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Figure 1: We tackle the problem of long term human trajectory forecasting. Given the past motion of an agent (blue) on a
scene over the last five seconds, we aim to predict the multimodal future motion over the next minute ®. To achieve this, we
propose factorizing overall multimodality into its epistemic and aleatoric factors. The epistemic factor is modeled with an
estimated distribution over the long term goals @ while the aleatoric factor is modeled as a distribution over the intermediate
waypoints @ and trajectory @ for each goal separately. This is repeated for multiple goals and waypoints for scene-compliant
multimodal human trajectory forecasting ®. Each color indicates predicted trajectories for a different sampled goal.

Abstract

Human trajectory forecasting is an inherently multi-
modal problem. Uncertainty in future trajectories stems
from two sources: (a) sources that are known to the agent
but unknown to the model, such as long term goals and (b)
sources that are unknown to both the agent and the model,
such as the intent of other agents and irreducible random-
ness in decisions. We propose to factorize this uncertainty
into its epistemic and aleatoric sources. We model the epis-
temic uncertainty through multimodality in long term goals
and the aleatoric uncertainty through multimodality in way-
points and paths. To exemplify this dichotomy, we also pro-
pose a novel long term trajectory forecasting setting, with
prediction horizons up to a minute, up to an order of mag-
nitude longer than prior works. Finally, we present Y-net, a
scene compliant trajectory forecasting network that exploits
the proposed epistemic and aleatoric structure for diverse
trajectory predictions across long prediction horizons. Y-
net significantly improves previous state-of-the-art perfor-
mance on both (a) The short prediction horizon setting on
the Stanford Drone (31.7% in FDE) and ETH/UCY datasets
(7.4% in FDE) and (b) The proposed long horizon setting
on the re-purposed Stanford Drone and Intersection Drone
datasets.

1. Introduction

Sequence prediction is a fundamental problem in sev-
eral engineering disciplines such as signal processing, pat-
tern recognition, control engineering, and in virtually any
domain concerned with temporal measurements. From the
seminal work of A. A. Markov [29] on predicting the next
syllable in the poem Eugene Onegin with Markov chains,
to modern day autoregressive descendants like GPT-3 [6],
next element prediction in a sequence has a long standing
history. Time series forecasting is a key instantiation of
the sequence prediction problem in the setting where the
sequence is formed by elements sampled in time. Sev-
eral classic techniques such as Autoregressive Moving Av-
erage Models (ARMA) [43] have been incorporated in deep
learning architectures [41, 16] in modern day state-of-the-
art time series forecasting methods [37].

However, humans are not inanimate Newtonian entities,
slaves to predetermined physical laws and forces. Predict-
ing the future motion of a billiard ball smoothly rolling on a
pool table under friction and physical constraints is a prob-
lem of different nature from forecasting human motion and

* indicates equal contribution.
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positions. Humans are goal conditioned agents that, unlike
the ball, exert their will through actions to achieve a desired
outcome [40]. Anticipating human motion is of fundamen-
tal importance to dynamic agents such as other humans, au-
tonomous robots [3] and self-driving vehicles [39]. Human
motion is inherently goal directed and is put in place by the
agent to bring about a desired effect.

Nevertheless, even conditioned on the agent’s past mo-
tion and overarching long term goals, is the future trajec-
tory deterministic? Consider yourself standing at a cross-
ing on a busy street, waiting for the pedestrian light to turn
green. While you have every intention of crossing the street,
the exact future trajectory remains stochastic as you might
swerve to avoid other pedestrians, speed up your pace if
the light is about to turn red, or pause abruptly if an unruly
cyclist dashes by. Hence, even conditioned on the past ob-
served motion and scene semantics, future human motion
is inherently stochastic [14] owing to both epistemic un-
certainty caused by latent decision variables like long term
goals and aleatoric variability [10] stemming from random
decision variables such as environmental factors. This di-
chotomy is even sharper in long term forecasting since due
to the increased uncertainty in the future, the aleatoric ran-
domness influences the trajectory much more strongly in
long rather than short temporal horizons.

This motivates a factorized multimodal approach for hu-
man dynamics modeling where both factors of stochasticity
are modeled hierarchically rather than lumped jointly. We
hypothesize that the long term latent goals of the agent rep-
resent the epistemic uncertainty within motion prediction.
While the agent has a goal in mind while planning and exe-
cuting their trajectory, this is unknown to the prediction sys-
tem. In physical terms, this is akin to the question of where
the agent wants to go. Similarly, the aleatoric uncertainty is
expressed in the stochasticity of the path leading to the goal,
which encompasses factors like environment variables such
as other agents, partial scene information available to the
agent and most importantly, the unconscious randomness in
human decisions [18]. In physical terms, this is akin to the
question of how the agent reaches the goal.

Hence, we propose to model the epistemic uncertainty
first and then model the aleatoric stochasticity conditioned
on the obtained estimate. Concretely, with the RGB scene
and the past motion history, we first estimate an explicit
probability distribution over the agent’s long term goals.
This represents the epistemic uncertainty in the prediction
system. We also estimate distributions over a few chosen fu-
ture waypoint positions which along with the sampled goal
points are used to obtain explicit probability maps over all
the remaining intermediate trajectory positions. This rep-
resents the aleatoric uncertainty in the prediction system.
Together the samples from the epistemic goal distribution
and the aleatoric waypoint and trajectory distribution form

the predicted future trajectory.

In summary, our contribution is threefold. First, we pro-
pose a novel long term prediction setting that extends up
to a minute in the future which is about an order of mag-
nitude longer than previous literature. Second, we pro-
pose Y-net, a scene-compliant long term trajectory pre-
diction network that explicitly models both the goal and
path multi-modalities while making effective use of the
scene semantics. Third, we show that the factorized mul-
timodality modeling enables Y-net to improve the state-
of-the-art both on the proposed long term settings and the
well-studied short term prediction settings. We bench-
mark Y-net’s performance on the Stanford Drone [32]
and the ETH [31]/UCY[23] benchmark in the short term
setting. It outperforms previous approaches by signifi-
cant margins of 13.0% in ADE and 31.7% in FDE met-
ric on SDD, and on-par in ADE and by 7.4% in FDE
on ETH/UCY. Further, we also study Y-net’s performance
in the proposed long term prediction setting on the Stan-
ford Drone and the Intersection Drone Dataset [5] where
it substantially improves the performance of state-of-the-
art short term methods by over 50.7% and 39.7% respec-
tively, on ADE and 77.1% and 56.0% respectively, on FDE
metric. The preprocessed data, model, and code can be
found here for future work: https://karttikeya.
github.io/publication/ynet/

2. Related Works

Several recent studies have investigated human trajectory
prediction in different settings. Broadly, these approaches
can be grouped based on the proposed formulation for mul-
timodality in forecasting, inputs signals available to the pre-
diction model and the nature and form of prediction results
furnished by the model. Several diverse input signals such
as agent’s past motion history [15], human pose [27], RGB
scene image [13, 35, 8, 22, 26], scene semantic cues [&],
location [36, 24, 4] and gaze of other pedestrian [27, 46] in
the scene, moving vehicles such as cars [36] and also latent
inferred signals such as agent’s goals [28] have been used.
The form of prediction results produced are also diverse
with multimodality [26] and scene-compliant forecasting
being central to the prior works.

Unimodal Forecasting: Early trajectory forecasting work
focused on unimodal predictions of the future. Social
Forces [ | 5] proposes modeling interactions as attractive and
repulsive forces and future trajectory as a deterministic path
evolving under these forces. Social LSTM [1] focuses on
other agents in the scene and models their effects through a
novel pooling module. [46] forecasts motion in ego-centric
views and exploits body pose and gaze along with cam-
era wearer’s ego-motion for other agent’s future location
prediction. [42] proposes to use attention to model target
agent’s interaction with other agent’s. [27] predicts trajec-
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Figure 2: Model Architecture: Y-net comprises of three sub-networks U., Uy and U; modeled after the U-net architecture [34] (Section
3.1). Y-net adopts a factorized approach to multimodality, expressing the stochasticity in goals and waypoints through estimated distribu-
tions furnished by U,. And multimodality in paths is achieved through estimated probability distributions obtained by U; conditioned on
samples from U, for predicting diverse multimodal scene-compliant futures.

tory as the ‘global’ branch for pose prediction and proposes
to condition downstream tasks such as pose prediction on
predicted unimodal trajectories.

Multimodality through Generative Modeling: Another
line of work aims to model the stochasticity inherent in fu-
ture prediction through a latent variable with a defined prior
distribution through approaches such as conditional varia-
tional auto-encoders [20]. DESIRE [22] is an inverse re-
inforcement learning based approach that uses multimodal-
ity in sampling of a latent variable that is ranked and op-
timized with a refinement module. [27] introduces the use
of a CVAE for capturing multimodality in the final position
of the pedestrians conditioned on the past motion history.
Trajectron++ [36] represents agent’s trajectories in a graph
structured recurrent network for scene compliant trajectory
forecasting, taking into account the interaction with a di-
verse set of agents. LB-EBM [30] learns an energy-based
model in the latent space and a policy generator to map the
latent vector into a trajectory. The attention based method
AgentFormer [47] jointly models the time dimension and
social interactions using a sequence representation while
preserving each agent’s identity. Introvert [38] uses a 3D
visual attention mechanism conditioned on the observed tra-
jectory to extract scene and social information from videos.
A future displacement distribution is predicted and multiple
sequences can be sampled.

A different line of work includes Social GAN [13] which
uses adversarial losses [|2] for incorporating multimodality
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in predictions. While such generative approaches do pro-
duce diverse trajectories, overall coverage of critical modes
cannot be guaranteed and little control is afforded over the
properties of predicted trajectories such as direction, num-
ber of samples, efc. In contrast, our method, Y-net, esti-
mates explicit probability maps which allow easily incor-
porating spatial constraints for a downstream task.
Multimodality through spatial probability estimates:
Another line of work obtains multimodality via estimated
probability maps. Activity Forecasting from Kitani et al.
[21] proposes to use a hidden Markov Decision process
for modeling the future paths. However, in contrast to our
work, the future predictions in [21] are conditioned on ac-
tivity labels such as ‘approach car’, ’depart car’, efc. More
recently, some works have used a grid based scene rep-
resentation to estimate probabilities for future time steps
[25, 26, 9]. Relatedly, some prior works such as [27, 48, &]
propose a goal-conditioned trajectory forecasting method.
However, no prior works have proposed factorized model-
ing of epistemic uncertainty or goals and aleatoric uncer-
tainty or paths as Y-net uses.

3. Proposed Method

The problem of multimodal trajectory prediction can be
formulated formally as follows. Given a RGB scene image
7 and past positions of a pedestrian in the scene Z denoted
by {u,},*, for the past t, = n,/FPS seconds sampled
at the frame rate FPS, the model aims to predict the posi-
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tion of the pedestrian for the next ¢ seconds in the future,
denoted by {u’ """ where t; = n;/FPS. Since the

n=n,+1

future is stochastic, Iﬁl—ﬁtiple predictions for the future tra-
jectories are produced. In this work, we factorize the overall
stochasticity into two modes. First are the modes relating to
epistemic uncertainty i.e. multimodality in the final destina-
tion for which the module produces K. goals. Second are
the modes relating to the aleatoric uncertainty i.e. multi-
modality in the path taken to the destination stemming from
uncontrolled randomness given the goal, for which the mod-
ule produces K, predictions for each estimated goal. In the
short temporal horizon limit, since the overall path length
is small, the options for paths to a given goal are limited
and similar to each other. This is naturally modeled by con-
straining K, = 1 and so the total number of paths predicted
(K in prior works) is the same as K, in the short horizon
setting. However, for longer temporal horizons, there are
several paths to the same goal and hence K, > 1. Next, we
describe in detail the working of our model, Y-net and its
three sub-networks U,, U, and U, followed by details of
the non-parametric sampling process (Section 3.2) and loss
functions used.

3.1. Y-net Sub-Networks

To effectively use scene information in semantic space
(image-like) with trajectory information (coordinates),
pixel-wise alignment needs to be created between the differ-
ent modalities. Some prior works [35] achieve this by en-
coding the RGB image 7 as a hidden state vector extracted
from a pretrained CNN network. While this provides the
network with scene information, any meaningful spatial sig-
nal gets highly conflated when flattened into a vector and
pixel alignment is destroyed. This is highlighted in [28]
establishing previous state-of-the-art without any scene in-
formation, underlining the misuse of image information in
prior works. In this work, we adopt a trajectory-on-scene
heatmap representation that solves the alignment issue by
representing the trajectory in the same space as image 7.

3.1.1 Trajectory-on-Scene Heatmap Representation

The RGB image 7 is first processed with a semantic seg-
mentation network such as a U-net [34] that produces seg-
mentation map S of Z comprising of C classes determined
according to the affordance provided by the surface to an
agent for actions such as walking, standing, running etc. In
a parallel branch, the past motion history {u,,}"'* is con-
verted to a trajectory heatmap H of spatial sizes of Z and
n, channels with one channel for each timestep. Mathe-
matically,

max_||(z,y) — u,||
(z,y)€T

The heatmap trajectory representation is then concate-
nated with the semantic map S along the channel dimen-
sion producing the trajectory-on-scene heatmap tensor Hg
a H x W x (C+n,) dimensional input tensor which is
passed to the encoder network U.,.

3.1.2 Trajectory-on-Scene Heatmap Encoder U,

The tensor Hg is processed with the encoder U, designed
as a U-net encoder [34] (Fig. 2). The encoder U, con-
sists of M blocks, where the spatial dimensions are reduced
from H x W to Hj; x Wy, halving after every block using
max pooling (stride 2) and the channel depth is increased
sequentially from C' + n,, to C'y; doubling after a certain
number of blocks using convolutional layers with ReL.U.
The final spatially compact and deep representation after
block M along with the M — 1 intermediate tensors H,,
with 1 < m < M are passed onto the goal decoder U, and
the trajectory decoder Uy, as discussed below.

3.1.3 Goal and Waypoint Heatmap Decoder U,

The processed trajectory-on-scene tensors H,, at various
spatial resolutions are passed onto the goal and waypoint
heatmap decoder U, which is modeled after the expansion
arm in the U-net architecture [34]. A center block consist-
ing of two convolutional layers with ReLU first takes in the
final and spatially compact feature tensor Hjy;. Then the
expansion arm spatially doubles the resolution at the begin-
ning of every block using bilinear up-sampling and convo-
lution (together forming Deconvolution [34]). After every
Deconvolution, the corresponding intermediate representa-
tion H,, from U, is fused using skip connections and the
features are processed with two convolutional layers with
ReLU non-linearity. Merging intermediate high-resolution
feature maps from U, is necessary since just using the final
feature Hj,; would severely limit the final resolution of the
goal heatmap, thus missing fine spatial details that are pre-
served in the intermediate feature maps. The U-net block
starts with a deconvolution operation followed by feature
merging and two convolutional layers, all of which is re-
peated sequentially M times to form U,. The output layer
consists of a convolutional layer followed by a pixelwise
sigmoid that for each N* chosen waypoint u,,, and the
goal up, 1., produces an explicit, non-parametric proba-
bility distribution, P(u,, ) and P(u,,+n, ) after normaliza-
tion. The overall output shape of U, is H x W x (N* +1).
Thus, for each N waypoint plus the goal, this submodule
predicts a H x W matrix, where the (4, j)th element of the
matrix represents the estimate probability value of the agent
being at location (4, j) at the selected timestep.
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S-GAN | CF-VAE | P2TIRL | SimAug | PECNet | LB-EBM | Y-net (Ours) || DESIRE | TNT | PECNet | Y-net (Ours)
K =20 K=5
ADE 2723 | 1260 | 1258 | 10.27 9.96 7.85 1925 | 1223 | 12.79 11.49
FDE 4144 | 2230 | 2207 | 1971 | 1588 15.61 11.85 3405 | 21.16 | 29.58 20.23

Table 1: Short temporal horizon forecasting results on SDD: Our method significantly outperforms previous state-of-the-art methods on
the Stanford Drone Dataset [33] on both the ADE and FDE metrics for both settings of K, where K represents the number of multimodal
samples . Reported errors are in pixels with ¢, = 3.2 sec, ty = 4.8 sec,n, = 8,ny = 12 and lower is better.

| ETH  HOTEL  UNIV  ZARAl ZARA2 | AVG

S-GAN 0.81/1.52  0.72/1.61 0.60/1.26  0.34/0.69  0.42/0.84 | 0.58/1.18
PECNet 0.54/0.87  0.18/0.24  0.35/0.60  0.22/0.39  0.17/0.30 | 0.29/0.48
LB-EBM 0.30/0.52  0.13/0.20 0.27/0.52  0.20/0.37  0.15/0.29 | 0.21/0.38
Introvert 0.42/0.70  0.11/0.17  0.20/0.32  0.16/0.27  0.16/0.25 | 0.21/0.34
Trajectron++ | 0.39/0.83  0.12/0.21  0.20/0.44  0.15/0.33  0.11/0.25 | 0.19/0.41
AgentFormer | 0.26/0.39 0.11/0.14 0.26/0.46  0.15/0.23  0.14/0.24 | 0.18/0.29

Y-net (Ours) ‘028/0.33 0.10/0.14  0.24/0.41  0.17/0.27  0.13/0.22 ‘ 0.18/0.27

Table 2: Short term forecasting results on ETH/UCY bench-
mark: Our proposed method establishes new state-of-the-art re-
sults on both the ADE/FDE metrics on the popular ETH-UCY
benchmark with standard short-horizon settings (same as SDD).
Reported errors are in meters and lower is better.

3.1.4 Trajectory Heatmap Decoder U,

U, comprises of M decoder blocks which proceed in a sim-
ilar fashion as U, (Section 3.1.3). However, in contrast to
U,, U, is conditioned on the sampled goal and waypoints
in addition to the scene S and past trajectory {u, }.” . The
probability distributions estimated by U, are used to sam-
ple potential goal and waypoints sets. The sampling process
is described in Section 3.2 and further details are in Sup-
plementary Section 1. In total, K. goals are sampled and
for each goal K, waypoint sets are sampled representing
K, paths to the same goal. The obtained coordinate sam-
ple sets iy, 4, for the goal and {f1,, }}*| for the interme-
diate waypoints are converted to a heatmap representation
H, similar to the past trajectory as described in Section
3.1.1. Finally, the obtained goal and waypoint condition-
ing tensor H is downsampled to fit the spatial size of each
corresponding block and along with the corresponding H,,
is concatenated to the output of the previous U, block and
passed into the next block. For each future timestep, it pre-
dicts a separate probability distribution, resulting in an out-
put of shape H x W x n, with each channel corresponding
to the location distribution in each timestep.

3.2. Non-parametric Distribution Sampling

Given a distribution P of the future frame position as
a matrix of probabilities X, we aim to sample a two-
dimensional point as our estimate for the position of the
agent. This is difficult to achieve reliably in practice since
the estimated distribution P is noisy during the initial train-
ing stages. Hence, taking a naive argmax is not robust. In-
stead, we propose to use the softargmax operation [11],

Xij Xij
Zje g €0

softargmax(X) = 7 — J iy
zz': 2 ex”,zj: 20y €%

to approximate the most likely position in a robust fash-
ion.

Further details on the sampling process including Test-
Time Sampling Trick and Conditional Waypoint Sampling
can be found in Supplementary Section 1.1 and 1.2.

3.3. Loss Function

Since the predictions are explicit probability distribu-
tions for each timestep, we impose losses directly on the es-
timated distribution P rather than on the drawn coordinate
samples. The ground truth future is represented as a Gaus-
sian heatmap P centered at the observed points with a pre-
determined variance og. All three networks, U, U, and
U, are trained end-to-end jointly using a weighted combi-
nation of binary cross entropy losses on the predicted goal,
waypoint and trajectory distributions.

Looar = BCE(P(uanrn_f)7P(uanrnf))
N
»Cwaypoinl = ZBCE(P(uwi)v P(uwi))
=1

np+nyg
£trajectory = Z BCE(P(ui), P(ui))
i=np+1

L= Lgnal + Alﬁwaypoint + )\2£trajectory

4. Results

We use a total of three datasets to study Y-net’s perfor-
mance — the Stanford Drone Dataset (SDD) [33], the Inter-
section Drone Dataset (InD) [5], and the ETH [31] / UCY
[23] forecasting benchmark.

Stanford Drone Dataset: We benchmark our proposed
model on the popular Stanford drone dataset [33] where
several recently proposed methods have improved state-
of-the-art performance significantly in the past few years
[45]. The dataset is comprised of more than 11, 000 unique
pedestrians across 20 top-down scenes captured on the Stan-
ford university campus in bird’s eye view using a flying
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Figure 3: Qualitative Long Term Trajectory Forecasting Results: We show various heatmaps and visualizations for three different
scenes (rows) in SDD testset. The first column shows the past observed trajectory for last £, = 5 seconds in blue. The second column shows
the heatmap from U for ¢y = 30 seconds in the future (goal multimodality) and some sampled goals from the estimated distribution. The
third column shows trajectory heatmaps from U, conditioned on a sampled goal from column two (path multimodality). The last column
shows the predicted trajectories, green indicating the ground-truth trajectories and red our multimodal predictions.

drone. For short term prediction, we follow the [35, 28]
standard setup and dataset split, sampling at FPS = 2.5
yielding a input sequence of length n,, = 8 and output of
lengthny = 12,i.e.t, = 3.2 sec, t; = 4.8 sec.

In our proposed long term setting, we sample at FPS = 1
thus yielding a n,, = 5 for {; = 5 seconds in the past and
predicting up to one minute into the future. Further, we
label the scenes with semantic segmentation maps consist-
ing of C' = 5 “stuff” classes, namely [7] pavement, terrain,
structure, tree and road, depending on the walking afford-
ability of the surface. We split the dataset’s scenes in the
same way as the short term setup, to evaluate the perfor-
mance on unseen scenes during training.

Intersection Drone Dataset: We propose to use the Inter-
section drone dataset [5] for benchmarking long term tra-
jectory forecasting. The dataset comprises over 10 hours of
measurements over 4 distinct intersection in an urban envi-
ronment. The dataset is recorded in FPS = 25. We down-
sample the trajectories to FPS = 1 to match our SDD long
term setting, filter out non-pedestrian and short trajectories
and use a sliding window approach without overlap to split
long trajectories. After the preprocessing steps, inD con-
tains 1,396 long term trajectories with n,, = 5 and ny = 30.
To evaluate performance on unseen environments, we are
using location ID 4 only during testing time. The scene is
labeled with the same C' = 5 classes as in SDD. We con-
vert the coordinates from world coordinates (meters) into

pixel coordinates using the provided scale factors from the
authors and evaluate metrics in pixels.

ETH & UCY datasets: The ETH/UCY benchmarks have
been widely used for benchmarking trajectory forecasting
models in the short horizon setting in recent years [44].
Forecasting performance has improved by over ~ 64% on
average, within the last two years itself [13]. It comprises
of five different scenes all of which report position in world
coordinates (in meters). We follow the leave one out val-
idation strategy as outlines in prior work [35, 13, 9]. For
all ETH & UCY datasets, since the classes of affordances
furnished by the surfaces present is small, we use C' = 2,
identifying each pixel as either belonging to class ‘road’ or
‘not road’. Similar to short term SDD, the frames are sam-
pled at FPS = 2.5 predicting ny = 12 frames, ¢y = 4.8
seconds into the future given the last n, = 8 frames com-
prising of ¢, = 3.2 seconds of motion history.
Implementation Details: We train the entire network end
to end with Adam optimizer [19] with a learning rate of
1 x 10~* and batch size of 8. A pre-trained segmentation
model is used that is finetuned on the specific dataset. Fur-
ther details are mentioned in the supplementary materials.
Metrics: We use the established Average Displacement Er-
ror (ADE) and Final Displacement Error (FDE) metrics for
measuring performance of future predictions. ADE is cal-
culated as the /5 error between the predicted future and the
ground truth averaged over the entire trajectory while FDE
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Stanford Drone Dataset

H Intersection Drone Dataset ‘

S-GAN PECNet R-PECNet Y-net (Ours) S-GAN PECNet R-PECNet Y-net (Ours)
K, 1 1 1 1 2 5 1 1 1 1 2 5
ADE | 155.32 72.22 261.27 4794 4494 3949 38.57 20.25 341.80 1499 14.02 12.67
FDE | 307.88  118.13 750.42 66.71 66.71 66.71 84.61 32.95 1702.64 | 21.13 21.13 21.13

Table 3: Long term trajectory forecasting results: We benchmark performance on our proposed long horizon forecasting setting
predicting ¢y = 30 second into the future given ¢, = 5 second past motion history. All reported errors are in pixels (lower is better) for

K. = 20 with additional results for varying K, with a fixed K.
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Figure 4: Benchmarking Performance against Time Horizons:
On prediction horizons up to a minute, we observe a consistently
growing difference in ADE between Y-net and PECNet, highlight-
ing the importance of factorized goal and path modeling in long
term forecasting.

is the /5 error between the predicted future and ground truth
for the final predicted point [2]. Following prior works [13],
in the case of multiple future predictions, the final error is
reported as the min error over all predicted futures.

ADE and FDE are well suited metrics for determinis-
tic performance evaluation. However, they use samples
instead of the predicted distribution for error estimation.
Hence, we report the kernel density estimate-based nega-
tive log-likelihood (KDE-NLL) metric in the same fash-
ion as [17, 36]. A standardized KDE is used to estimate
a probability distribution function for each predicted future
timestep, and the NLL of the ground-truth trajectory is cal-
culated using it. Note, that Y-net predicts explicit probabil-
ity maps. To be consistent with previous literature and en-
able fair comparison with baselines we also apply the KDE.

4.1. Short Term Forecasting Results

Stanford Drone Results: Table | presents results for the
SDD in the short term setting. We report results with K, =
5 and 20. Since there is limited aleatoric multimodality in
short term settings, we use K, = 1 thus being comparable
to prior works using 20 trajectory samples for evaluation.
Table 1 shows our proposed model achieving an ADE of

7.85 and FDE of 11.85 at K, = 20 which outperforms the
previous state-of-the-art performance of LB-EBM [30] by
13.0% on ADE and 31.7% on FDE. Further, at K = 5 it
achieves an ADE of 11.49 and FDE of 20.23 outperforming
previous state-of-the-art performance of TNT [48].
ETH/UCY Results: We report results on the ETH/UCY
benchmark in Table 2. Similar to SDD, we set K, =
20, K, = 1. We observe that Y-net improves the state-
of-the-art performance from AgentFormer [47] in FDE by
7.4% to 0.27 and performs on par in ADE with 0.18.

4.2. Long Term Forecasting Results

To study the effect of epistemic and aleatoric uncertainty
factorization, we propose a long term trajectory forecast-
ing setting with a prediction horizon up to 10 times longer
than prior works (up to a minute). To benchmark, we
retrain PECNet [28], the previous state-of-the-art method
from short term forecasting and Social GAN [!3] for each
prediction horizon setting separately. We also train a re-
current short term baseline based on PECNet (R-PECNet)
where the model is trained only for £y = 5 seconds and
is fed its own predictions recurrently for predicting longer

horizons.

o 1 o]
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Figure 5: ADE & FDE boxplot and KDE-NLL: Left and mid-
dle: Boxplots of ADE and FDE, respectively. Right: Results for
the KDE-NLL metric. All metrics are estimated for the long term
setting on SDD with 100 samples.

Y-Net PECNet

Forecasting Results: Table 3 reports the baseline and our
results on SDD and InD for a time horizon of ¢y = 30 sec-
onds in the future given the past ¢, = 5 second input. All
reported results are with K, = 20 for Y-net conditioned
on N¥ = 1 intermediate waypoint at w; = 20, i.e. tem-
porally midway between the observed inputs and the esti-
mated goal. All reported baseline results are at K = 20 for
fair comparisons with our K, = 20, K, = 1 setting. On
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Figure 6: Benchmarking performance against aleatoric un-
certainty (K,): Fixing the goal multimodality (K.) we vary K,
to observe the effect of path multimodality. Also, we benchmark
against PECNet by allowing it 20 times more samples for each K,
for a fair compare against the K. = 20 Y-net curve.

SDD, we observe that our proposed model outperforms the
state-of-the-art short term baseline on the long horizon set-
ting, achieving an ADE of 47.94 and FDE 66.72 improving
upon PECNet’s performance by over 50%. Similarly, Y-net
outperforms PECNet on InD improving ADE performance
from 20.25 to 14.99 and FDE from 32.95 to 21.13.

To gain a more complete assessment of the performance,
boxplots of PECNet and Y-net are shown in Fig. 5. These
display the median performance and variability of quartiles
within the long-term predictions on SDD. Y-net has about
half the median error and is much more consistent with less
spread.

Further, Y-net achieves a KDE-NLL [17] score of 8.75,
significantly better than PECNet’s score of 12.15 on the
same long-term setting on SDD (Fig. 5). These additional
metrics confirm our observations from the ADE and FDE
metrics.

Varying Prediction Horizon: We compare Y-net with
PECnet and R-PECNet for varying prediction horizons. In
Fig. 4 we observe that the difference in performance be-
tween Y-net and PECNet grows as prediction horizon in-
creases from 5 to 60 seconds. This shows Y-net’s adaptabil-
ity for long prediction horizons owing to factorized multi-
modality modeling. We also observe that for PECNet, train-
ing a separate model for different time horizons is signif-
icantly better than using a short temporal horizon model
recurrently (R-PECNet). This motivates our proposal for
studying long term forecasting since short term models be-
have very poorly when applied out of the box recurrently to
longer term settings.

Varying K,: We also report results with K, = 2 and 5
for studying the improvement in performance from aleatoric
multimodality in Table 3. We observe a consistent improve-
ment in ADE on both datasets, thus indicating the diver-
sity in predicted paths given the same estimated final goal
Uy, +n,. We also report extensive results for varying the
path multimodality K, with a fixed K, for various choice
of K. and K, in Figure 6. Additionally for baselining, we

Figure 7: GIF Visualization: Demonstrating the goal, waypoint
and path multimodality for long term human trajectory prediction
(30 seconds). Given the past 5 seconds input history (green) we
predict diverse future trajectories (current location in orange, past
in red). Due to restrictions, we can only show a snapshot. Please
refer to the supplementary file or ArXiv version for the animation.

benchmark against PECNet [27] evaluated with K, times
more samples than the corresponding Y-net model while
varying K,. We show consistent ADE improvements for
various K. when increasing K, indicating effective use of
multimodality. Further, even with K, = 20 times more
additional samples, PECNet’s performance is significantly
worse than Y-net at K, = 20 for all K, highlighting the
importance of factorizing goal and path multimodality for
diverse and accurate future trajectory modeling.

Qualitative Results: We show some qualitative results for
long term trajectory prediction (t; = 30) on SDD in Fig-
ure 3 and through a GIF temporally in Figure 7. We ob-
serve that Y-net predicts diverse scene-complaint trajecto-
ries, with both future goals and paths modalities.

5. Conclusion

In summary, we present Y-net, a scene-compliant tra-
jectory forecasting network with factorized goal and path
multimodalities. Y-net uses the U-net structure [34] for
explicitly modeling probability heatmaps for epistemic and
aleatoric uncertainties. Overall, Y-net decrease the error of
previous state-of-the-art performance by up to 31.7% on the
SDD and by up to 7.4% on ETH/UCY benchmarks in the
short term setting. We also propose a new long term trajec-
tory forecasting setting with a prediction horizon of up to
a minute for exemplifying the epistemic and aleatoric un-
certainty dichotomy. In this setting, we benchmark on the
Stanford Drone and Intersection Drone dataset where Y-net
exceeds previous state-of-the-art by over 77.1% and 56.0%
respectively thereby highlighting the importance of model-
ing factorized stochasticity.
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