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Figure 1: Continuous age transformation results by our method on the FFHQ dataset and synthesized image of StyleGAN2.
The first column shows the input images, whereas the remaining ones are generated images. Note that our model is trained
only on the FFHQ; thus, the results in the first row show excellent generalization capability of the proposed method.

Abstract
Face age transformation aims to synthesize past or fu-

ture face images by reflecting the age factor on given faces.
Ideally, this task should synthesize natural-looking faces
across various age groups while maintaining identity. How-
ever, most of the existing work has focused on only one of
these or is difficult to train while unnatural artifacts still ap-
pear. In this work, we propose Re-Aging GAN (RAGAN), a
novel single framework considering all the critical factors
in age transformation. Our framework achieves state-of-
the-art personalized face age transformation by compelling
the input identity to perform the self-guidance of the gener-
ation process. Specifically, RAGAN can learn the personal-
ized age features by using high-order interactions between
given identity and target age. Learned personalized age fea-
tures are identity information that is recalibrated according
to the target age. Hence, such features encompass identity
and target age information that provides important clues on
how an input identity should be at a certain age. Exper-
imental result shows the lowest FID and KID scores and
the highest age recognition accuracy compared to previous
methods. The proposed method also demonstrates the vi-
sual superiority with fewer artifacts, identity preservation,
and natural transformation across various age groups.

1. Introduction

A face age transformation task is dedicated to learn-
ing age progression or regression of a given face accord-
ing to the target age. Here, target age implies an explicit
conditioning factor that guides the transformation to pro-
duce facial images with a certain age. That is, we can
set any target age for an input face image, and expect to
have an output face depicting the target age characteristics,
as shown in Figure 1. Ideally, age transformation mod-
els should satisfy the following properties. First, a model
should take into account the identity of the person while
progressing/regressing the face age and sustain it mostly un-
altered, i.e., identity preservation. Second, a model should
be able to generate natural-looking faces corresponding to
the target age across various age groups.

In this regard, a number of works on face age transfor-
mation have been introduced [1, 48, 46, 39, 12, 42, 33, 47,
24, 45]. These methods, on the basis of powerful genera-
tive adversarial networks (GANs) [10, 30], train deep neural
networks to perform a robust age transformation of the in-
put face. Aside from this, several methods [43, 46] adopted
additional mechanisms (i.e., networks and constraints) for
identity preservation to ensure that face identity is unaltered
during the age transformation process. However, even with
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improved approaches, existing methods tend to generate im-
ages with visible artifacts and/or unnatural-looking faces
which surely lowers down the image quality and its percep-
tion. Another important aspect that should be considered
is a wide-range age transformation, specifically, an age re-
gression process for rejuvenating input face. Most existing
works scarcely address this process and more focus on pro-
gression. Although a few methods can operate on face age
regression and provide good performance, their results still
suffer from artifacts near and/or on face regions and contain
no background due to the tight face cropping. Overall, even
with such considerable efforts, few models cover all critical
factors such as identity-preserved age transformation across
a wide range of age groups.

In this paper, we consider all these important factors for
face age transformation and propose a simple yet effective
framework called Re-Aging GAN (RAGAN). Unlike recent
methods, we endeavor to design RAGAN in a single frame-
work for making model training easier and more scalable.
Our generator comprises three sub-networks, namely en-
coder, age modulator, and decoder, each of which is de-
signed with a specific role for face age transformation. As
it is necessary to meet the identity preservation property
as well as background for generating accurate and visually
plausible transformed images, we make an encoder to de-
tach the face region from the background such that it solely
focuses on extracting identity features. We are aware that
identity might be disrupted in the learning process without
explicit guidance. Thus, we consider modulating identity
features in agreement with the given target age by means of
an age modulator plugged in-between encoder and decoder.
Straightforward incorporation of this network aims to pro-
vide personalized age-aware features and so self-guide the
decoding process. By leveraging such features, the decoder
learns to smoothly add target age characteristics on iden-
tity features in an optimal manner. The decoder further im-
proves the visual perception of images by mapping back the
background. As the whole process focuses on the face re-
gion, it allows the generator to pay more attention to trans-
forming the facial region and helps to avoid affecting the
background (i.e., color change, artifacts). For the discrim-
inator part, we follow the advanced approaches [7, 29, 26]
consisting of conventional age-related loss.

The main contributions of this work are as follows:
• We introduce a personalized self-guidance scheme that

enables transforming the input face across various tar-
get age groups while preserving identity.

• We successfully perform face age transformation us-
ing only a single generative and discriminative model
trained effectively in an unpaired manner.

• We qualitatively and quantitatively demonstrate the
superiority of RAGAN over state-of-the-art methods
through extensive experiments and evaluations.

2. Related Works
Face aging with GANs Many recent works extensively
applied GAN approach in facial aging. A concept of condi-
tional GANs (cGANs) [30] allowing to augment age charac-
teristics in generated images is utilized in [1, 48, 43, 39, 24].
However, models lead to produce blurry images, and dam-
age identity information [12, 47]. In turn, several meth-
ods [43, 46, 23, 22] provided improvements by adopt-
ing mechanisms such as L2 constraint, pre-trained identity
classifier, etc. In addition to the identity preservation net-
work, [22] also introduced wavelet transform to capture tex-
ture details for age synthesis. Similarly, wavelet informa-
tion is used in [28, 27], but in a multi-scale manner in the
discriminator. However, their results still suffer from no-
ticeable artifacts [47]. The work of [12] proposed S2GAN
which applies age-specific transforms on the encoded per-
sonalized aging basis to obtain and decode age-specific rep-
resentation of the input face. Despite the plausible results,
S2GAN has less ability to depict age progression [33].

To generate high-resolution images, [47] proposed a face
age editing model operating in high-resolution (HRFAE).
The method relies on a straightforward approach that re-
weights the encoded features by means of the output of a
single fully connected layer. Similarly, [9] proposed incor-
porating aging maps by using SPADE blocks [34] in the de-
coding process to obtain high-resolution face images. Al-
though these methods maintain good identity preservation
and age information, it is limited to perform mostly age pro-
gression than regression. LATS [33] presented a method for
synthesizing lifespan age transformations. Their decoder
operates in a similar manner as StyleGAN2 [17] and per-
forms modulated convolutions on identity features while in-
jecting the target age latent vector learned from the mapping
network. Despite the impressive performance, LATS pri-
marily focuses on face synthesis without using background
information, which leads to unexpected artifacts.

Image-to-Image Translation In addition to the facial
age-specific approaches, image-to-image translation [5, 6,
20, 35, 36, 44] could be applied for the face age transfor-
mation task. There have been several attempts to manipu-
late the facial age attributes in a multi-domain transfer fash-
ion. To perform face age manipulation (i.e., young to old,
and vice-versa), StarGAN [6] and STGAN [25] assume that
the age domain is distinct from other face-related domains.
However, the appearance of the face due to the specific
age is highly correlated with other facial attributes. For in-
stance, when translating between different age groups using
multi-domain transfer, styles that are not related to age, such
as gender, accessories, and ethnicity can also be transferred.
Besides, multi-domain transfer-based approaches struggle
for modeling the shape (i.e., head) deformation associated
with age transformation. We refer to the work [33] provid-
ing extensive analysis on multi-domain transfer approaches.
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Figure 2: Overview of our proposed RAGAN framework. Given an input image, our framework transforms it to target age
y′ by means of self-guiding features that convey personalized age-aware information.

3. Proposed Method

3.1. Overview

Let X and Y be the sets of images and possible ages,
respectively. Given a face image x ∈ X and target age
randomly drawn from y′ ∈ Y , our goal is to train a single
generator G such that it can generate a face image x′ of a
particular age y′ corresponding to the identity in x. In ad-
dition, we introduce an age modulator within G to reshape
identity features by considering the target age and utilize it
as self-guiding information.

In comparison to prior works, our main objective is to
robustly transform face age as well as maximally retain age-
unrelated information in x′, such as background, hairstyle,
expression, etc. This means that our framework should pre-
serve the age-unrelated information contained in the input
image during the age transformation process. Therefore, we
consider a simple strategy on encoder and decoder networks
to share some of the valuable information.

3.2. Proposed Framework

Our GAN-based framework is divided into the generator
consisting of an encoder, a modulator, and a decoder, and
the discriminator. Since our discriminator part follows the
existing approaches [7, 29, 26] and is not the main focus of
this study, only the generator part is described in the overall
flow of Figure 2. Our generator makes use of the encoder-
decoder architectural concept for image generation and is
made of an identity encoder Enc, an age modulator AM ,
and a decoder Dec. In a superficial view, our encoder and
decoder networks perform the same procedure as existing
works, yet having a few modifications (see details below).

One of the differences between ours and other works is the
integration of an additional sub-network at the bottleneck of
the generator. By this network, we can obtain features pro-
viding information on how a particular person should look
like at the age under the consideration. Given that such age-
aware features are learned based on a given input image,
then it can be used as self-guidance information in the fur-
ther generation process.

3.3. Identity Encoder

Given an image x for age transformation, our identity
encoder Enc extracts identity-related features fid of the im-
age, where fid = Enc(x). Particularly, the encoder pro-
vides such features that supply facial structures at the local
level and general information on face shape. These fea-
tures are necessary to generate the same-looking face and
thus have high importance, as discussed earlier. In turn,
this importance intuitively leads us to focus on the face
region only. Therefore, we propose to perform a mask-
ing operation after transferring x into the feature domain.
To this, we utilize a network [4] trained on sophisticated
mask-based dataset [21]. We deliberately perform mask-
ing at this stage such that we can obtain face as well as
background-related features to operate on the face region
only while maintaining background information simultane-
ously. At the architecture level, the identity encoder is de-
signed to have an image-to-feature level convolutional layer
followed by downsampling residual blocks [11].

3.4. Age Modulator

Age modulator AM is constructed in the form of CNN,
which is widely used in learning a low-dimensional vec-
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tor of an input. It takes identity features fid from the en-
coder and, by considering given age information y′, out-
puts its reshaped version faw = AM(fid, y

′), where faw
is an element age-aware vector. To embed target age into
AM , we add conditional batch normalization (CBN) lay-
ers used as a way to incorporate label information into the
network [41, 8, 32, 31]. By doing so, AM learns optimal
age-aware features for input identity, which enables satisfy-
ing both identity and age properties. Given that the network
is integrated into G, it can be trained alongside the gener-
ator in an end-to-end manner. We implement AM as a set
of downsampling layers with CBN technique producing a
compact feature-vector used to modulate decoder layers.

3.5. Decoder

The decoder network Dec takes an identity fea-
ture alongside the age-aware features and produces age-
transformed face image by x′ = Dec(fid, faw). Identity
preservation should go along with a change in age charac-
teristics. Thus, to satisfy both of these properties, we make
use of age-aware features to self-guide the decoding pro-
cess through modulation operations on unshaped identity
features. The identity features fid are modulated by adap-
tive instance normalization (AdaIN) layers [14, 16]. As dis-
cussed above, performing masking operation in Enc sup-
plies background-related features through ad hoc connec-
tion. That is, we can use it to generate images with better
visual perception prior to map learned feature representa-
tion into the image domain. However, instead of directly
adding this information to face-related features, we per-
form a masking operation on learned face representations
again to remove minor variations that occurred in the back-
ground due to the normalization and activation layers. Sub-
sequently, we combine face- and background-related fea-
tures and map them back to the image domain using the last
convolutional layer. We construct this network by mirroring
the encoder architecture with the replacement of downsam-
pling to upsampling layers.

3.6. Discriminator

Our discriminator D follows works presented in [7, 29,
26] and performs a multi-task classification. Hence, the last
fully connected layer has a number of output branches to
classify multiple age classes. By performing binary classifi-
cation, each of the branches learns to determine the validity
of the image being real x or fake x′ of its age domain.

4. Optimization
Our framework is designed to produce images where the

identity of the input is preserved, whereas a target age is ac-
curately represented. To ensure such ideal transform, three
types of losses are used in our framework: adversarial, re-
construction, and cycle-consistency. The framework oper-

ates on three input information, an input image x and its
corresponding age label y, and randomly sampled target age
y′ into which input should be transformed. Subsequently,
given this information, G will produce age-transformed x′,
reconstructed xrec, and cycle-consistency images xcycle as

x′ = G(x, y′), xrec = G(x, y), xcycle = G(x′, y) (1)

Adversarial Loss As mentioned above, the output of the
discriminator corresponds to the particular age domain.
Hence, we can think that adversarial loss is conditioned on
the age class. We use an adversarial loss formulated as:

Ladv(G,D) = Ex,y [logDy(x)] + Ex,y′ [log (1−Dy′(x′))] ,
(2)

where Dy(·) is the only output of D corresponding to the
age y.

Reconstruction Loss While training G, we have to con-
sider the case when the age y of the input image x and the
target age y′ belong to the same age-group (y = y′). In
this case, the age-transformed image x′ should be as close
as possible to the input x. Therefore, we add reconstruction
loss which forces G to pay attention to such cases by

Lrec(G) = ∥x− xrec∥1 (3)

Cycle-Consistency Loss We can train G to generate im-
ages that are realistic and accurate in terms of target age
by minimizing the adversarial and reconstruction losses.
However, such minimization (i.e., (2) and (3)) cannot
help to force G to learn maintaining the identity all over
the age transformation process while changing the age-
characteristics of input x. To address it, we include cycle-
consistency loss [18, 49, 6] in the form of given below:

Lcyc(G) = ∥x− xcycle∥1 (4)

Full Objective The overall objective function considered
to optimize G and D is as follows:

min
G

max
D

λadvLadv(G,D) + λrecLrec(G) + λcycLcyc(G)

(5)

where λadv, λrec, and λcyc are the weights for each loss to
balance their influences on training.

5. Experimental Setup
We train our model with a batch size of 8 for 30 epochs

on a single NVIDIA Titan RTX GPU. As an optimizer, we
use Adam [19] with momentum parameter settings β1 =
0.0 and β2 = 0.99 and a learning rate of 10−4. We also add
R1 regularization [29] in our training stage. In addition,
we apply the learning rate scheduler for both the generator
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Figure 3: Qualitative comparison with IPCGAN [43].
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Ours HRFAE

Figure 4: Qualitative comparison with HRFAE [47].

and the discriminator. In the beginning of 10 epochs, we
train our model with λrec = 10, λcyc = 1, and λadv = 1
for reconstruction, cycle-consistency and adversarial losses,
respectively. Thereafter, we reduce λrec to 1 because such
training leads to better results.

Datasets For training our framework, we use FFHQ [16]
dataset labelled for age transformation task by [33]. This
dataset provides images of 70,000 people in 10 age groups.
We follow the strategy of [33] to form training and test
splits, as well as pruning the dataset images that have a
low label-confidence score. In addition, this dataset pro-
vides face semantic maps. We use this semantic information
to mask out images and so separate face-region and back-
ground information for reliable age transformation. To eval-
uate the generalization capability of our model to unseen
images, we use CelebA-HQ [15] and CACD [3] datasets in
our qualitative evaluations. Both of these datasets provide
face images of celebrities with diversity in age, pose, illu-
mination and expression. All images used in our training
and evaluations are at the resolution of 256 × 256 which is
a commonly used resolution in existing works.

Evaluation metrics In quantitative evaluations, we con-
sider evaluating the identity preservation and age modifi-
cation of generated images. For identity preservation, we
introduce to utilize Frechét inception distance (FID) [13]
and Kernel inception distance (KID) [2] metric which eval-
uates the discrepancy between distributions. Additionally,
to assess how accurately age is introduced into the input im-
age (i.e., the correctness of age transformation), we follow
existing works and use age recognition accuracy [43, 42].

6. Experimental Results

6.1. Comparison with Previous Methods

We compare our framework to the recent state-of-the-art
methods in face age transformation, namely, HRFAE [47],
LATS [33]. In addition, we consider IPCGAN [43] as it was
designed to preserve identity information in facial aging.

We start the qualitative evaluation by comparing our re-
sults on the CACD dataset with a comparison to IPCGAN.
For this purpose, we use IPCGAN model which consid-
ers age transformation in these age-groups: 11-20, 21-30,
31-40, 41-50, and 50+. Similarly, along with images of
these age categories, we also show our results in 3-5, 6-10
younger classes to demonstrate the potential of our method
in performing full age transformation of CACD images as
shown in Figure 3. It is noteworthy to mention that we use
our model trained on the FFHQ dataset for this qualitative
comparison. From Figure 3, we can see our method can
generate more realistic transformations whereas IPCGAN
has some degradation on the image quality and artifacts es-
pecially in the eye-regions of older images.

We compare our method and recently introduced
HRFAE on the FFHQ dataset. In comparison to ours,
HRFAE performs age transformation on the age range of
20-77 years old. Following their protocol, we perform age
editing in given target ages for both; but, we also include
our results in younger ages to provide a full sense of contin-
uous transformation. In Figure 4, the results of HRFAE are
more in texture level which means only facial appearance
is modified. In comparison, we can also deform the head
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Figure 5: Qualitative comparison with LATS [33].

shape, such that faces align with the human growth process.
We also qualitatively evaluate the performance of our

method against LATS, the state-of-the-art transform model
as shown in Figure 5. One of the clearest differences be-
tween these two methods is the background. As LATS con-
siders only the face region itself, it loses such necessary in-
formation that we consider valuable for visual perception.
By the rule, losing one helps LATS to stress age transfor-
mation on the faces (especially, at the very young ages), but
at the additional cost of introducing artifacts on the face bor-
ders. From this, we can infer that keeping background not
only facilitates better perception but helps to avoid such vis-
ible artifacts. Besides, there are visible artifacts on mouth
regions of LATS images, whereas our model smoothly gen-
erates mouth and teeth regions according to the target age.
These results demonstrate the efficiency of self-guidance
from AM , which provides such reliable features conveying
both identity and target age information.

6.2. Generalization Ability

One of the important aspects of all deep learning-based
methods is to have the ability to generalize to unseen
data. To this, we perform the experiment on the images
of CelebA-HQ [15]. We should stress that our model has

not seen images of this dataset in the training stage, and
all the results were generated solely using a model trained
on the FFHQ. We demonstrate age transformation results of
CelebA-HQ images in Figure 6 (two upper rows). By look-
ing at the generated images, we can see the age transfor-
mation flow of a person in a smooth way. It is notable that
while preserving the identity and changing age characteris-
tics, the background information is kept that can be seen in
the banner behind of person at the top row. We observe the
cases where it is difficult to notice age transformations due
to the make-up, and as it is one of the characteristics of the
distribution, the model also learns it accordingly. Never-
theless, this issue is common in age-related tasks, including
conventional age estimation/classification.

Also, we test how the proposed framework could gen-
eralize to the fake images. To this end, we use synthesized
images1 by StyleGAN2 [17]. Similarly, the model has never
seen such fake images in its training. The performance of
our age transformation framework is provided in Figure 6
(two bottom rows). From the figure, we can confirm our
model performs well in synthesized images as in CelebA-
HQ. Overall results demonstrate the generalization capabil-
ity of our model to the unseen data.

1www.thispersondoesnotexist.com
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Input Continuous face age transformation

Figure 6: Generalization capability of our model on images of CelebA-HQ [15] dataset (two upper rows) and on synthesized
images of StyleGAN2 [17] (two bottom rows). The first column is the input whereas the others are our results.

Old −→ Child Child −→ Old

Input FaceApp Ours Input FaceApp:Old FaceApp:Cool Old Ours

Figure 7: Qualitative comparison with FaceApp application in face age regression and progression.

6.3. Comparison with FaceApp

Face manipulation tools on mobile have become useful
for editing facial attributes. One of the representative appli-
cation that allows age editing is FaceApp2. This app pro-
vides several filters for making a person look younger or
older. Here, we compare our results with FaceApp in reju-
venating and aging. For the rejuvenating process, we use
FaceApp filters named Child; whereas for the person aging
process, we set the filters of Old and Cool Old. Figure 7
demonstrates side-by-side comparison of our and FaceApp
results. We can clearly see that the FaceApp images have
different skin tones compared with the input, the results are
brighter. In age rejuvenation, it is noticeable that our re-
sults have a better childish view compared to FaceApp. In
the case of the aging process, except for a few minor de-
tails like hair color and adding beard, we do not find any
distinct difference between Old and Cool Old filters from

2www.faceapp.com

FaceApp. Although the FaceApp can add aging wrinkles,
it conveys less visual perception for such transformation.
Interestingly, our transformation introduces a bristle and at-
tempts to align glasses.

6.4. Identity Preservation

We take a different strategy on evaluating identity preser-
vation. Specifically, we use FID [13] and KID [2] met-
rics for quantitative comparison. As mentioned above, the
model needs to learn the case where the input and target
ages belong to the same group and produce an output close
to the input. If the model cannot regenerate the given input,
then we can consider that identity information is affected
by transformation, and the identity is thus deteriorated or
even lost. Based on this assumption, we are interested in
estimating the identity preservation/deviation of the model.
We can estimate such factors through FID and KID as these
metrics assess the discrepancy between two distributions.
Also, we can get insight on the quality of generated images.
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Method Age-groups

0-2 3-6 7-9 10-14 15-19 20-29 30-39 40-49 50+

FID ↓
IPCGAN - - - - - 45.35 59.12 58.87 52.65
HRFAE - - - - - 41.67 54.90 56.17 48.65
LATS 75.87 77.14 79.91 60.38 59.43 43.28 57.41 55.76 47.12
Ours 71.61 74.64 75.87 54.47 57.15 38.27 51.93 50.47 45.63

KID ↓
IPCGAN - - - - - 0.010 0.011 0.009 0.008
HRFAE - - - - - 0.006 0.009 0.005 0.006
LATS 0.016 0.013 0.008 0.007 0.007 0.005 0.005 0.005 0.003
Ours 0.011 0.010 0.006 0.006 0.005 0.002 0.003 0.002 0.002

Table 1: Identity preservation scores estimated by FID and
KID metrics. Lower scores are better.

To this end, we perform a re-generation process using im-
ages of the test set in each age domain and compare them
with their real counterparts. Specifically, we evaluate the
model in each age-group separately. For each test image
from a source age-group, we transform back it into its own
age-group. We then extract features from Inception-V3 [40]
trained on ImageNet for real x and the generated images
x′. Afterward, we calculate FID and KID between real and
generated distributions for their respective age-group. As
IPCGAN and HRFAE operate at higher ages, we provide
the results accordingly. Lower FID and KID scores indicate
that input images are better regenerated, and thus the model
has the capability of preserving the identity.

We present the results of our comparison in Table 1. We
found that our method performs well in all age groups by
showing lower discrepancy compared to LATS. It is notable
that such results also depict the better quality of generated
images. In both metrics, our method achieved better results
compared to others and thus showing its identity preserva-
tion capacity.

6.5. Age Recognition

This task is specifically designed to evaluate the re-
flectance level of the target age on the generated image. By
performing such an assessment, we can verify how accu-
rately the transformed image depicts its new-age domain.
For this purpose, we use VGG16 [38] network trained on
the age dataset [37]. We consider test images of 20-29 age-
group from the FFHQ dataset to be source images for trans-
forming their ages into 0-2, 3-6, 7-9, 10-14, 30-39, 40-49,
and 50+ groups. We choose this particular age-group to
assess the age transformation in both aging and rejuvenat-
ing tasks. Similar to the previous calculation, we perform
recognition for each age-group separately. We report the
accuracy based on the ratio of the number of samples rec-
ognized correctly to the total number of samples. Similar
to the tests on identity preservation, we provide results of
IPCGAN and HRFAE for higher ages. The higher recogni-
tion accuracy indicates the better introduction of target age

Method 0-2 3-6 7-9 10-14 15-19 30-39 40-49 50+

LATS 57.98 55.75 53.14 56.49 54.21 58.89 62.27 64.66
Ours 55.62 53.46 56.78 59.11 57.04 59.95 63.16 65.47

Table 2: Quantitative comparison between LATS and our
method under wide-range age-group classification. The ac-
curacy (%) is presented.

Method 15-19 30-39 40-49 50+

IPCGAN 52.01 55.41 53.86 55.64
HRFAE 55.37 58.10 57.36 59.47

Ours 57.04 59.95 63.16 65.47

Table 3: Age-group classification accuracy on the gener-
ated images of higher age-groups by IPCGAN, HRFAE,
and ours. The accuracy (%) is presented.

characteristics in generated images.
Table 2 and Table 3 report our comparison for age-group

recognition. As can be seen, our method performs well in
all age-groups. LATS and our method attempt to introduce
more aging-related characteristics like beard, glasses, gray-
ish hair color, etc. We think this is an obvious factor leading
to higher accuracy.

7. Conclusion

In this work, we proposed a novel age transforma-
tion framework called RAGAN that allowed preserving the
identity of a person while changing its age characteristics
across various age groups. Our framework leveraged the
identity information to learn personalized age features that
could self-guide itself for an efficient and reliable face age
transformation. Specifically, we adapted the personalized
identity features to the target age characteristics for this pur-
pose. Our framework could keep the background of the in-
put for better visual perception of the generated image in
comparison to the state-of-the-art method. Overall, our sim-
ple yet effective single framework was able to take into ac-
count both age characteristics of the facial appearance and
identity details in an end-to-end manner. The qualitative
and quantitative results supported the superiority of the pro-
posed method compared to the existing approaches.
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