 9] and generative model
[13, 21, 22, 29, 55, 59, 32]. Partial Domain Adaptation
assumes that the label set of the source domain is supposed
to be large enough to contain the target label set [4, 5, 6, 8].
Open Set Domain Adaptation assumes that classes shared
by two domains are known [36] or the source label set is
a subset of the target label set [46], which could classify
target samples as source classes or a “unknown” class. Al-
though knowledge graph is leveraged to further infer ac-
tual labels for “unknown” samples [65], it still follows the
open set domain adaptation assumptions. Universal Do-
main Adaptation [61, 11, 45] adopts a more generated set-
ting, which can classify target samples as any class in the
source labels set or mark them as “unknown” without any
prior knowledge on the target label set. Unfortunately, the
existing paradigms of unsupervised domain adaptation can
only classify samples as source classes. As for others,
they can only be marked as an “unknown” class. Different
from the existing DA settings, we are motivated to infer ac-
tual classes for all target instances without any assumptions
about the source-target label set relationship via the cooper-
ation between domain adaptation and active learning.
Active Learning. Active Learning aims to develop label-
efficient algorithms by sampling the most representative
queries to be labeled by an oracle [50]. Current approaches
can be mainly divided into two categories: uncertainty and
diversity. The first one aims to annotate samples for which
the model has uncertain prediction [12, 10, 54, 48, 58, 43,
18, 3]. The second focuses on picking a set of instances
that are representative and diverse for the entire dataset rata
[49, 15, 51, 14]. Several approaches also propose a trade-
off between uncertainty and diversity [20, 2]. Recently, ac-
tive learning with domain adaptation, termed as Active Do-
main Adaptation, is of great practical interest. However,
only a little previous work addresses the problem. The pi-
oneering work [41] studies the task of active adaptation ap-
plied to sentiment classification for text data. Rita et al.
[7] select target samples to learn importance weights for
source instances by solving a convex optimization prob-
lem of minimizing maximum mean discrepancy (MMD).

However, those strategies do not fit model adaptation with
deep nets. More Recently, Su et al. [53] study this task
in the context of deep convolutional nets and instances are
selected based on their uncertainty and “targetness”. How-
ever, these label acquisition strategies are designed based
on the assumption that source and target domains share the
same label set. In our work, we design a novel active learn-
ing strategy under the challenges of domain gap and seman-
tic shift, which does not rely on any assumptions about the
source-target label set relationship.

3. Our Approach
3.1. Problem Setting

In active universal domain adaptation, the learning al-
gorithm has access to a labeled source domain DS =
{(xs

i ,y
s
i )}

ns

i=1 and an unlabeled target domain DUT =
{(xt

i)}
nt

i=1, which are respectively sampled from different
distributions ps and pt. At each active learning round, the
learning algorithm may query an oracle to obtain labels of
nr instances from DUT . After R rounds of active learn-
ing, nb labeled target instances are added to the budget
DLT = {(xt

i,y
t
i)}

nb

i=1 where nb = R · nr. Besides, we
use Cs to represent the label set of source domain while the
label set of target domain is denoted as Ct. Cc=Cs ∩ Ct is
the common label set shared by both domains. C̃s=Cs\Cc
and C̃t=Ct\Cc respectively represent source private label set
and target private label set. Note that the target label set Ct
is inaccessible during training. The task of AUDA is to in-
fer actual labels for all target instances no matter they are
from Cc or C̃t.
3.2. Active Universal Adaptation Network

We propose an Active Universal Adaptation Network
(AUAN) to address the AUDA task. The AUAN consists
of a feature extractor Gf , a classifier Gc, a domain discrim-
inator Gd, and prototype classifiers Gp, which are respec-
tively parameterized by θf , θc, θd and θp. Gf is learned to
generate discriminative representations for source and tar-
get samples. Gc aims to classify target “known” instances
as source classes. Gd is trained adversarially to align source
and target domain. Gp is designed to classify target “un-
known” instances as target private classes, which maintains
class representations (prototypes) in the target domain. Dur-
ing training, new prototypes will be dynamically added into
Gp, once an instance with target private classes is annotated
by active learning and its prototype is not stored in Gp.

The learning process mainly consists of three main parts
at each training loop, as shown in Figure 2. The AUAN
needs to be trained several loops. For simplicity, we take
one training loop as an example to introduce our algo-
rithm. During adversarial and diverse curriculum learn-
ing, we propose to train Gc and Gd as a curriculum learn-
ing style to progressively adapt Gc to the target domain.
Besides, the model gradually learns the ability to identify
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Figure 2. Three stages in AUAN: adversarial and diverse curricu-
lum learning, active learning via clustering non-transferable gra-
dient embedding and joint training with target supervision.

target “known”/“unknown” instances, which helps to an-
notate target informative instances during active learning.
In the active learning stage, we propose a Clustering Non-
transferable Gradient Embedding strategy which utilizes the
clues of transferability, uncertainty and diversity. Target in-
formative instances are selected for annotation. Meanwhile,
high confident target “known” instances are assigned with
pseudo labels predicted by Gc. Finally, all the labeled and
pseudo labeled target data are used for further improving Gc

in cross-domain alignment and learning Gp for target pri-
vate classes. After several training loops of the three stages,
the model can infer actual labels for all target instances.

3.2.1 Adversarial and Diverse Curriculum Learning
Due to the domain gap and semantic shift in AUDA, it is
challenging to directly train a reliable model to recognize
the “known”/“unknown” label for target instances and pre-
dict actual labels for target “known” instances. In addi-
tion, as Gc overfits the source domain, Gc may classify tar-
get “unknown” instances as source classes with high con-
fidence. To alleviate the above problems subtly, motivated
by curriculum learning [27], we select samples from easy to
hard for cross-domain alignment and meanwhile, reduce the
over-reliance of Gc on target “unknown” instances. Specif-
ically, we design two curriculum losses, namely, an adver-
sarial curriculum loss Ladv and a diverse curriculum loss
Ldiv . The overall objective in ADCL is:

min
θf ,θc

Lc + Ldiv − Ladv,

max
θd

Ladv,
(1)

where Lc is the standard cross-entropy classification loss
calculated in the source domain. The min-max optimiza-
tion is achieved by a gradient reverse layer [13]. Both Ladv

and Ldiv are designed based on transfer score metric, which
measures the transferability of a target sample xt

i. Given a
target sample xt

i, its transfer score is a combination of two
signals:

wt(x
t
i) = max ȳ(xt

i) + d(xt
i), (2)

where max ȳ(xt
i) ∈ [0, 1], d(xt

i) ∈ [0, 1], and wt(x
t
i) ∈

[0, 2]. The first term refers to the classification confidence
that can manifest itself by the max value of classification
probabilities, i.e., ȳ(xt

i) = Gc(Gf (x
t
i)). The second term

is the similarity to the source domain, which can be es-

timated by the output of the domain discriminator, i.e.,
d(xt

i) = Gd(Gf (x
t
i)). A higher value wt(x

t
i) indicates that

xt
i appears to be from the shared label set Cc; otherwise xt

i

may be an “unknown” instance.
The adversarial curriculum loss Ladv aims for progres-

sively aligning source and target samples from the common
label set Cc, as shown in Eq (3):

Ladv = Exs
i∈DS [ws (x

s
i ) · log(1−Gd(Gf (x

s
i )))]

+ Ext
i∈DUT

[
1wt(x

t
i)⩾wα(t) · log(Gd(Gf (x

t
i)))

]
,

(3)

where the indicator 1wt(xt
i)⩾wα(t) in Ladv can select target

samples xt
i belonging to Cc from easy to hard by gradually

reducing the value of wα(t). The source weight ws(x
s
i )

aims to assign higher values for source samples from Cc
and lower values for source samples from C̃s, which can
be reliably estimated by Gc’s predictions on target samples
from Cc. First, we utilize the curriculum wt(x

t
i) ⩾ wα(t)

to select target samples from Cc, which should have higher
classification probability (predicted by Gc) on the shared
categories than source private categories. Then, we can
get the Gc’s predictions on the selected target samples,
and calculate the average classification probabilities V, i.e.,
V = avgwt(xt

i)⩾wα(t) Gc(Gf (x
t
i)). Note that categories

with higher values in V are probably the shared categories
while those with lower values are likely to be source-private
categories. Therefore, V can be used to calculate the weight
of a source sample (xs

i ,y
s
i ), i.e., ws (x

s
i ) = Vys

i
, where ys

i

is used as the index of V. Note that source samples with the
same category label are assigned with the same weight.

To gradually reduce the over-reliance of classifier Gc,
the diverse curriculum loss Ldiv defined in Eq (4) utilizes
the indicator 1wt(xt

i)<wα(t) to select target “unknown” sam-
ples and enforces these selected samples to be uniformly
distributed across different classes in Cs by minimizing the
negative entropy of Gc’s predictions.

Ldiv = Ext
i∼pt

[1wt(xt
i)<wα(t) · −H(Gc(Gf (x

t
i)))], (4)

where H(·) is the entropy function. With the cooperation
between adversarial curriculum loss and diverse curriculum
loss, the model can progressively and reliably predict the
“known”/“unknown” label for target instances and classify
target “known” instances.

3.2.2 Active Learning via Clustering Non-transferable
Gradient Embedding

We hope the model can find out the most informative in-
stances in the unlabeled target dataset DUT and query their
labeling information from an oracle to construct the labeled
target dataset DLT . The informative target instances, in-
tuitively, are the ones most different from what the model
has already known. Previous AL strategies focus on find-
ing instances that are highly uncertain or diverse, which is
suboptimal for AUDA. The informative instances in AUDA

8971



should satisfy the following conditions: (1) Similar to tra-
ditional AL, the selected instances should also be highly
uncertain and diverse. (2) The selected instances should
be target “unknown” samples and their actual labels are
from the target private label set, making it possible to
learn prototype classifiers for target private classes. To sat-
isfy the above requirements, we propose to perform active
learning by clustering Non-transferable Gradient Embed-
ding (CNTGE), which utilizes the clues of transferability,
uncertainty and diversity.
Transferability. To accurately select target samples of
target private classes for annotation, we should firstly re-
move target “known” samples from DUT and perform ac-
tive learning on the remaining unlabeled data. To achieve
this goal, we first run the K-means algorithm [1] on all the
unlabeled target features {futi |futi = Gf (x

t
i),x

t
i ∈ DUT }

to obtain nr centroids {ui}nr

i=1. Then, we calculate the
transfer scores wt(ui) (Eq (2)) of these centroids. We as-
sume that a cluster’s category is from the common label
set Cc and samples belonging to the cluster are transfer-
able if wt(ui) > β, otherwise, the cluster’s category is
from the target private label set C̃t and its samples are non-
transferable. As for clusters with wt(ui) > β, we can con-
struct pseudo labeled target dataset DPLT without any an-
notation cost, i.e., DPLT = {(xt

ij , ỹ
t
i)|wt(ui) > β, ỹt

i =
argmaxGc(ui), i = 1 · · · , nr} where ui is the clustering
centroid of xt

ij . As for the rest of the target unlabeled sam-
ples, their labels are most likely from target private label set
C̃t, These non-transferable instances will be used as query
candidates DNT = DUT \DPLT for active learning.
Uncertainty and Diversity: Clustering Gradient Em-
beddings of Non-transferable Instances. To jointly cap-
ture both uncertainty and diversity of non-transferable in-
stances in DNT , we aim to select nr target instances to
query their labels from an oracle and add the selected in-
stances into the target labeled dataset DLT at each active
learning round. Specifically, we firstly compute the gradi-
ent embeddings [2] for all non-transferable instances DNT .
Note that the magnitude of a gradient vector captures the
uncertainty of the model on the instance: if the model is
highly certain about the instance’s label, the norm of the
instance’s gradient embedding is small, and vice versa for
samples where the model is uncertain. Then, nr diverse
high-magnitude samples are selected. It is impossible to
make sure all instances in DLT are with labels in C̃t, and
some of them probably are with labels in Cc. Even so, they
are helpful for promoting the adaptation process.

3.2.3 Joint Training with Target Supervision
After the active learning process, two types of target su-
pervision are provided: DPLT and DLT . These annotated
target instances will be leveraged to further promote the
functions of ADCL and learn Gp for inferring target “un-

known” instances. To promote ADCL, instances in DLT

from source classes should join in the learning of classifier
Gc and cross-domain adversarial training while instances in
DLT from target private classes should help to reduce Gc’s
over-reliance. Therefore, the classification loss Lc, adver-
sarial curriculum loss Ladv (Eq (3)) and diverse curriculum
loss Ldiv (Eq (4)) are re-formulated, as shown in Eq (5).

L̃c = Lc + E(xt
i,y

t
i)∈DLT ,yt

i∈Cs

[
Lce(y

t
i , Gc(Gf (x

t
i)))

]
,

L̃adv = Ladv + E(xt
i,y

t
i)∈DLT ,yt

i∈Cs

[
log(Gd(Gf (x

t
i)))

]
,

L̃div = Ldiv + E(xt
i,y

t
i)∈DLT ,yt

i /∈Cs
[−H(Gc(Gf (x

t
i)))].

(5)

Since DPLT contains noisy labels, for accurate cross-
domain alignment, we only leverage DLT to enforce the
adaptation process.

As DLT is too small to discriminatively learn the proto-
type classifiers Gp, we leverage DPLT to serve as comple-
mentary cues in the learning process. To further improve the
instance-level discriminative power for all the target sam-
ples, we are motivated to cluster target features in DUT

with its neighbors (labeled target features or prototypes) by
a self-supervised cluster objective Lnc. Thus, similar fea-
tures could cluster together and Gp could make more reli-
able predictions. The overall objective to learn Gp is:

min
θf ,θp

Lp + Lnc, (6)

where the classification loss Lp is defined as Eq (7):

Lp = E(xt
i,ỹ

t
i)∈DPLT

[
Lce(ỹ

t
i , Gp(Gf (x

t
i)))

]
+ E(xt

i,y
t
i)∈DLT

[
Lce(y

t
i , Gp(Gf (x

t
i)))

]
,

(7)

where Lce is the cross-entropy loss.
To cluster target features in DUT to meaningful neigh-

bors, we propose to calculate a self-supervised cluster loss
Lnc. Here, the meaningful neighbors are labeled target sam-
ples or prototypes in Gp. Firstly, in a mini-batch, we calcu-
late the similarity of unlabeled target samples futi in DUT

to all labeled target samples {f lti |f lti = Gf (x
t
i),x

t
i ∈ DLT }

and K prototypes {w1, · · · ,wk, · · · ,wK} in Gp. Since a
mini-batch data cannot contain all the labeled target sam-
ples, we construct a memory bank M ∈ R(nr+K)×d to
store all the labeled target samples and prototypes, i.e.,
M = [f lt1 , · · · , f lti , · · · f ltnr

,w1, · · · ,wk, · · · ,wK ] where
f lti and wk are L2-normalized. Because Gf and Gp are
updated at each training step, M is updated with mini-batch
data by replacing the older ones with the updated ones. Let
Mj denotes the j-th item in M. Then, the probability that
a target feature futi in DUT is a neighbor of Mj is:

pi,j =
exp(MT

j f
ut
i /τ)

Zi
and Zi =

∑
Mj∈M

exp(MT
j f

ut
i /τ), (8)

where τ is the temperature parameter. Then, the entropy-
based clustering loss is calculated as:

Lnc = Ext
i∈DUT

[∑
j
−pi,j log(pi,j)

]
. (9)
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Algorithm 1: Active Universal Adaptation Network
1 Require: Feature extractor Gf , classifier Gc, domain discriminator Gd

and prototype classifier Gp, parameterized by θf , θc, θd and θp
respectively, labeled source domain DS , unlabeled target domain DUT ,
total rounds R, per-round budget nr .

2 Define: target labeled dataset DLT = ∅, target pseudo labeled dataset
DPLT = ∅. Gp contains no prototypes in the beginning.

3 Warm Up: Solve Eq (1) with DS and DUT .
4 for r = 0 to R do
5 # AL: Clustering Non-transferable Gradient Embedding:
6 DUT = DUT \DLT

7 For all instances in DUT :
8 1. Run K-Means and calculate the transfer scores of nr centroids.
9 2. Construct target pseudo dataset DPLT .

10 3. Compute gradient embedding [2] on DNT = DUT \DPLT ,
query nr instances’ labels, finally add them into DLT , and finally
add new prototypes to Gp.

11 # Joint Training AUAN via Adversarial and Diverse Curriculum
Learning:

12 Solve Eq (10) with DS , DUT , DLT and DPLT .
13 end

Output: Model parameters: θf , θc, θd and θp.

Finally, The overall objective to learn the active universal
adaptation network is shown as Eq (10)

min
θf ,θc

L̃c + L̃div − L̃adv,

max
θd

L̃adv,

min
θf ,θp

Lp + Lnc,

(10)

where the parameters are optimized as an alternate style.
Algorithm 1 shows the processes of training and active
learning. Once the model is trained, we can leverage AUAN
model to classify all target instances according to Eq (11):

y(xt
i) =

{
argmaxGc(Gf (x

t
i)) wt(x

t
i) > w0

argmaxGp(Gf (x
t
i)) otherwise (11)

4. Experiments
In this section, we first illustrate datasets, compared

methods, evaluation protocols, and implementation details.
Then, we show extensive experimental results and analysis.
Due to the limited space, more results and analysis can be
found in the supplementary material.

4.1. Setup

Datasets. The first dataset Office-Home [56] contains four
domains: Art (Ar), Clipart (Cl), Product (Pr) and Real-
World (Rw) across 65 classes. In the alphabet order, we use
the first 10 classes as Cc, the next 5 classes as C̃s and the rest
as C̃t. The second dataset VisDA [39] contains 12 classes
from two domains: synthetic (S) and real (R) images. The
class numbers of Cc, C̃s and C̃t are respectively 6, 5 and
3. The third dataset is Office-31 [44], which contains three
domains (Amazon (A), DSLR (D), Webcam (W)) and 31
classes. The class numbers of Cc, C̃s and C̃t are respectively
10, 11 and 10. The forth dataset is DomainNet [38], which
contains six domains: Clipart (C), Infograph (I), Painting
(P), Quickdraw (Q), Real (R) and Sketch (S) across 345

Table 1. The average class accuracy (%) on Office-Home, Office-
31, VisDA and DomainNet datasets for different DA methods
equipped with different AL strategies. The best results are bolded.

DA
AL

Random Margin Coreset BADGE AVG

Office-Home
ResNet 26.32 28.06 30.42 28.35 28.29
UAN 32.58 32.58 32.77 33.86 32.95

ADCL 47.19 46.86 45.73 47.94 47.33
Office-31

ResNet 75.67 76.37 77.97 77.29 76.83
UAN 64.56 60.56 65.43 61.96 63.13

ADCL 79.15 78.55 80.79 80.51 79.75
VisDA

ResNet 59.27 61.98 61.43 61.91 61.15
UAN 59.11 72.45 57.28 62.83 62.92

ADCL 63.15 63.49 62.58 64.00 63.31
DomainNet

ResNet 27.43 29.07 28.91 30.68 29.02
UAN 34.12 34.91 35.47 35.90 35.10

ADCL 37.54 37.37 34.34 37.09 36.59

classes. The class numbers of Cc, C̃s and C̃t are respectively
150, 50 and 145. Following [11], We choose 3 domains in
the DomainNet dataset to transfer between each other. For
a fair comparison, all dataset partitions follow the universal
domain adaptation [61]. We set the per-round budget as 21
for office-home, 10 for office31, 100 for VisDA and 115 for
DomainNet, and perform 15 rounds of active learning.
Compared Methods. As the existing UDA methods cannot
handle the new AUDA task, we extend two domain adapta-
tion baselines to the AUDA setting, i.e., ResNet [19] and
UAN [61] equipped with state-of-the-art active learning ap-
proaches. To compare four types of active learning strate-
gies, we select the following seven approaches: (1) Ran-
dom: The naive baseline that randomly selects several in-
stances to annotate labels at each round. (2) Uncertainty: a)
Entropy [58]: Sampling instances over which the model has
high predictive entropy. b) Margin [43]: Sampling instances
for which the score between the model’s top-2 predictions
is the smallest. c) Confidence [58]: Sampling instances for
which the predictive confidence is the lowest. (3) Diversity:
a) K-means: K-means is performed at each round and one
sample closest to its centroid is selected for each cluster. b)
Coreset [49]: Sampling instances that geometrically cover
data distributions. (4) Mixture of Uncertainty and Diversity:
BADGE [2]: Sampling instances that are disparate and high
magnitude when presented in a hallucinated gradient space.
Evaluation Protocols. We report the average class accu-
racy for comparison. Specifically, we firstly calculate the
classification accuracy for each category in the target do-
main and finally average them. Besides, the curves of aver-
age class accuracy with the annotation round increasing are
drawn for comparing different active learning strategies.
Implementation Details. We use Pytorch [37] for our im-
plementation. Following the UAN [61], ResNet-50 [19] is
used as the feature extractor. A bottleneck layer with 256
units followed by a classifier and a domain discriminator, is
added after the feature extractor. Another bottleneck layer
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Table 2. Average class accuracy (%) at 5th, 10th and 15th annotation round on Office-Home, Office-31, VisDA and DomainNet datasets
for comparing different active learning strategies. The best results are bolded.

Office-Home
AL Strategy Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar

5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th

Random 21.36 26.34 29.33 50.58 54.09 60.05 42.67 46.03 48.32 34.48 41.51 47.27 48.53 53.06 56.53 42.10 45.99 47.20 39.10 45.63 52.78
Entropy 20.01 24.51 27.19 45.32 51.71 55.41 41.98 46.17 48.48 31.56 37.94 44.62 39.84 45.94 51.52 41.73 45.12 45.44 32.55 41.19 47.86

Confidence 18.59 26.72 29.36 46.99 52.66 55.81 42.06 46.35 47.41 35.52 42.31 43.89 45.98 49.25 52.20 42.17 47.15 50.10 36.08 41.44 46.10
K-means 21.68 25.27 27.45 46.53 50.37 53.17 40.40 41.24 42.71 34.17 37.79 41.36 43.51 47.21 48.09 39.08 41.17 41.54 38.69 41.41 46.54
Margin 24.60 26.37 29.49 50.63 56.31 58.49 49.24 49.95 51.36 36.93 42.35 44.79 47.41 52.62 56.35 42.15 46.63 47.73 37.43 45.34 50.11
Coreset 25.04 26.58 26.94 49.94 53.44 56.77 45.97 46.99 48.89 39.11 42.01 44.29 47.78 48.45 52.94 44.09 45.30 48.50 40.33 46.33 51.47
BADGE 22.28 28.45 30.53 51.03 55.81 58.44 43.41 48.05 49.79 32.60 39.66 44.59 49.07 54.25 58.63 42.20 45.58 48.00 41.14 47.86 54.68

CNTGE (Ours) 27.25 32.44 36.51 56.02 63.58 67.96 48.39 57.56 61.02 40.89 50.20 53.75 51.57 61.58 65.82 46.49 56.03 61.88 38.50 49.49 54.26

Office-Home VisDA
AL Strategy Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr AVG S→R

5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th

Random 21.47 24.80 29.25 50.80 54.00 58.68 38.50 46.78 52.11 18.16 21.67 25.01 51.59 55.83 61.77 38.28 42.98 46.86 62.72 63.15 63.15
Entropy 17.01 21.58 22.95 45.15 50.11 54.75 33.31 38.93 45.95 17.12 20.47 22.38 45.18 49.82 53.01 34.23 39.46 43.30 57.46 57.97 60.06

Confidence 19.72 23.47 24.54 47.95 53.59 57.96 35.34 43.32 45.51 17.41 19.43 23.74 48.21 52.51 57.44 36.34 41.52 44.50 58.77 60.64 61.17
K-means 22.97 27.58 28.95 44.68 47.44 49.68 37.88 40.96 46.13 20.01 22.76 22.94 45.27 51.35 53.49 36.24 39.55 41.84 64.40 64.59 64.59
Margin 23.84 28.26 30.02 50.74 56.72 60.89 39.19 44.74 49.26 19.98 22.64 22.73 56.16 59.34 61.06 39.86 44.27 46.86 62.05 63.49 63.49
Coreset 24.21 27.34 28.00 51.51 58.47 59.10 41.10 45.25 50.17 22.63 22.68 22.68 50.89 55.54 58.99 40.22 43.20 45.73 62.24 62.24 62.58
BADGE 23.43 28.59 29.91 49.21 58.96 61.01 38.67 47.69 51.79 18.35 23.39 25.64 49.27 58.45 62.28 38.39 44.73 47.94 63.76 64.00 64.00

CNTGE (Ours) 28.49 34.38 39.11 55.02 64.44 69.76 40.96 50.93 55.03 25.65 31.13 36.55 56.18 64.56 69.24 42.95 51.36 55.91 71.32 73.23 73.91

Office-31
AL Strategy A→D A→W D→A D→W W→A W→D AVG

5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th

Random 80.75 82.78 85.23 71.58 79.30 84.22 59.80 63.01 64.90 81.65 88.06 91.35 58.69 61.38 62.84 83.29 84.09 86.33 72.63 76.43 79.15
Entropy 75.54 80.08 82.98 69.11 75.75 80.75 49.34 54.63 54.63 82.55 87.75 90.47 48.60 50.87 55.36 82.61 83.99 85.86 67.96 72.18 75.01

Confidence 74.65 80.38 81.97 72.93 76.19 81.06 52.06 54.04 54.04 87.17 90.01 90.82 48.63 54.86 56.62 84.02 85.43 87.73 69.91 73.48 75.37
K-means 76.96 79.85 82.34 70.20 73.39 78.83 54.65 58.84 61.46 75.51 78.86 86.72 54.01 56.64 58.88 83.41 84.16 86.57 69.12 71.96 75.80
Margin 80.50 83.34 83.75 75.37 81.46 82.11 58.79 62.46 66.31 86.35 90.15 91.27 53.55 57.34 61.55 85.38 86.32 86.32 73.32 76.84 78.55
Coreset 81.08 84.38 86.18 76.77 83.64 86.10 57.19 61.84 66.33 85.84 92.01 92.76 58.43 60.73 65.21 83.51 86.28 88.17 73.80 78.15 80.79
BADGE 79.90 84.12 84.45 78.21 81.58 86.16 58.07 64.28 68.77 87.77 90.43 91.34 58.12 62.16 65.74 84.49 85.27 86.59 74.43 77.97 80.51

CNTGE (Ours) 79.81 85.48 87.21 80.53 83.05 86.19 61.91 67.50 68.13 90.91 91.13 92.26 62.20 65.50 65.67 86.38 86.95 87.60 76.96 79.94 81.18

DomainNet
AL Strategy P→R R→P P→S S→P R→S S→R AVG

5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th

Random 38.57 43.46 48.56 29.92 34.03 36.24 24.72 28.11 29.53 28.86 32.16 33.98 24.51 28.09 29.49 42.01 46.56 47.46 31.43 35.40 37.54
Entropy 8.92 11.05 11.05 25.61 27.99 29.29 22.23 24.90 26.85 23.99 25.63 27.64 21.82 24.98 26.96 28.69 29.66 30.43 21.88 24.04 25.37

Confidence 32.83 45.38 46.69 29.99 33.29 36.57 25.43 29.06 31.11 28.23 30.83 34.05 24.83 28.50 29.93 39.39 45.24 45.90 30.12 35.38 37.37
K-means 10.14 10.73 12.77 28.16 29.47 30.74 22.35 25.92 28.71 26.27 26.86 28.88 22.67 25.82 28.14 30.94 31.83 32.67 23.42 25.10 26.99
Margin 38.85 38.85 39.52 30.73 32.07 34.92 26.47 27.98 29.43 28.78 30.07 32.31 24.70 26.36 28.26 40.11 44.25 46.42 31.60 33.26 35.14
Coreset 20.57 31.55 31.74 28.75 31.67 34.57 24.30 28.03 29.45 28.99 32.39 33.77 24.17 27.39 29.09 38.46 43.35 47.42 27.54 32.40 34.34
BADGE 23.16 38.66 40.31 30.22 33.71 37.31 25.09 28.33 30.69 29.83 32.01 35.70 25.14 27.94 31.13 40.99 45.09 47.38 29.07 34.29 37.09

CNTGE (Ours) 46.85 50.06 54.00 30.86 34.43 38.12 24.84 28.94 31.55 30.54 32.22 36.71 25.34 28.72 32.35 45.02 45.87 48.77 33.91 36.71 40.25

with 256 units embeds features extracted by Gf to learn
prototype classifiers. The optimization setting follows [13].
The margin function is set as wα(t) = w0 + (1 − t

T ) · α
where w0 = 1.0, t is the t-th training step and T is the
total training iterations. The hyper-parameters are tuned
with cross-validation [62], and fixed for each dataset, i.e.,
α = 0.2, β = 1.5, τ = 0.05. More details are illustrated in
the supplementary material.

4.2. Comparative Results
Comparison agaist different domain adaptation meth-
ods. To justify the effectiveness of our proposed ADCL for
AUDA, we extend two domain adaptation baselines, i.e.,
ResNet and UAN, to the AUDA setting by learning proto-
type classifiers. Similar to our method, the prototype classi-
fiers in baselines are learned with DLT by optimizing Eq 6.
We construct different combinations between domain adap-
tation models (ResNet, UAN, and our proposed ADCL) and
active learning strategies (Random, Margin, Coreset, and
BADGE) for comparison. The average class accuracy re-
sults are shown in Table 1. We can observe that ADCL per-
forms the best when equipped with different AL strategies,
especially, outperforms UAN which also deals with the do-
main gap and semantic shift problems. The results support
that the proposed ADCL can effectively alleviate the neg-

ative impact of domain gap and semantic shift, and helps
AL strategies annotate informative instances to infer actual
labels for all target instances.
Comparison with different active learning strategies. To
evaluate the effectiveness of our proposed CNTGE strat-
egy, we consider fixing the domain adaptation method as
ADCL and varying the active learning methods (seven prior
work) for comparison. As shown in Table 2, we report the
average class accuracy on Office-Home, Office-31, VisDA
and DomainNet datasets at the 5th, 10th and 15th annota-
tion round for conciseness. Besides, the full performance
curves of some hard transfer tasks are shown in Figure 3.
Our proposed AL strategy CNTGE performs the best on
most tasks or the second on a few tasks, which proves that
target instances annotated by CNTGE are more informa-
tive than those annotated by other methods under domain
gap and semantic shift. More importantly, CNTGE per-
forms well in DomainNet, indicating that CNTGE is ro-
bust to large dataset with plenty of categories. In partic-
ular, we have some key observations. (1) In the practical
AUDA setting, especially in difficult transfer tasks in the
Office-Home, VisDA and DomainNet datasets, some tradi-
tional AL methods perform similarly to or even worse than
Random. A possible reason is that the uncertainty or diver-
sity are wrongly estimated by traditional AL methods due to
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(a) Office-Home: Ar → Rw
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(b) VisDA: S → R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Annotation round

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

Random
Entropy
Confidence
Margin
Coreset
K-means
BADGE
Ours

(c) Office-31: D → A
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(d) DomainNet: P → R

Figure 3. Average class accuracy across four hard transfer tasks
from Office-Home, Office-31, VisDA and DomainNet datasets.

the violation of the assumption about the source-target label
set relationship in AUDA. These traditional AL approaches
may easily lead to sampling outliers, redundant instances,
or uninformative instances from source classes, which is not
beneficial for inferring labels for all target instances or even
damages the classification performance. (2) Coreset tries
to select instances geometrically matching the data distri-
butions for annotations, and it performs the best in a few
transfer tasks where CNTGE underperforms Coreset. How-
ever, Coreset only works well in small datasets, which is
not robust enough since practical datasets are usually large.
Fortunately, CNTGE is more practical and performs very
well on large datasets such as Office-Home, VisDA and Do-
mainNet.

4.3. Ablation Studies
Ablation studies on ADCL. To analyze the efficiency of
the proposed adversarial curriculum loss Ladv and diverse
curriculum loss Ldiv , we derive two variants: (1) w/o Ladv

is the variant by replacing Ladv with naive adversarial loss
[13] which is widely used in adversarial domain adapta-
tion. The native adversarial loss can be obtained by remov-
ing ws(x

s
i ) and indicator function 1wt(xt

i)⩾wα(t) in Eq (3).
(2) w/o Ldiv is the variant learned without loss Ldiv . All
other loss functions remain the same as AUAN. Compared
with AUAN in Table 3, the average performance drop of
w/o Ladv and w/o Ldiv are respectively 2.34% and 9.3%.
It indicates that Ladv could effectively constrain the cross-
domain alignment into the shared common label set. Be-
sides, Ldiv could reduce the over-reliance of classifier Gc

on target “unknown” samples, which promotes CNTGE to
select more informative target instances for active learning.
Ablation studies on learning Gp. Two variants are pro-
posed to study the effectiveness of Lp and Lnc on learning
the prototype classifiers: (1) w/o Lp is the variant where
the prototype classifiers are learned without loss Lp. In this

Table 3. Ablation studies on Office-Home (6 challenging tasks).
Variant Ar → Rw Cl→Rw Pr→Rw Rw→Ar Rw→Cl Rw→Pr AVG

AUAN 61.02 61.88 69.76 55.03 36.55 69.24 58.91
w/o Ladv 57.40 56.79 68.46 54.35 34.36 68.09 56.57↓2.34
w/o Ldiv 50.40 43.78 50.44 54.35 34.37 64.31 49.61↓9.30

w/o Lp 58.28 58.06 64.74 52.97 31.63 68.56 55.71↓3.21
w/o Lnc 60.55 59.21 66.58 54.19 33.77 67.42 56.95↓1.96

AUAN-1 55.18 56.12 65.11 52.58 32.77 66.46 54.70↓4.21

AUAN-2 60.28 60.44 68.08 53.88 34.62 68.73 57.67↓1.24

case, the prototype classifiers cannot be well learned, and
we apply a KNN classifier to infer labels for target unknown
instances. (2) w/o Lnc is the variant where the prototype
classifiers are learned without loss Lnc. As shown in Table
3, the w/o Lp and w/o Lnc both underperform AUAN. The
performance drop of w/o Lp and w/o Lnc are respectively
3.21% and 1.96%. It implies that Lp and Lnc are beneficial
for learning to infer labels in C̃t with limited data.
Effect of DLT during adaptation. To testy whether DLT

helps to suppress the negative impact of domain gap and
semantic shift, we design the AUAN-1 model which is op-
timized by Eq (1) and Eq (6) while the original AUAN is
optimized by Eq (5) and Eq (6). The average performance
of AUAN-1 drops 4.21%, as shown in Table 3, indicating
that DLT could enforce the adaptation process and narrow
the domain gap and semantic shift.
Effect of DPLT when learning Gp. To study the effec-
tiveness of learning Gp with DPLT , we derive the AUAN-2
model which is learned without the first term in Eq (7). Re-
sults are shown in Table 3. The 1.24 % performance drop
of AUAN-2 illustrates that although DPLT contains noisy
labels, DPLT could cluster similar instances and assist to
learn discriminative prototypes.

5. Conclusion
In this paper, we propose a novel paradigm for unsuper-

vised domain adaptation, termed as Active Universal Do-
main Adaptation (AUDA), which extends the applicabil-
ity of domain adaptation in practical scenarios. An ac-
tive universal adaptation network equipped with ADCL and
CNTGE is proposed to address this issue. Extensive exper-
iments show the effectiveness of our model. In the future,
we will design AL strategies that consider the distribution
information of known and unknown samples and utilize the
knowledge graph for unknown category inference.
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