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Abstract

Recent advances in attention-based networks have
shown that Vision Transformers can achieve state-of-the-art
or near state-of-the-art results on many image classification
tasks. This puts transformers in the unique position of being
a promising alternative to traditional convolutional neural
networks (CNNs). While CNNs have been carefully stud-
ied with respect to adversarial attacks, the same cannot be
said of Vision Transformers. In this paper, we study the
robustness of Vision Transformers to adversarial examples.
Our analyses of transformer security is divided into three
parts. First, we test the transformer under standard white-
box and black-box attacks. Second, we study the transfer-
ability of adversarial examples between CNNs and trans-
formers. We show that adversarial examples do not readily
transfer between CNNs and transformers. Based on this
finding, we analyze the security of a simple ensemble de-
fense of CNNs and transformers. By creating a new attack,
the self-attention blended gradient attack, we show that
such an ensemble is not secure under a white-box adver-
sary. However, under a black-box adversary, we show that
an ensemble can achieve unprecedented robustness without
sacrificing clean accuracy. Our analysis for this work is
done using six types of white-box attacks and two types of
black-box attacks. Our study encompasses multiple Vision
Transformers, Big Transfer Models and CNN architectures
trained on CIFAR-10, CIFAR-100 and ImageNet.

1. Introduction
For vision tasks, convolutional neural networks

(CNNs) [20] are the de facto architecture [37, 19]. On
the other hand, in natural language processing (NLP),
attention-based transformers are one of the most commonly
used models [35]. Based on the success of transformers in
NLP, various works have attempted to apply self-attention

(both with and without CNNs) to image processing
tasks [4, 36]. In particular, in [12], the training of
self-attention transformers is achieved by processing the
image in patches. The training in [12] is unique in that the
transformer is first trained on the dataset ImageNet-21K
(or JFT) before training on a smaller dataset, to achieve
near state-of-the-art results on ImageNet, CIFAR-10 and
CIFAR-100. These types of transformers are referred
to as Vision Transformers (ViT) [12]. It is important to
note that the same kind of training regime can be applied
to CNNs. In [19], they also propose training on a large
dataset (ImageNet-21K or JFT) and fine tuning on a
smaller dataset. Using this approach, CNNs are also able
to achieve state-of-the-art results on ImageNet, CIFAR-10
and CIFAR-100. CNNs trained in this manner are referred
to as Big Transfer Models (BiT-M) [19].

While CNNs are popular for vision tasks, they are not
without deficiencies. It has been widely documented that
CNNs are vulnerable to adversarial examples [33, 14]. Ad-
versarial examples are benign input images to which small
perturbations are added. This perturbation causes the CNN
to misclassify the image with high confidence. Broadly
speaking, an attacker creates an adversarial example using
one of two threat models. Under a white-box adversary [5],
the attacker has access to the CNN’s parameters (architec-
ture and trained weights). The adversary can directly obtain
gradient information from the model to create an adversarial
example. The other type of threat is a black-box adversary.
In this scenario, the attacker does not know the CNN’s pa-
rameters or architecture but can repeatedly query the CNN,
or build their own synthetic CNN to estimate gradient infor-
mation and generate adversarial examples.

It has also been shown that adversarial examples gener-
ated using CNNs exhibit transferability [28, 21, 29]. Here,
transferability refers to the fact that adversarial examples
crafted to fool one CNN are often misclassified by other
CNNs as well. Overall, CNNs have an expansive body of
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literature related to adversarial attacks [6, 11, 10] and de-
fenses [23, 5, 34]. In contrast, Vision Transformers have
not been closely studied in the adversarial context. In this
work, we investigate how the advent of Vision Transformers
advance the field of adversarial machine learning. Here we
specifically focus on image based adversarial attacks. Our
paper is organized as follows: In Section 2 we first discuss
some related NLP work. We then break our analysis of Vi-
sion Transformers into several related questions:

Do Vision Transformers provide any improvement in se-
curity over CNNs under a white-box adversary? We explore
this question in Section 3 by attacking Vision Transform-
ers, Big Transfer Models and conventional CNNs (ResNets)
with six standard white-box adversarial machine learning
attacks. We show that under a white-box adversary, Vision
Transformers are just as vulnerable (insecure) as other mod-
els. In Section 4, we further delve into white-box attacks
and ask: How transferable are adversarial examples be-
tween Vision Transformers and other models? We perform
a transferability study with eight CIFAR-10 and CIFAR-
100 models (this includes four Vision Transformers, two
Big Transfer Models, and two ResNets). We also study
the transferability of ImageNet Vision Transformers using
seven models (three Vision Transformers, two Big Trans-
fer Models, and two ResNets). From our experiments we
observe an interesting phenomenon. The transferability be-
tween Vision Transformers and other non-transformer mod-
els is unexpectedly low.

How can the transferability phenomena be leveraged to
provide security? This is the topic of our final question in
Sections 5 and 6. We further break this question down
into white-box and black-box analyses. First, we consider
a white-box adversary. We develop a new white-box attack
called the Self-Attention blended Gradient Attack (SAGA).
Using SAGA, we show it is not possible to leverage the
transferability phenomena to achieve white-box security.
However, achieving black-box security is still possible. To
demonstrate this, we consider a black-box attacker that can
leverage transfer style [29] and query-based attacks [8]. We
show under this threat model, a simple ensemble of Vision
Transformers and Big Transfer Models can achieve an un-
precedent level of robustness, without sacrificing clean ac-
curacy. Finally, in Section 7, we offer concluding remarks.

2. Related Work
The transformer has been well studied from an adversar-

ial perspective for NLP applications e.g., [18, 31, 17, 15].
The work in [18] analyzes two popular self-attentive archi-
tectures: (a) Transformer for neural machine translation,
and (b) BERT for sentiment and entailment classification,
and proposes algorithms to generate more natural adversar-
ial examples that preserve the semantics. Theoretical expla-
nations are also provided in [18] to support the claim that

self-attentive structures are more robust to small adversarial
perturbations in NLP as compared to LSTM based architec-
tures. The work in [31] analyzes the complex relationship
between self-attention layers including cross-non-linearity
and cross-position, and develops a robustness verification
algorithm for Transformers. The authors do not use large-
scale pre-trained models such as BERT because they are too
challenging to be tightly verified with their approach. The
work in [17] studies large pre-trained Transformer models
in NLP such as BERT. One of the conjectures drawn by the
authors of [17] is that since Transformer models are pre-
trained with large amounts of data (e.g., BERT is trained on
3 billion tokens), this may aid robustness. It is also men-
tioned that perhaps the self-supervised training may also
contribute to this robustness. The work in [15] proposes a
self-attention attribution method to interpret the information
interactions inside a transformer. The authors use BERT as
an example to conduct experiments to identify the important
attention heads, and extract the most salient dependencies
in each layer to construct an attribution tree. This infor-
mation is used to extract adversarial patterns to implement
non-targeted attacks towards BERT.

Thus, as stated above a good body of work has been de-
voted to the adversarial exploration of the Transformer for
NLP applications. To our best knowledge, we are the first
to provide an in-depth analysis of the adversarial properties
of a Transformer from a vision perspective.

3. White-Box Attacks on Vision Transformers
Do Vision Transformers provide any improvement in se-

curity over CNNs under a white-box adversary? We exper-
imentally analyze Vision Transformers to answer this ques-
tion. It may seem unorthodox to start with experiments.
However, the most expedient way to directly determine the
security of the transformer is through attacks and analyses
of those attacks. We start with a white-box adversary be-
cause it represents the strongest possible adversary.

3.1. Adversarial Model, Considered Classifiers and
White-Box Attack Selection

Adversarial Model: In this section, our adversary has
knowledge of the model architecture and trained parame-
ters of the model. We assume the adversary can perturb the
original input x to create xadv within a certain amount ε
according to ‖x−xadv‖∞ ≤ ε. For CIFAR-10 and CIFAR-
100, the ε = 0.031 and for ImageNet ε = 0.062, where x
is an n × m color image such that x ∈ [0, 1]

n×m×3. The
adversary succeeds if they are able to create an input xadv
within this bound ε that is misclassified by the classifier (un-
targeted attack). When we measure security, we do so by
taking a set of clean test examples that are correctly identi-
fied by the classifier. Using this set of clean examples we
generate adversarial examples using one of the six attacks.
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We then measure what percent of examples the classifier
still correctly identifies. As Vision Transformers are rela-
tively new, we experiment with a wide range of attacks and
models. Below, we list the attacks and models we use. We
also give our justification for including them in this paper.

White-Box Attacks: We run six different types of
white-box attacks on our models. We begin with one of the
most basic, the Fast Gradient Sign Method (FGSM) [13]
as an initial test of robustness. We further build upon this
by testing stronger multi-step attacks, the Momentum Iter-
ative Method (MIM) [11], and Projected Gradient Descent
(PGD) [24]. We also test the newest iterative attack which
uses a variable step size in each iteration, Auto Projected
Gradient Descent (APGD) [10]. Aside from the previously
mentioned attacks, there are two other possible attack di-
rections. To craft an extremely small, almost imperceptible
adversarial noise, the Carlini and Wagner (C & W) attack is
often of interest [6].

Lastly, it is possible for some white-box attacks to fail
if gradient masking or an obfuscation of the gradient oc-
curs [2]. It is important to note this does not actually mean
the classifier is secure, it merely means the gradient for the
classifier was not estimated properly. There are attacks de-
signed to overcome gradient masking, such as the Back-
ward Pass Differentiable Approximation (BPDA) [2]. We
use BPDA here to ensure gradient masking is not occur-
ring in the self-attention layers, or any other part of the
Vision Transformer. Due to the limited space, we cannot
give detailed descriptions of each white-box attack here. We
urge interested readers to examine the supplemental mate-
rial where we provide descriptions of each attack.

Classifier Models: When considering Vision Trans-
formers, there are several different types of model variants.
To begin, the patch size of the transformer needs to be cho-
sen. To test different patch sizes, in our study we include
both patch size 32 (ViT-B-32) and patch size 16 (ViT-B-16).
The B in the model refers to the model complexity [12]. B
models contain 12 layers and L models contain 24 layers.
Since model complexity is another factor that can affect se-
curity [24], we also test across model complexity (ViT-B-16
and ViT-L-16). It is also possible to use the self-attention
layers first and then use a conventional CNN (ResNet) on
top. This configuration is denoted as ViT-R50. Experiment-
ing across patch size, model complexity and with the hybrid
configuration gives us four Vision Transformer models.

For the Big Transfer Models [19], we vary across model
complexity (BiT-M-R50 and BiT-M-R101x3). We do the
same for conventional ResNets (ResNet-56 and ResNet-
164 [16]). Overall for CIFAR-10 and CIFAR-100, this gives
us a total of 8 models to attack: ViT-B-32, ViT-B-16, ViT-L-
16, ViT-R50, BiT-M-R50, BiT-M-R101x3, ResNet-56 and
ResNet-164. For ImageNet, we run a slight variation of the
above set, attacking 7 models: ViT-B-16, ViT-L-16 (image

size 224), ViT-L-16 (image size 512), BiT-M-R50, BiT-M-
R152x4, ResNet-50 and ResNet-152. For ImageNet, we
mainly focus on more complex models (e.g., testing two
types of ViT-L-16 instead of ViT-B-32). We do this because
the more complex Vision Transformers are better indicative
of state-of-the-art performance on ImageNet. We provide
full descriptions of the architectures and training parame-
ters for our models in the supplemental material.

3.2. White-Box Attack Analysis

We report the results of our six white-box attacks for
CIFAR-10 and ImageNet in Table 3.1. The robust accu-
racy (percent of samples correctly identified by the classi-
fier) is reported in Table 3.1 using 1000 examples for each
attack. For this set of attacks, CIFAR-10 and CIFAR-100
follow extremely similar trends. As a result, for brevity, we
provide our CIFAR-100 white-box attack results in the sup-
plementary material.

Overall, based on the results in Table 3.1, we can defini-
tively answer the original question posed at the start of the
this section. Vision Transformers do not provide any ad-
ditional security over Big Transfer Models or conventional
CNNs. We can clearly see this across all datasets, indicat-
ing Vision Transformers have no robustness (i.e. 0%) for
the C&W and APGD attacks. Likewise, Vision Transform-
ers have less than 6% robustness across all the datasets for
the PGD and MIM attacks. While this result may seem ex-
pected, it is an important step in understanding the complete
security picture of Vision Transformers. Now that we know
Vision Transformers are not robust to white-box attacks, we
can consider the next important question on transferability.

4. Vision Transformers Transferability Study

How transferable are the adversarial examples created
by Vision Transformers? It was shown in Section 3 that
white-box attacks are extremely effective at creating exam-
ples that fool Vision Transformers. We further expand on
the previous analyses and now examine the transferability
of adversarial examples misclassified by Vision Transform-
ers. Here, transferability refers to the occurrence of adver-
sarial examples that are misclassified by multiple (i.e., more
than one) classifier. The transferability of adversarial exam-
ples has been well documented for different CNN architec-
tures. In the literature, the transferability of adversarial ex-
amples was first observed in [33]. Consequent studies have
shown the transferability of adversarial examples between
CNNs on the MNIST dataset in [30] and on the ImageNet
dataset in [22]. However, to the best of our knowledge,
there have been no large-scale studies on the transferabil-
ity between CNNs and Visions Transformers at this time.
We provide detailed evaluation and analyses on this aspect
in this section.
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Table 1. White-box attacks on Vision Transformers, Big Transfer Models and ResNets. The attacks are done using the l∞ norm with
ε = 0.031 for CIFAR-10 and ε = 0.062 for ImageNet. The white-box attack results for CIFAR-100 follow an extremely similar trend
to CIFAR-10. Hence for brevity, CIFAR-100 white-box attack results are given in the supplementary material. In this Table the robust
accuracy is given for each corresponding attack. The last column ”Acc” refers to the clean accuracy of the model.

CIFAR-10
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-32 37.9% 1.8% 17.6% 4.4% 0.0% 0.0% 98.6%
ViT-B-16 39.5% 0.0% 20.3% 0.3% 0.0% 0.0% 98.9%
ViT-L-16 56.3% 1.2% 28.7% 5.9% 0.0% 0.0% 99.1%
ViT-R50 40.8% 0.1% 13.4% 0.2% 0.0% 0.0% 98.6%
BiT-M-R50x1 66.0% 0.0% 14.9% 0.0% 0.0% 0.0% 97.5%
BiT-M-R101x3 85.2% 0.0% 17.1% 0.0% 0.0% 0.0% 98.7%
ResNet-56 23.0% 0.0% 5.0% 0.0% 0.0% 0.0% 92.8%
ResNet-164 29.0% 0.0% 5.4% 0.0% 0.0% 0.0% 93.8%

ImageNet
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-16 23.1% 0.0% 7.3% 0.0% 0.0% 0.0% 80.3%
ViT-L-16 (224) 27.9% 0.0% 8.4% 0.0% 0.0% 0.0% 82.0%
ViT-L-16 (512) 29.8% 0.0% 8.4% 0.0% 0.0% 0.0% 85.4%
BiT-M-R50x1 28.7% 0.0% 3.5% 0.0% 0.0% 0.0% 79.9%
BiT-M-R152x4 60.9% 0.0% 15.2% 0.0% 0.0% 0.0% 85.3%
ResNet-50 11.8% 0.0% 1.4% 0.0% 0.0% 0.0% 74.5%
ResNet-152 18.1% 0.0% 2.7% 0.0% 0.0% 0.0% 77.0%

4.1. Measuring Transferability

Formally, we can define non-targeted transferability as
follows: We start with a classifierCi and correctly identified
input/label pair (x, y). An attack ACi

is used to generate an
adversarial example xadv with respect to classifier Ci:

xadv = ACi
(x, y) (1)

The adversarial example xadv is then said to transfer from
classifier to Ci to n− 1 other classifiers if and only if:

∀nj=1 [{Cj(x) = y} ∧ {Cj(xadv) 6= y}] (2)

Equation 2 states that each classifier Cj must correctly clas-
sify x and must misclassify xadv . Assuming two classifiers
(n = 2) and a set ofm examples that are correctly classified
by both, we can define the transferability from Ci to Cj as
follows:

ti,j =
1

m

m∑
k=1

{
1 if Cj(ACi(xk, yk)) 6= yk,
0 otherwise. (3)

A high transferability between classifiers indicates that
they have a shared vulnerability to the same set of adver-
sarial examples. On the other hand, a low transferability
may indicate a possible avenue for security. This is due to
the fact that the same set of adversarial examples are not
misclassified by both classifiers.

4.2. Transferability Study Setup

To properly study the transferability between Vision
Transformers, Big Transfer Models and conventional

CNNs, we use the same 8 models for CIFAR-10 and
CIFAR-100 as mentioned in Section 3.1. For ImageNet,
we also use the same 7 models listed in Section 3.1. For
our transferability study, we consider all possible pairs of
classifiers. For each pair of classifiers (i, j), we find a set
of m = 1000 examples that both classifiers correctly iden-
tify. We then measure the transferability between the pair of
classifiers using Equation 3. It is important to note that the
transferability measurement will be affected by the choice
of white-box attack ACi

used to generate the adversarial
examples. It has been shown that MIM, PGD and FGSM
are good candidates for creating highly transferable exam-
ples [25]. As a result, for every pair of classifiers (i, j), we
test all three attacks and report the highest transferability
result. For these attacks, we use the same ε and l∞ norm
as described in Section 3.1. Additional experimental details
are provided in our supplementary material.

In Table 2, we show the transferability results for
CIFAR-10, CIFAR-100 and ImageNet. The top row of the
table corresponds to the model which was used to generate
the adversarial examples, Ci in Equation 3. The first col-
umn in the table corresponds to the model which was used
to predict the labels of the adversarial examples. The model
in the first column is Cj in Equation 3. In the special case
when i = j, we train an independent copy of model i to
generate adversarial examples for CIFAR-10 and CIFAR-
100. For ImageNet, due to the high computational cost of
model training, we forgo the i = j measurement. It can
clearly be seen from the other datasets we study and in the
literature [22] that copies of the same model (i = j) already
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have high transferability. We also graphically represent the
results of Table 2 in Figure 1 for the CIFAR-10 dataset.

4.3. Analysis of Transferability Study

From Table 2 and Figure 1, we can see a very interest-
ing phenomenon. The transferability between Vision Trans-
formers and Big Transfer Models is extremely low. For
example, consider ViT-L-16 and BiT-M-50x1. Adversar-
ial examples generated using BiT-50x1 are misclassified
by ViT-L-16 less than 16% of the time across all datasets
(5.7%, 15.5% and 11.8% for CIFAR-10, CIFAR-100 and
ImageNet respectively). Likewise, less than half the time
BiT-M-50x1 is fooled by adversarial examples generated
using ViT-L-16 (42.5%, 47.6% and 34.3% for CIFAR-10,
CIFAR-100 and ImageNet).

Broadly speaking, we can consider the ViT models, BiT
models and ResNets each as a model genus. In general, the
phenomenon of low transferability mostly occurs between
model genusus, but not within model genusus. That is to
say, adversarial examples generated by one BiT model will
likely transfer to a different BiT model, but not to a ViT
model or ResNet. Visually, we can see this result repre-
sented for CIFAR-10 in Figure 1. The x-axis represents dif-
ferent models used to generate the adversarial examples and
the y-axis represents the model used to evaluate those ad-
versarial examples. The z-axis is used to measure the trans-
ferability. For clarity, the bars in the plot are color coded.
Green, blue and light blue bars represent the transferability
measurements between models of different genusus (green
is ViT/ResNet transferability, blue is ViT/BiT transferabil-
ity and light blue is BiT/ResNet transferability). Pink, red,
and orange bars represent the transferability between mod-
els of the same genus. Pink is the transferability between
ViT models, red is the transferability between BiT models
and orange is the transferability between ResNet models.

It is important to note while the low transferability phe-
nomenon is a generally observed trend, it is not an absolute
rule. For example, the transferability between Big Transfer
models (BiT-M-R50x1 and BiT-M-152x4) for ImageNet is
also relatively low (28% and 24.9%). However, the most
important factor is that the low transferability phenomenon
does happen across multiple datasets and for multiple dif-
ferent pairs of models. The usefulness of these observations
may not be apparent immediately. Nevertheless, they have
serious security implications which we elaborate on subse-
quently.

5. White-Box Security and Transferability
How can the transferability phenomena be leveraged to

provide security? From Section 4, we know that the trans-
ferability of adversarial examples between different model
genusus is generally low. Therefore, we propose testing an
ensemble of different models as a defense. To further clarify

Figure 1. Visual representation of Table 2 for CIFAR-10. The x-
axis corresponds to the model used to generate the adversarial ex-
amples. The y-axis corresponds to the model used to evaluate the
adversarial examples. The z-axis measures transferability between
the two models. The bars are color coded based on the two models.
Pink, red, and orange bars represent the transferability between
models of the same genus. Green, blue and light blue bars repre-
sent the transferability measurements between models of different
genusus.

the original question, we break it down into two parts: Can
an ensemble defense provide security against a white-box
adversary, and can an ensemble provide security against a
black-box adversary? In this section we answer the white-
box question by proposing a novel attack that simultane-
ously breaks both Transformers and CNNs. In Section 6,
we investigate the black-box question.

We first define our base case ensemble defense.
Ensemble Models: In this paper, we have already ex-

amined multiple Vision Transformers, Big Transfer Models
and ResNets. The simplest ensemble would be to choose
two types of classifiers from this group. Therefore, as a base
case we use the most complex BiT model and ViT model.
For CIFAR-10 and CIFAR-100 datasets, the ensemble is
comprised of ViT-L-16 and BiT-M-101x3. For ImageNet,
this ensemble is made up of ViT-L-16 (image size 512) and
BiT-M-152x4. Here, we do not consider ResNets as they
have significantly less clean accuracy and we do not want
to pay such a security cost. In the supplementary material,
we do provide some ResNet ensemble experiments for the
sake of completeness.

Ensemble Output: In our ensemble defense, there are
several possible ways to combine the output of the models.
Here we consider three ways commonly found in the lit-
erature, majority voting [27], absolute consensus [26] and
random selection [32]. Majority voting is a weak method
of evaluating adversarial examples because not every clas-
sifier must be fooled, resulting in diminishing returns as the
number of classifiers increases. The alternative to major-
ity voting is absolute consensus [26]. In this setup, if ev-
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Table 2. Transferability results for CIFAR-10, CIFAR-100 and ImageNet. The first column in each table represents the model used to
generate the adversarial examples, Ci. The top row in each table represents the model used to evaluate the adversarial examples, Cj . Each
entry is the maximum transferability computed using Ci and Cj over three different attacks, FGSM, PGD and MIM using Equation 3.

CIFAR-10
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT BiT-50x1 BiT-101x3 ResNet-56 ResNet-164

ViT-B-32 95.8% 84.1% 75.5% 34.9% 60.8% 62.0% 18.6% 19.9%
ViT-B-16 57.1% 99.6% 88.9% 22.6% 43.4% 45.0% 13.9% 14.0%
ViT-L-16 55.6% 78.4% 89.6% 30.3% 42.5% 44.7% 13.0% 14.8%
R50-ViT 39.6% 58.1% 51.5% 98.3% 61.0% 58.0% 26.7% 29.0%
BiT-50x1 4.5% 10.9% 5.7% 4.7% 100.0% 51.4% 7.0% 9.0%
BiT-101x3 8.6% 20.3% 13.7% 7.2% 75.9% 100.0% 7.8% 9.3%
ResNet-56 6.6% 9.0% 5.3% 9.7% 22.5% 11.8% 85.9% 87.2%
ResNet-164 6.8% 8.1% 5.0% 9.7% 22.3% 11.2% 83.6% 85.7%

CIFAR-100
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT BiT-50x1 BiT-101x3 ResNet-56 ResNet-164

ViT-B-32 96.2% 88.5% 83.6% 52.2% 60.5% 61.1% 14.9% 14.0%
ViT-B-16 71.3% 99.3% 93.2% 38.6% 44.5% 47.9% 9.0% 7.5%
ViT-L-16 67.8% 88.3% 94.2% 48.1% 47.6% 50.0% 9.9% 9.5%
R50-ViT 51.6% 65.0% 62.3% 98.9% 64.1% 61.2% 11.0% 9.9%
BiT-50x1 17.7% 25.0% 15.5% 18.2% 100.0% 56.5% 4.9% 5.2%
BiT-101x3 24.9% 39.0% 26.3% 23.5% 74.0% 99.0% 5.7% 3.2%
ResNet-56 20.1% 22.2% 15.3% 22.7% 31.4% 21.9% 70.8% 68.9%
ResNet-164 22.1% 24.5% 15.5% 24.2% 35.9% 26.5% 74.5% 79.2%

ImageNet
ViT-B-16 ViT-L-16 ViT-L-16 (512) BiT-50x1 BiT-152x4 ResNet-50 ResNet-152

ViT-B-16 + 89.1% 39.6% 40.8% 27.4% 44.0% 40.1%
ViT-L-16 90.9% + 64.5% 40.0% 26.9% 43.7% 40.8%
ViT-L-16 (512) 28.0% 43.4% + 34.3% 26.3% 28.4% 23.2%
BiT-50x1 9.8% 8.4% 11.8% + 24.9% 24.7% 18.7%
BiT-152x4 8.2% 7.6% 13.5% 28.0% + 15.1% 12.0%
ResNet-50 23.8% 18.8% 24.7% 55.3% 24.4% + 86.7%
ResNet-152 25.9% 22.1% 26.6% 54.1% 26.8% 89.4% +

ery classifier does not agree on the same class label then
the sample is marked as adversarial. Absolute consensus
removes the diminishing returns disadvantage of majority
voting, though at the cost of clean accuracy. In absolute
consensus, it is typical that many clean samples are marked
as adversarial [26]. Due to this, we use random selection in
all our ensemble defenses for the remainder of the paper. In
random selection, a single model is selected randomly and
used to evaluate the input at run time.

5.1. The Self-Attention Gradient Attack

Attack Motivation: A naı̈ve approach would be to
assume that an ensemble defense would provide security
against a white-box adversary if only the low transferabil-
ity results in Section 3 and Section 4 were taken into ac-
count. Consider the following analysis: Let us focus on
the ImageNet models ViT-L-16 (image size 512) and BiT-
M-152x4. From Section 4, we know a white-box MIM at-
tack has a 100% attack success rate (0% robust accuracy)
on ViT-L-16 (see Table 2). Now let us introduce an addi-
tional model, BiT-M-152x4 into the ensemble with ViT-L-
16. From Section 4 Table 2, we know the adversarial exam-

ples generated from ViT-L-16 will be misclassified by BiT-
M-152x4 only 26.3% of the time. If we make an ensem-
ble of ViT-L-16 and BiT-M-152x4 with random selection,
this means the attack success rate on average would drop to
63.15%. It seems as if we went from 0% robust accuracy
using only ViT-L-16 to 36.85% robust accuracy just by us-
ing an ensemble with random selection. However, this is not
the case as the adversarial examples we are using only come
from attacking one model. We demonstrate the flaws in this
type of analysis by proposing a new attack which generates
adversarial examples that are simultaneously misclassifed
by both Vision Transformers and CNNs. We call this new
attack, the Self-Attention Gradient Attack (SAGA).

Mathematical Description: To derive SAGA, we as-
sume the same white-box adversary we detailed in Sec-
tion 3. Such an adversary has knowledge of the models
and trained parameters in an ensemble defense. Instead of
focusing completely on optimizing over one of the models,
SAGA focuses on breaking multiple models at once. As-
sume we are given an ensemble with a set of Vision Trans-
formers V and a set of CNNs K. The goal of the attacker is
to craft an adversarial example xadv from xwithin perturba-
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tion bounds ε that is misclassifed by all members v ∈ V and
k ∈ K. We can iteratively compute the adversarial example
as follows:

x
(i+1)
adv = x

(i)
adv + εs ∗ sign(Gblend(x

(i)
adv)) (4)

where x(1)adv = x and εs is the step size for the attack. Fur-
ther, we define Gblend(x

(i)
adv) as follows:

Gblend(x
(i)
adv) =

∑
k∈K

αk
∂Lk

∂x
(i)
adv

+
∑
v∈V

αvφv �
∂Lv

∂x
(i)
adv

(5)

In Equation 5, the first summation is for the models in setK
which are CNNs. ∂Lk/∂x

(i)
adv is the partial derivative of the

loss function of the kth CNN with respect to the adversarial
input x(i)adv . Each model k has an associated weighting fac-
tor αk. In a more refined approach, αk could be optimized
over as well, but here we simply leave αk as a hyperparam-
eter in the attack. Note that PGD [24] without randomized
start is a special case of our attack when V = ∅, K has ex-
actly one element and a1 = 1. However, when attacking an
ensemble, V 6= ∅ and hence we have a second term.

In Equation 5, the second term1 αvφv � ∂Lv/∂x
(i)
adv is

used to craft adversarial examples that are misclassified by
the Vision Transformers in the ensemble. Here ∂Lv/∂x

(i)
adv

is the loss function of the transformer with respect to the ad-
versarial input. Likewise, αv is a weighting factor selected
by the attacker to balance the emphasis on different models.
We also bring in one additional term which is specific to
Vision Transformers, φv . The term φv is the self-attention
map associated with the vth transformer in the ensemble.

The self-attention φv is computed using attention roll-
out [1] and is defined as:

φv =

(
nl∏
l=1

[
nh∑
i=1

(0.5W
(att)
l,i + 0.5I)

])
� x. (6)

where nh is the number of attention heads per layer, nl is the
number of attention layers, W (att)

l,i is the attention weight
matrix in each attention head, I is the identity matrix and
x is the input image. This technique takes into account the
attention flow from each layer of the transformer to the next
layer, including the effect of skip connections. The attention
values from the different attention heads within the same
layer are averaged, and the attention values are recursively
multiplied between different layers.

Experimental Results: We demonstrate the SAGA re-
sults by attacking a simple ensemble of Vision Transform-
ers and Big Transfer Models for CIFAR-10, CIFAR-100 and
ImageNet. We use 1000 clean correctly identified examples
with the same attack parameters as described in Section 3.

1� is the element wise Hadamard product; x in (5) and (6) is an image
matrix and the partial derivative w.r.t x in (5) is represented as a matrix.

ImageNet CIFAR-100 CIFAR-10

SAGA 91.8% 84.4% 74.0%

Single PGD 56.2% 62.4% 59.2%

Single MIM 63.2% 75.0% 72.4%

Basic 71.6% 73.7% 52.5%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Figure 2. Attack success rate of the Self-Attention Gradient Attack
(SAGA), the Single MIM attack and Basic attack on an ensemble
containing one ViT-L-16 model and one BiT-M-R101x3 model (or
BiT-M-R152x4 for ImageNet). For full descriptions of each attack
see Section 5.1.

For CIFAR-10 and CIFAR-100, we use Bit-M-R101x3 and
ViT-L-16. For ImageNet, we use Bit-M-R152x4 and ViT-
L-16. We also test three other simple attacks which are de-
noted in Figure 2 as Basic, single PGD and Single MIM.
The basic attack is a combination of the model gradients
without weighted coefficients and self-attention included.
The single MIM/PGD attack is the best transfer attack on
the ensemble as reported from Table 2.

The main contribution of this attack is to demonstrate
that Vision Transformer/Big Transfer type of ensembles are
not secure under a white-box adversary. This is precisely
what is shown in Figure 2. SAGA has an attack success rate
of 74.0%, 84.4% and 91.8% on the ensemble for CIFAR-
10, CIFAR-100 and ImageNet, respectively. In Figure 2, we
also show SAGA outperforms the other white-box multi-
model attacks across all datasets. For brevity, many details
are omitted here such as the hyperparameter selection for
SAGA and attacks on Transformer/ResNet ensembles. We
provide this information fully in the supplementary mate-
rial.

6. Black-Box Security and Transferability
In this section, we consider the transferability phenom-

ena and its security implications under a black-box adver-
sarial model. We once again use an ensemble of classi-
fiers with random selection as described in Section 5. From
Section 5.1, we know that such an ensemble is not secure
against white-box adversaries. Using attacks like SAGA,
an adversary can blend the gradients of different models
and the self-attention of Transformers. This results in a high
percentage of adversarial examples that are misclassified by
all the classifiers. However, this type of attack relies heav-
ily on the white-box capabilities of the adversary. Without
knowledge of the models in the ensemble and their trained
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parameters, this type of attack would not work. This brings
up a new possibility. Can transferability (through an en-
semble) provide security when individual model gradients
are not available to the attacker?

6.1. Black-Box Attack Parameters and Adversarial
Model

Adversarial Model: In this section we consider two of
the main types of black-box adversaries, query-based [3]
and transfer-based adversaries [29]. For the query based
adversary, we test one of the most recent attacks, the RayS
attack [8]. In this attack, the adversary generates an ad-
versarial example by repeatedly querying the defense and
adjusting the noise accordingly. For the transfer attack, we
implement the Adaptive Black-Box Attack [26]. This at-
tack is a stronger version of the Papernot attack originally
proposed in [29]. Here the attacker has access to a percent-
age of the original training data, query access to the defense
and the ability to train a synthetic model to generate adver-
sarial examples. In this attack, the adversary queries the
defense to obtain labels for the training data. It then uses
the data labeled by the defense to train an independent clas-
sifier (synthetic model). An attack is then performed on the
trained synthetic model. The resulting adversarial examples
are then tested on the defense.

Attack Parameters: For all black-box attacks, we use
the same basic set of constraints as described in Section 3.1.
The noise the adversary can generate is bounded by the
l∞ norm with ε = 0.031 for CIFAR-10/CIFAR-100 and
ε = 0.062 for ImageNet. For the RayS attack, we give the
adversary a budget of 10, 000 queries per sample. For the
Adaptive attack, we give the adversary 100% of the training
data. For the synthetic model in this attack, we used ViT-
B-32 pre-trained on ImageNet-21K. We also experimented
with CNN based synthetic models, however these did not
perform as well on our ensemble defense. It should also
be noted the 100% strength attack requires a huge amount
of computation. Due to this we only show the results for
CIFAR-10 for the Adaptive attack. For RayS, we show re-
sults for all three datasets.

6.2. Black-Box Attack Analysis

In Figure 3, we show the results graphically for the RayS
and Adaptive attack. We consider three different model
configurations. We test an ensemble of one Vision Trans-
former (ViT-L-16) and one Big Transfer Model (BiT-M-
101x3 for CIFAR-10/CIFAR-100 and BiT-M-152x4 for Im-
ageNet). We also test a single ViT-L model and a single
CNN (ResNet-56 for CIFAR-10/CIFAR-100 and ResNet-
50 for ImageNet). While slightly redundant, we do test
other ensemble configurations (and individual Big Transfer
Models) in the supplementary material for those interested.

The robust accuracy (percent of adversarial samples cor-

RayS CIFAR-10 RayS CIFAR-100 RayS ImageNet
Adaptive
CIFAR-10

ViT/BiT 81.0% 82.0% 58.0% 57.0%

ViT-L-16 14.5% 9.0% 25.9% 30.8%

ResNet 0.8% 0.3% 3.1% 3.6%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Figure 3. Robust accuracy (higher is better) of different model con-
figurations under black-box attacks. Here ViT/BiT is an ensem-
ble containing a Vision Transformer (ViT-L-16) and a Big Trans-
fer Model (BiT-M-101x3 for CIFAR-10/CIFAR-100 and Bit-M-
R152x4 for ImageNet.

rectly identified by the defense) are shown in Figure 3 for
each attack. Here we observe the most significant result
of our paper: a simple ensemble including a Vision Trans-
former and Big Transfer model drastically improves secu-
rity. For RayS, we observe an increase of 66.5%, 73%
and 32.1% in robust accuracy for CIFAR-10, CIFAR-100
and ImageNet respectively. For the CIFAR-10 Adaptive at-
tack, even when the adversary has 100% of the training data,
query access and a synthetic model pre-trained on the same
dataset as the defense (ImageNet-21K), we can still achieve
a robust accuracy of 57%. For the Adaptive attack that rep-
resents an improvement of 26.2% over a single model.

We also stress that this improvement does not come at
the cost of clean accuracy. The average clean accuracy of
the ensemble is 98.2%, 92.83% and 85.37% for CIFAR-10,
CIFAR-100 and ImageNet respectively. By leveraging the
low transferability phenomena we previously studied, we
are able to create a defense that achieves near state-of-the-
art performance on clean data and gives significant black-
box robustness.

7. Conclusion

The introduction of Vision Transformers represents new
opportunities for the field of adversarial machine learning.
By analyzing these new models, we are the first to uncover
several intriguing properties. We demonstrated that the
transferability between different model genusus are in gen-
eral, remarkably low. We then showed this phenomena does
not yield white-box security by developing a new white-box
attack, the Self-Attention Gradient Attack (SAGA). Finally,
we showed that under a black-box adversary, the transfer-
ability phenomena can be used to achieve robustness, all
while maintaining near state-of-the-art clean accuracy on
CIFAR-10, CIFAR-100 and ImageNet. Through our com-
prehensive experiments and analyses, we show how Vision
Transformers advance security in the field of adversarial
machine learning.
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