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Abstract

Vessel segmentation is critically essential for diagnosing
a series of diseases, e.g., coronary artery disease and reti-
nal disease. However, annotating vessel segmentation maps
of medical images is notoriously challenging due to the tiny
and complex vessel structures, leading to insufficient avail-
able annotated datasets for existing supervised methods and
domain adaptation methods. The subtle structures and con-
fusing background of medical images further suppress the
efficacy of unsupervised methods. In this paper, we propose
a self-supervised vessel segmentation method via adversar-
ial learning. Our method learns vessel representations by
training an attention-guided generator and a segmentation
generator to simultaneously synthesize fake vessels and seg-
ment vessels out of coronary angiograms. To support the
research, we also build the first X-ray angiography coro-
nary vessel segmentation dataset, named XCAD. We evalu-
ate our method extensively on multiple vessel segmentation
datasets, including the XCAD dataset, the DRIVE dataset,
and the STARE dataset. The experimental results show
our method suppresses unsupervised methods significantly
and achieves competitive performance compared with su-
pervised methods and traditional methods.

1. Introduction
As the most common heart disease, coronary artery dis-

ease is one of the leading causes of death in the world.
Atherosclerosis in the coronary artery hinders blood from
normally flowing into the heart, eventually leading to a heart
attack. Among various imaging modalities, X-ray angiog-
raphy is taken as a gold standard for coronary artery disease
diagnosis. As X-ray angiography can quickly display small
vessel branches with a high resolution, it has been widely
utilized in medical diagnosis for determining the presence,
location, degree, and scope of coronary artery stenosis. It is
crucial but challenging to accurately estimate subtle vessel
structures from coronary angiograms. To minimize the ion-

izing radiation exposure of patients and medical personnel,
low-power X-ray is used during X-ray coronary angiogra-
phy, usually leading to noisy and low-contrast coronary an-
giograms. As a result, it is difficult to distinguish vessels
from the background artifacts1 that share similar appear-
ances with vessel structures.

During X-ray coronary angiogram acquisition, a special
cardiac catheter is utilized to inject a contrast agent into the
coronary artery. With the contrast agent taking effect, blood
vessels gradually emerge, leaving a sequence of coronary
angiography images under the X-ray. In such a coronary an-
giography sequence, the first frame with no contrast agent
injected is the mask frame. No vessel is shown in the mask
frame. On the contrary, the frame with a fully injected con-
trast agent is known as the contrast frame. Note that in
this paper, we use the coronary angiogram to indicate the
contrast frame in particular. Vessels are shown in coronary
angiograms. Our objective is to segment vessels out of the
coronary angiograms.

Existing vessel segmentation methods can be classified
into four main categories: traditional methods [17, 23], su-
pervised methods [8, 25], domain adaptation methods [3,
31], and unsupervised methods [4, 15]. Traditional meth-
ods are typically based on predefined rules that require sig-
nificant expertise and manual model tuning, leading to lim-
ited model expressiveness and generality. Supervised meth-
ods require a massive amount of annotated data for train-
ing, though public large-scale annotated vessel datasets are
practically unavailable. The complex vessel structure con-
sists of numerous tiny branches that easily fade into the
image background artifacts, making the manual annotation
process extremely laborious and time-consuming, even for
professional medical experts. The effectiveness of domain
adaptation methods is largely dependent on the quality of
annotated source domain dataset and constrained by the gap
between the source domain and target domain. Existing un-
supervised segmentation methods for natural images, such

1Note that this paper uses artifacts to represent the factors (e.g., di-
aphragm, catheter, and bones) making segmentation difficult.
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as animals and flowers, can hardly work on medical images
due to their thorny characteristics—numerous tiny branches
and confusing background artifacts.

Existing self-supervised methods [6, 24] learn useful
representations by solving other pretext tasks on large-scale
unlabeled data. However, no existing self-supervised meth-
ods are designed for segmentation tasks due to the com-
plexity of semantic segmentation. In this paper, we ex-
ploit specific characteristics of the coronary angiography
sequence and design a novel self-supervised vessel segmen-
tation method.

Specifically, we propose to learn self-supervised vessel
representations by simultaneously training two adversarial
networks that synthesize fake vessels on mask frames and
segment vessels out of coronary angiograms. These learned
vessel representations can be applied to multiple vessel seg-
mentation tasks by directly using the pretrained model.

Without labeled vessel segmentation maps, we design a
fractal synthetic module for self-supervised learning. Frac-
tals synthesized by the fractal synthetic module are then
utilized to guide the generation of vessels and serve as
segmentation maps of synthetic fake coronary angiograms.
We introduce an attention-guided generator to confirm that
vessels of synthetic fake coronary angiograms match input
segmentation maps. We also apply the idea of cycle con-
sistency in CycleGAN [39] to segmentation tasks. In our
framework, the two adversarial networks for vessel synthe-
sis and segmentation form a cycle to produce reconstructed
coronary angiograms and reconstructed segmentation maps.
We further utilize segmentation loss to enforce the consis-
tency between segmentation maps and reconstructed seg-
mentation maps.

To support our research and facilitate the work of other
researchers, we create an X-ray angiography coronary
artery disease (XCAD) dataset. The XCAD dataset con-
tains 1621 mask frames and 1621 coronary angiograms in
the training set, and 126 coronary angiograms annotated by
experienced radiologists in the testing set. Experimental re-
sults on the XCAD dataset demonstrate the effectiveness
of the proposed method on coronary vessel segmentation.
Moreover, our method shows competitive performance with
other retinal vessel segmentation methods on the DRIVE
dataset [34] and the STARE dataset [13].

The main contributions of this paper are summarized as
follows:

• To our best knowledge, we are the first to design
a self-supervised method for vessel segmentation.
Our method solves vessel segmentation tasks of both
coronary angiograms and retinal images, with self-
supervised vessel representations learned from unan-
notated coronary angiography images.

• We build and release the first X-ray angiography coro-

nary artery disease (XCAD) dataset 2.

• Our method shows remarkably competitive perfor-
mance on the XCAD dataset, the DRIVE dataset, and
the STARE dataset.

2. Related Work
2.1. Traditional Methods for Vessel Segmentation

Traditional vessel segmentation methods [17, 23] require
designing predefined rules for specific images. Khan et al.
[17] designed several filters for retinal image denoising, en-
hancement and finally for vessel segmentation. Memari et
al. [23] proposed to firstly enhance retinal images using
contrast limited adaptive histogram equalization and sev-
eral filters. Then they utilized a genetic algorithm enhanced
spatial fuzzy c-means method for extracting an initial ves-
sel segmentation map. Finally, the segmentation is further
refined by an integrated level set approach.

Traditional methods with manually designed strategies
can only be used for specific tasks and have poor scalability,
e.g., methods for retinal vessel segmentation cannot solve
the coronary vessel segmentation problem. In contrast, our
method successfully solves the problems of both retinal ves-
sel segmentation and coronary vessel segmentation. More-
over, our method is scalable and easy to be utilized.

2.2. Supervised Methods for Vessel Segmentation

At the early stage of supervised vessel segmentation, Es-
fahani et al. [25] used Top-Hat transform to enhance the
input angiograms. Then, the vessel regions can be recog-
nized by training Convolutional Neural Networks (CNNs)
with quantities of patches. Khowaja et al. [18] applied bidi-
rectional histogram equalization on the inverted green chan-
nel to enhance the retinal images in supervised retinal ves-
sel segmentation. Soomro et al. [33] utilized fuzzy logic
and image processing tactics for pre-processing, and they
removed the noisy pixels for post-processing. These meth-
ods require specifically designed pre-processing and post-
processing strategies.

Mask images are utilized to distinguish vessels from ar-
tifacts and remove the influence of background artifacts.
Yang et al. [37] utilized the DeepMatching method [30] for
the registration between the mask frames and coronary an-
giograms, then used both of them as multi-channel inputs to
provide enhanced information of the vessel structure. The
performance of this method highly relies on the registra-
tion for paired mask frames and coronary angiograms. On
the contrary, our method does not need to use paired mask
frames and coronary angiograms.

UNet [32] is mostly used as the backbone of vessel seg-
mentation [8, 33, 36]. Fan et al. [8] proposed an octave

2https://github.com/AISIGSJTU/SSVS
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UNet for accurate retinal vessel segmentation, which adopts
octave convolution for multiple-spatial-frequency features
learning. Yang et al. [36] studied the segmentation of the
major vessels in X-ray coronary angiograms with UNet on
annotated datasets. Supervised methods require complex
vessel annotations. Our method alleviates the vessel anno-
tation burden by self-supervised learning.

2.3. Domain Adaptation Methods

Domain adaptation [1] transfers knowledge from the an-
notated dataset in the source domain to the unannotated
dataset in the target domain. An adversarial network [9]
is utilized for domain adaptation in many semantic segmen-
tation tasks [12, 5]. Adversarial training generates domain-
invariant features through domain confusion. During this
process, cycle consistency is usually employed for preserv-
ing structures [11, 38].

In medical image segmentation, Dou et al. [7] stud-
ied domain adaptation between CT and MRI by proposing
a plug-and-play adversarial domain adaptation network to
align feature spaces of both domains presenting significant
domain shift. A domain adaptation method named MMD
[3] was proposed for brain tissue segmentation by minimiz-
ing the maximum mean discrepancy between the source do-
main and target domain. YNet [31] extended classification-
based domain adaptation techniques to segmentation net-
works by regularizing the encoder features.

These methods fail to handle tasks that lack large-scale
annotated datasets in a close source domain. However, our
method does not require any annotated dataset as the source
domain.

2.4. Unsupervised Segmentation Methods

Xu et al. [15] proposed a method named Invariant Infor-
mation Clustering. It can automatically partition the input
images into clusters that are recognized as different seman-
tic classes. Another method named ReDO [4] utilized an
adversarial architecture to extract the object mask of the
input, then redrew a new object at the same location with
different textures or colors. Because segmentation objects
and backgrounds of medical images are very similar and
difficult to distinguish, these methods are less effective on
medical image segmentation. In contrast, our method takes
into account the characteristics of medical images and out-
performs these methods on vessel segmentation of coronary
angiograms and retinal images.

2.5. Self-supervised Representation Learning

Self-supervised learning methods construct pretexts to
learn representations from large-scale unsupervised data.
Spatial representations are learned by predicting the rela-
tive positions between two image patches [6, 26]. Simi-
lar studies designed pretext tasks for image inpainting [28],

super-resolution [21] and image colorization [20] by ap-
plying transformations on original images. Different from
single pretext tasks, Ren et al. [29] learned more general-
izable high-level visual representations from multi-task in-
cluding depth, surface normal and instance contour. Misra
et al. [24] employed Siamese networks to input multiple
video frames in parallel and learn temporal representations
by shuffling image sequences. Xu et al. [35] learned both
spatial and temporal information by sorting the order of 3D
clips. SpeedNet [2] predicted the speed of the video from
the input of full video sequences. These learned representa-
tions are proved to be helpful to action recognition, image
classification, and object detection tasks, by finetuning the
pretrained model on annotated datasets. However, it is hard
to design a suitable pretext task and learn useful represen-
tations for complex semantic segmentation. We propose to
use a fractal synthetic module for self-supervised learning.
Our method learns representations for vessel segmentation
by adversarial vessel synthesis and segmentation.

3. Methodology
3.1. Overview

In this section, we present the details of the proposed
method. We generate fake coronary angiograms and vessel
segmentation maps at the same time, using unpaired mask
frames mask and coronary angiograms realY as inputs.
Figure 1 depicts an illustration of the overall framework.

First of all, a fractal synthetic module synthesizes ran-
dom fractals realX in a designed policy. These synthetic
fractals are further utilized to guide the synthesis of fake
vessels on mask frames. Then, the attention-guided genera-
tor utilizes fractals realX and mask framesmask as inputs,
and generates fake coronary angiograms fakeY . After that,
fractals can be treated as vessel segmentation maps of corre-
sponding fake coronary angiograms. Finally, the segmenta-
tion generator segments vessels out of coronary angiograms
and recovers vessel segmentation maps recX , which forms
a reconstruction cycle as the upper orange area of Figure 1.

Similarly, the coronary angiogram reconstruction cycle
is shown in the bottom blue area of Figure 1. For input
coronary angiograms realY , the segmentation generator
produces segmentation maps fakeX . These segmentation
maps are further input into the attention-guided generator to
reconstruct coronary angiograms recY .

3.2. Fractal Synthetic Module

Fractals are simple graphic patterns rendered by math-
ematical formulas. It is demonstrated that fractals can as-
sist in learning image representations for recognizing natu-
ral scenes and objects. Kataoka et al. assisted natural image
understanding by pretraining classification networks on an
automatically generated Fractal DataBase [16]. However,
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Figure 1. The framework of the proposed method. X indicates the segmentation map and Y indicates the coronary angiogram. Fractal
synthetic module synthesizes segmentation maps realX for self-supervised learning. Attention-guided generator generates fake coronary
angiograms fakeY , while segmentation generator obtains segmentation maps fakeX from input coronary angiograms realY . Both
generators are applied twice and complete two reconstruction cycles, obtaining reconstructed segmentation maps recX and reconstructed
coronary angiograms recY . The two reconstruction cycles are shown in the upper orange area and bottom blue area, respectively. Solid
lines show data flows, and dashed lines indicate the flow of values to loss functions. Best viewed in color.

one limitation of fractals is that the rendered fractal patterns
consist of discrete points without textures, which limits the
application of fractals. Therefore, we propose to use syn-
thetic fractals as segmentation maps and add realistic tex-
tures from the attention-guided generator to these fractals.

Unlike Fractal DataBase that synthesized different frac-
tals by designing a function to literately draw points on a
black background, we synthesize fractals that look similar
to vessels by literately drawing rectangles on a black back-
ground and adding local distortions on it. We design a frac-
tal space as follows:

X = {(Draw, sd), (Affine, sa), (Rotate, sr)}, (1)

where Draw draws random rectangles with branches and sd
controls the depth of the branch. Moreover, Affine applies
a piecewise affine transformation with a random scale sa
to add local distortions on these rectangles and make them
present a curved shape. The piecewise affine transformation
places a regular grid of points on the input and randomly
moves the neighborhood of these points around via affine
transformations. Rotate applies rotations with a random an-
gle sr to make fractals present more various shapes. Due
to the space limitation, more details of fractal synthesis are

presented in the supplementary material. We can synthesize
any number of random fractals in space X .

3.3. Attention-guided Generator

The attention-guided generator aims to generate vessels
of given fractal shapes on mask frames and transform mask
frames to coronary angiograms. The main difference be-
tween coronary angiograms and mask frames is the pres-
ence and absence of vessels. Thus, the attention-guided
generator only generates vessels on specific areas and keeps
the rest parts unchanged. Segmentation maps enable some
specific areas to get more focus, making the areas of syn-
thetic vessels match focused areas. We utilize the following
formulation to restrict the synthetic vessels on specific areas
and calculate output coronary angiograms

fakeY = realX�G(realX)+(1−realX)�mask, (2)

where realX , mask and fakeY represent segmentation
maps, input mask frames, and output coronary angiograms,
respectively. � represents hadamard product. G() is a gen-
erative network for transforming the texture style of seg-
mentation maps to the texture style of vessels. We use
realX �G(realX) to generate fake vessels with the shape
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of segmentation maps realX and the texture of realistic
vessels. Then, we merge the vessels to background areas
of mask frames (1− realX)�mask and obtain fake coro-
nary angiograms fakeY .

The attention-guided generator is applied twice to com-
plete the reconstruction cycle. For segmentation maps
fakeX , we get reconstructed coronary angiograms recY
with a similar formulation as follows:

recY = fakeX�G(fakeX)+(1−fakeX)�realY. (3)

Note that our method does not require paired inputs of
mask frames and coronary angiograms. We directly use
real coronary angiograms realY as backgrounds and avoid
troublesome alignments of mask frames and coronary an-
giograms.

3.4. Optimization Objective

3.4.1 Adversarial Loss

For each generator, a discriminator is iteratively trained
to compete against the generator in the manner of two-
player minimax.

The attention-guided generator GY tries to generate im-
ages that look similar to coronary angiograms, while coro-
nary angiogram discriminator DY attempts to distinguish
between real and fake coronary angiograms. We use the
MSE loss inspired by LSGAN [22] to calculate the adver-
sarial loss. The adversarial loss of generator has the form

LadvG(GY ,DY , X, Y )

= EXvpdata(X)[(1−DY (GY (X)))2].
(4)

It aims to improve the plausibility of the output coronary an-
giograms with the coronary angiogram discriminator, thus
fooling the discriminator that the generated GY (X) to be
real. At the same time, the coronary angiogram discrimi-
nator DY attempts to distinguish the generated GY (X) to
be fake and real Y to be real with adversarial loss in the
following form

LadvD(GY , DY , X, Y ) = EXvpdata(X)[(DY (GY (X)))2]

+ EYvpdata(Y )[(1−DY (Y ))2].
(5)

Similarly, segmentation generator GX tries to gener-
ate images that look similar to segmentation maps using
LadvG(GX , DX , Y,X), while segmentation discriminator
DX attempts to distinguish between real and fake segmen-
tation maps with LadvD(GX , DX , Y,X).

3.4.2 Cycle Consistency Loss

Adversarial losses alone cannot guarantee that the gener-
ator obtains desired outputs. We use cycle consistency to
restrict the training without paired inputs.

Coronary Angiogram Reconstruction Loss. The coro-
nary angiogram reconstruction lossLrec aims to enforce the
consistency between reconstructed coronary angiograms
recY and input coronary angiograms realY . It is expressed
as

Lrec(GY , GX , Y ) = LL1(recY, realY )

= EYvpdata(Y )[‖GY (GX(Y ))− Y ‖1].
(6)

Segmentation Loss. The segmentation loss Lseg aims to
enforce the consistency between reconstructed segmenta-
tion maps recX and input segmentation maps realX . As
a special case of semantic segmentation, coronary vessel
segmentation should end up with accurately segmented ves-
sels from coronary angiograms. In other words, it is a bi-
nary classification problem for all pixels in coronary an-
giograms. Hence, the binary cross-entropy loss LBCE be-
tween groundtruth segmentation maps realX and predicted
segmentation maps recX is utilized as the segmentation
loss, as shown in the following equation

Lseg(GX , GY , X) = LBCE(recX, realX)

= EXvpdata(X)[X logGX(GY (X))

+ (1−X) log(1−GX(GY (X)))].
(7)

3.4.3 Full Optimization Objective

To be concluded, the complete objective loss of the two
generators can be formulated as follows:

L = LadvG(GY , DY , X, Y ) + LadvG(GX , DX , Y,X)

+ λ1Lrec(GY , GX , Y ) + λ2Lseg(GX , GY , X),
(8)

where λ1 and λ2 are parameters controlling the relative re-
lation of objective terms.

4. Experiments
4.1. Dataset

XCAD dataset. We build an X-ray angiography coronary
artery disease (XCAD) dataset with coronary angiography
images obtained during stent placement using a General
Electric Innova IGS 520 system. Each image has a reso-
lution of 512 × 512 pixels with one channel. The train-
ing set contains 1621 mask frames and 1621 coronary an-
giograms. The testing set contains 126 independent coro-
nary angiograms with vessel segmentation maps annotated
by experienced radiologists. Note that the training set and
the testing set have no shared samples.
Retinal dataset. We further employ two public datasets
to validate the effectiveness of the proposed method. The
DRIVE dataset [34] consists of 40 color retinal images of
size 565 × 584 pixels. The STARE dataset [13] contains 20
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Figure 2. Visualization of coronary vessel segmentation.

color retinal images of size 700 × 605 pixels. All images
have been cropped and then resized to 512 × 512 pixels.

4.2. Evaluation Metrics

The metrics Jaccard Index, Dice Coefficient, accuracy
(Acc.), sensitivity (Sn.) and specificity (Sp.) are used to
evaluate the performance of coronary vessel segmentation
in different aspects, following the paper [10]. In the DRIVE
dataset and the STARE dataset, similar to other retina vessel
segmentation methods [8, 33], we use accuracy, sensitivity,
specificity and AUC as evaluation metrics.

4.3. Implementation Details

The open-source library PyTorch [27] is employed to im-
plement all the experiments in this paper. The training is
done on a 128GB RAM Linux machine with 2 NVIDIA
GTX 1080 Ti graphics cards. The Adam optimizer [19] is
utilized for the training of the segmentation networks with a
batch size of 2. All networks are trained from scratch with
a learning rate of 0.0002 for 10 epochs at first. Then, we
linearly decay the rate to zero over the next 100 epochs.

The network architecture reuses the existing CycleGAN
[39]. The generative network contains 2 downsampling lay-
ers, 9 residual blocks and 2 upsampling layers. Besides,

we add an attention layer in the attention-guided genera-
tor. The discriminator network is adapted from PatchGAN
[14], which contains 4 convolution layers and a final layer
for map a 1-dimensional output. Parameters λ1 and λ2 in
Equation 8 are both set to 10 as in CycleGAN.

4.4. Experimental Results

4.4.1 Coronary Vessel Segmentation

Table 1 reports the performance of vessel segmentation
on coronary angiograms with existing methods. The visu-
alization segmentation results are shown in Figure 2.

We firstly compare our method with UNet [32] that is
commonly used for supervised vessel segmentation. Con-
sidering the small size of the XCAD dataset, we adapt 3-
fold cross-validation over the 126 annotated images. Al-
though supervised methods achieve higher performance
than our method, supervised methods require a time-
consuming and labor-intensive annotation process. How-
ever, our method does not require annotation costs and still
achieves high performance.

In domain adaptation (DRIVE→ XCAD), the networks
are pretrained on the DRIVE dataset and tested on the
XCAD dataset. We use UNet [32] and two state-of-the-
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Table 1. Performance comparison of coronary vessel segmentation on the XCAD dataset.

Method Jaccard Dice Acc. Sn. Sp.

Supervised Method UNet [32] 0.571±0.009 0.724±0.010 0.981±0.005 0.868±0.011 0.996±0.004

Domain Adaptation

UNet [32] 0.228±0.020 0.365±0.016 0.831±0.018 0.444±0.020 0.906±0.017

MMD [3] 0.262±0.017 0.416±0.021 0.873±0.016 0.553±0.011 0.920±0.013

YNet [31] 0.287±0.015 0.434±0.019 0.891±0.012 0.523±0.008 0.935±0.014

Unsupervised Method IIC [15] 0.124±0.052 0.178±0.048 0.738±0.107 0.487±0.055 0.754±0.038

ReDO [4] 0.151±0.042 0.261±0.037 0.753±0.098 0.392±0.108 0.923±0.018

Self-supervised Method Ours 0.389±0.015 0.557±0.017 0.945±0.009 0.583±0.018 0.972±0.005

Table 2. Ablation Study.

Method Jaccard Dice Acc. Sn. Sp.

Base 0.229 0.363 0.850 0.320 0.877

Base + Attention 0.305 0.464 0.902 0.487 0.931

Base + SegLoss 0.346 0.511 0.911 0.552 0.945

Base + Attention + SegLoss 0.389 0.557 0.945 0.583 0.972

art domain adaptation methods MMD [3] and YNet [31]
for comparison. Even with knowledge from an annotated
source domain, these methods are still inferior to ours.
Specifically, more than 35% improvement in Jaccard Index,
28% improvement in Dice Coefficient, 6% improvement in
accuracy, 5% improvement in sensitivity, and 4% improve-
ment in specificity are obtained with our method.

Unsupervised methods IIC [15] and ReDO [4] perform
poorly on gray-scale X-ray images where the segmentation
objects can be hardly distinguished from the background
and lack color information. Moreover, the ReDO method
is extremely unstable and easy to collapse. Sometimes it
fails to segment vessels and outputs all-black segmentation
maps. In contrast, our method outperforms these unsuper-
vised methods on all of the five metrics and shows more
stable performance. We run all the methods multiple times
and provide the variance in Table 1.

4.4.2 Ablation Study

We conduct the ablation study to evaluate the impact of
different components and loss functions on the segmenta-
tion quality. The results are shown in Table 2. We test the
following four setups.
Base. In this setup, we use CycleGAN [39] as the baseline,
which deals with the unpaired image-to-image translation
of two domains. Specifically, we use synthetic segmenta-
tion maps generated by the fractal synthetic module as do-

main X and coronary angiograms as domain Y . Although
this baseline can coarsely segment vessels out of coronary
angiograms, the segmentation quality is not high and syn-
thetic fake coronary angiograms are very different from real
coronary angiograms.
Base + Attention. The attention-guided generator helps
the network make use of the self-supervised information in
coronary angiograms. Moreover, the segmentation quality
improves while the synthetic fake coronary angiograms be-
come more realistic.
Base + SegLoss. Replacing the cycle consistency loss with
segmentation loss extensively improves the performance of
the vessel segmentation.
Base + Attention + SegLoss. The best performance is ob-
tained when both the attention-guided generator and the
segmentation loss are used. Removing the segmentation
loss substantially degrades the performance, same as does
removing the attention-guided generator. We therefore con-
clude that attention-guided generator and segmentation loss
are all critical to our results.

4.4.3 Cross-domain Verification on Retinal Vessel Seg-
mentation

The proposed self-supervised method can solve different
vessel segmentation tasks based on the learned vessel repre-
sentations from coronary angiography images. In this sec-
tion, we demonstrate the generality and effectiveness of our
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Figure 3. Visualization of retinal vessel segmentation on the DRIVE and STARE datasets.

Table 3. Performance comparison of retinal vessel segmentation on the DRIVE and STARE datasets.

Method
DRIVE STARE

Acc. Sn. Sp. AUC Acc. Sn. Sp. AUC

Traditional Method Memari [23] 0.961 0.761 0.981 0.871 0.951 0.782 0.965 0.783
Khan [17] 0.958 0.797 0.973 0.885 0.996 0.792 0.998 0.895

Supervised Method
Khowaja [18] 0.975 0.818 0.971 0.895 0.975 0.824 0.975 0.899
Fan [8] 0.966 0.796 0.982 0.889 0.974 0.816 0.987 0.901
Soomro [33] 0.959 0.802 0.974 0.948 0.961 0.801 0.969 0.945

Unsupervised Method IIC [15] 0.738 0.632 0.840 0.736 0.710 0.586 0.832 0.709
ReDO [4] 0.761 0.593 0.927 0.760 0.756 0.567 0.899 0.733

Self-supervised Method Ours 0.913 0.794 0.982 0.888 0.910 0.774 0.980 0.877

method on retinal vessel segmentation by directly using the
model pretrained on coronary angiography images. Figure
3 shows the visual segmentation results of our method on
the DRIVE dataset and the STARE dataset. Table 3 com-
pares our method with the existing methods.

Compared with the traditional methods, the AUC of our
method improves by 0.3% on the DRIVE dataset. Al-
though the overall performance of the traditional methods is
slightly better than ours, they are specifically designed for
retinal vessel segmentation and require complex process-
ing steps. In contrast, our method can solve multiple kinds
of vessel segmentation tasks without any annotation or pre-
processing. When compared with supervised methods, the
performance of the proposed method only decreases by less
than 7% on all of the four metrics. Our method surpasses
unsupervised methods to a large extent. Quantitatively,
our method brings more than 20% improvements in accu-
racy, 25% improvements in sensitivity, 6% improvements in
specificity and 16% improvements in AUC on both datasets.

5. Conclusion

In this paper, we propose a novel self-supervised vessel
segmentation method. Different from existing methods, our
method applies adversarial learning to learn vessel repre-
sentations from unannotated coronary angiography images.
We further successfully utilize these learned representa-
tions in coronary vessel segmentation and retinal vessel seg-
mentation. Extensive experimental results on our proposed
XCAD dataset, the DRIVE dataset and the STARE dataset
demonstrate the effectiveness of the proposed method.
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