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Abstract

Fast and accurate simulation of imaging through atmo-
spheric turbulence is essential for developing turbulence
mitigation algorithms. Recognizing the limitations of pre-
vious approaches, we introduce a new concept known as
the phase-to-space (P2S) transform to significantly speed
up the simulation. P2S is built upon three ideas: (1) re-
formulating the spatially varying convolution as a set of in-
variant convolutions with basis functions, (2) learning the
basis function via the known turbulence statistics models,
(3) implementing the P2S transform via a light-weight net-
work that directly converts the phase representation to spa-
tial representation. The new simulator offers 300× – 1000×
speed up compared to the mainstream split-step simulators
while preserving the essential turbulence statistics.

1. Introduction

Despite several decades of research, imaging through at-
mospheric turbulence remains an open problem in optics
and image processing. The challenge is not only in recon-
structing images from a stack of distorted frames but also
in a less known image formation model that can be used
to formulate and evaluate image reconstruction algorithms
such as deep neural networks. Simulating images distorted
by atmospheric turbulence has received considerable atten-
tion in the optics community [29, 3, 11, 24], but using these
simulators to develop deep learning image reconstruction
algorithms remains a challenge as there is no physically jus-
tifiable approach to synthesize large-scale datasets at a low
computational cost for training and testing.

Recognizing the demand for a fast, accurate, and open-
source simulator, we present a new method to generate a
dense-grid image distorted by turbulence with theoretically
verifiable statistics. The simulator consists of mostly op-
tics/signal processing steps and a lightweight shallow neu-
ral network to perform a new concept called the Phase-to-
Space (P2S) transform. By parallelizing the computation

24.36 sec / frame (GPU) 0.026 sec / frame (GPU)
(a) Hardie et al. [11] (b) Ours

Figure 1. This paper presents a new turbulence simulator that is
substantially (1000×) faster than the prior art, while preserving
the essential turbulence statistics.

(a) Input (real) (b) [17]+U-Net (c) Ours+U-Net
Figure 2. Using our simulator to synthesize training set for train-
ing an image reconstruction network (U-Net [28]) offers a consid-
erable amount of improvement in image quality. The network is
identical for both (b) and (c); only the simulator used to synthesize
the training data is different.

across the pixels, the simulator offers a 1000× speed-up
compared to the mainstream approach as shown in Figure 1.
When using the new simulator to synthesize training data to
train a deep neural network image reconstruction model, the
resulting network outperforms the same architecture trained
with data synthesized by a less sophisticated simulator, as
illustrated in Figure 2.

An overview of the proposed simulator is illustrated in
Figure 3. Our proposed approach is based on linking the
following two ideas:

• Convolution via basis functions (Section 3.1). While
conventional approaches model the turbulence distor-
tion as a spatially varying convolution, we reformu-
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Figure 3. This paper introduces three ideas to significantly speed
up the simulation. The three ideas are: (Section 3.1) Approximat-
ing the spatially varying convolution by invariant convolutions,
(Section 3.2) learning the basis representation via known turbu-
lence statistics, (Section 3.3) implementing the Phase-to-Space
transform network.

late the problem by modeling the distortion as a sum
of spatially invariant convolutions. The idea is to uti-
lize a basis representation of the point spread functions
(PSFs). This concept is similar to the prior work of
[23], but in a different context.

• Learning the basis functions (Section 3.2). To enable
the previous idea, we need to have the basis functions.
This is done by utilizing [5] to draw Zernike samples
for all high-order aberrations. Then, principal compo-
nent analysis is used to construct the basis functions
as proposed by Mao et al. [21]. This is also reminis-
cent to the dictionary approach proposed by Hunt et al.
[13].

The missing piece between these two ideas is the re-
lationship between the basis coefficients in the phase and
spatial domains. This is an open problem, and there is
no known analytic solution. We circumvent this diffi-
culty by introducing a new concept known as the Phase-
to-Space transform (Section 3.3). To do so, we construct
a lightweight shallow neural network to transform from the
phase domain to the spatial domain. Integrating this net-
work into the two aforementioned ideas, our overall simu-
lator adheres to the physics while offering significant speed
up and additional reconstruction utility.

2. Background
In this section we provide a brief summary of the turbu-

lence physics and prior work in turbulence simulation. The
theory of imaging through atmospheric turbulence can be
traced back to the work of Kolmogorov [14] and Tatarski
[32], followed by a series of major breakthroughs by Fried
[6, 7, 8] and Noll [22]. Readers are encouraged to check out
[27, 10] for an introduction.

Figure 4. Split-step propagation [11] models the turbulence as a
discrete set of phase screens where the wavefront distortion is
caused by cropping regions of the phase screen at every pixel loca-
tion. The key operations are Fresnel propagation and Kolmogorov
phase imparting. The end result of a sequence of these operations
is a PSF for one pixel. The overlaps of the phase screens create the
spatial correlations. See [11] for detailed description.

2.1. Split-step simulation

The image formation process through turbulence is best
described in the phase domain. In free space, an emitted
wave propagates spherically outward and, if at a sufficiently
long distance, arrives upon the aperture approximately flat.
If the medium contains random fluctuations, the phase of
the wavefront will be distorted along the path of propaga-
tion. We can imagine the wave leading and lagging in phase
in reference to its unperturbed counterpart as a result of spa-
tially varying indices of refraction.

The most widely used simulation approach to the above
process is the split-step propagation [29, 3, 11]. The idea
is to discretize the wave propagation path as illustrated in
Figure 4. Split-step simulation propagates every point in
the object plane through a discrete set of phase screens, al-
ternating between free space propagation, given by Fresnel
diffraction, and phase imparting. The statistical behavior
of the phase screens is defined through its power spectral
density (PSD) [11, 29], many of which are related to the
Kolmogorov PSD. This sequence of operations is best de-
scribed by the equation

Fresnel→ Kolmogorov→ . . .→ Fresnel→ Kolmogorov.

After passing through a turbulent medium, the point spread
functions (PSFs) will be spatially varying as illustrated in
Figure 5.

The benefit of split-step is two fold: (1) it is inter-
pretable, as it mirrors the physical process, (2) spatial cor-
rrelations are obtained with minimal effort, as neighbor-
ing point sources share overlapping cropped phase screens.
The drawback of split-step propagation is its computational
requirements: each Fresnel propagation requires a pair of
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Figure 5. If we image a grid of point sources through turbulence,
we will observe a set of spatially varying point spread functions
(PSFs). The shape and orientation of the PSFs are determined by
the phase structure of the turbulence.

Fourier transforms. This is repeated for every point and
every step along the path. Moreover, performing the spa-
tially varying convolution adds another layer of computa-
tional cost [11, 29].

2.2. Phase-over-aperture simulation

Our proposed simulator is inspired by the work of
Chimitt and Chan [5]. The idea is to collapse the split-
step propagation into the resultant phase across the aperture.
Compared to split-step which uses global phase screens,
the collapsed model generates the local phase realization
directly, which we illustrate in Figure 6.

Figure 6. The collapsed phase-over-aperture model [5] replaces the
global phase screens and Fresnel diffraction by local phase screens
per pixel. This translates the wave propagation to a spatially vary-
ing convolution with PSFs that are characterized by the tilts and
aberrations per-pixel. While the phase cropping and propagation
of the split-step method is eliminated, Fourier transforms at every
pixel location are stilled needed.

In the collapsed model, the local per-pixel phase is gen-
erated using Noll’s idea [22] that the phase ϕ(ρ) (defined
over the aperture of diameter D with ρ being the coordi-
nate) can be represented via the Zernike basis functions

ϕ(ρ) =

K∑
j=1

αjZj(ρ), (1)

where Zj(ρ) is the Zernike basis and αj are the Zernike
coefficients [α1, α2, ...αK ] = α ∼ N (0, RZ), with [22]
providing the expression for RZ . The resultant incoherent

PSF is formed via

h =
∣∣∣F {

W (ρ)e−jϕ(ρ)
}∣∣∣2 , (2)

omitting a few constants for brevity, with W (ρ) as the pupil
function of the aperture.

The Zernike representation offers a natural grouping of
terms as suggested in Figure 6: tilt and higher order aberra-
tions. The terms α2 and α3 correspond to the horizontal and
vertical tilt of the plane of best fit to the phase distortion ϕ.
The terms α4, α5, . . . correspond to the higher order aberra-
tions and account for the complicated distortions the phase
of the wave exhibits. Computationally, these two groups
can be separated by generating the high order aberrations,
applying the resultant PSFs to the image, then locally shift-
ing the image according to its tilt statistics.

A technical challenge of the collapsed model is ensuring
the Zernike coefficients are also spatially correlated. In [5],
this correlation is enabled through the invention of a multi-
aperture approximation in which the correlations could be
described analytically by leveraging several classic works
[2, 4, 31]. With the correlation matrix defined, the spatially
correlated tilts can be generated. For the higher-order terms,
it was suggested in [5] that one can define a grid of PSFs and
spatially interpolate between them.

2.3. Limitations of phase-over-aperture

As reported in [5], the collapsed model is significantly
faster than the standard split-step propagation. However, by
evaluating the simulator, it is evident that there are several
limiting factors:

• The collapsed model exclusively draws Zernike coef-
ficients to create the distortion. However, even with all
Zernike coefficients available, one still needs to con-
vert them to PSFs through (2) at every pixel. This is
the biggest bottleneck.

• It was suggested that in order to reduce the number of
Fourier transforms, one can construct the PSFs for a
grid of points, then interpolate between them spatially.
However, mathematically this is incorrect, as the su-
perposition in the spatial domain is not the same as
superposition in the phase domain.

• Even if we can resolve the above two problems, to fi-
nally simulate a distorted image, we still need to per-
form the spatially varying convolution. This involves
storing the PSFs, and executing the convolution, both
of which are resource demanding.

2.4. Other simulators

Ray Tracing. An alternative to the split-step simulation
is ray tracing [24, 15], which requires tracing each point
sources through the propagation medium. There are also
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ray tracing techniques developed in computer graphics [30].
However, the lack of quantitative evaluation based on turbu-
lence statistics makes it difficult to assess these methods.

Warp-and-blur. For faster simulations, one can com-
promise the accuracy by simulating only the pixel-shifts,
commonly referred to as tilts, and assuming a spatially-
invariant blur [26, 19]. These simulations and models are
widely used in the image processing literature [36, 16, 1,
20], where the goal was to provide quick evaluations of the
reconstruction algorithms. However, these methods fail to
match the known statistical behavior of the distortions.

3. Method
The paper includes two key building blocks: (1) re-

formulating the spatially varying convolution via a set of
spatially invariant convolutions, (2) constructing the invari-
ant convolutions by learning the basis functions. The major
invention here is the linkage between the two for which we
introduce the P2S transform to convert the Zernike coeffi-
cients to the PSF coefficients.

3.1. Idea 1: Convolution via basis functions

The turbulent distortions can be modeled as a spatially
varying convolution at each pixel. Denoting x ∈ RN as the
source image, and y ∈ RN as the pupil image, the spatially
varying convolution says that y is formed by

y =

 y1
...
yN

 = Hx =

h
T
1 x
...

hT
Nx

 , (3)

where {hn |n = 1, . . . , N} are the N spatially varying
PSFs stored as rows of the linear operator H ∈ RN×N .

The first key idea of the paper is to write hn as

hn =

M∑
m=1

βm,nφm, (4)

for some basis functions φm (to be discussed) of the PSFs,
and coefficients βm,n of the mth basis at the nth pixel. Then,
each pixel yn in (3) can be written as

yn =

M∑
m=1

βm,n φT
mx, n = 1, . . . , N. (5)

Since convolution is linear, this turns the N spatially vary-
ing convolutions {hT

nx}Nn=1 in (3) into M spatially invari-
ant convolutions {φT

mx}Mm=1 in (5). If M ≪ N , the com-
putational cost of (5) can be much lower.

To enable the convolution using the basis functions, there
are two quantities we need to learn from the data. These are
the basis functions φm and the coefficients βm,n. If we

are able to find both, the image can be formed by a simple
multiply-add between the basis convolved images φT

mx and
the representation coefficients βm,n, as illustrated in Fig-
ure 3.

3.2. Idea 2: Learning the basis functions

To generate the basis functions φm, we consider the pro-
cess described in [5] of forming a zero-mean Gaussian vec-
tor with a covariance matrix RZ from [22]. The strength of
correlation is dictated by the optical parameters as well as
the relationship D/r0, where D is the aperture diameter and
r0 is the Fried parameter [7]. Figure 7 (the upper half) il-
lustrates the generation of the tilts; removing these does not
change the shape of the PSF, but instead centers it. We then
seek a basis representation of the resulting centered PSFs,
which we show in the lower half of Figure 7.

Figure 7. The basis representation is generated in two different
ways. For the tilts, we follow the work of [5] to draw spatially
correlated tilts by multiplying an i.i.d. Gaussian vector with the
tilt correlation matrix. For the high-order aberration terms, we
consider the multi-aperture concept of [5] and the analytic solu-
tion derived in [31]. Principal component analysis is conducted to
extract the spatial basis functions.

To generate the basis functions {φm}Mm=1, we use the
above procedure to construct a dataset containing 50,000
PSFs from weak to strong turbulence levels. (See supple-
mentary material for details.) Given the dataset, we per-
form a principal component analysis. For the numerical ex-
periments reported in this paper, a total of M = 100 basis
functions were used. The basis functions are then combined
with the tilts, and are sent to the phase-to-space (P2S) trans-
form to determine the basis coefficients {βm,n}.

3.3. Idea 3: Phase-to-Space (P2S) transform

The third idea, and the most important one, is the phase-
to-space transform. The goal is to define a nonlinear
mapping that converts the per-pixel Zernike coefficients
α = [α1, . . . , αK ] to their associated PSF basis coefficients
β = [β1, . . . , βM ], where we’ve dropped the pixel index
subscript n for notational clarity.

At the first glance, since the basis functions {φm}Mm=1

are already found, a straightforward approach is to project
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the PSF h (which is defined at each pixel location) onto
{φm}Mm=1. However, doing so will defeat the purpose of
skipping the retrieval of h from the Zernike coefficients as
this is the computational bottleneck. One may also con-
sider analytically describing the PSF in terms of φm and
the Zernike coefficients,

h =
∣∣∣F {

W (ρ)e−jϕ(ρ)
}∣∣∣2 ?

=

M∑
m=1

βmφm. (6)

However, doing so (i.e., establishing the equality in (6) by
writing an equation for βm) is an open problem. Even if we
focus on a special case with just a single Zernike coefficient,
the calculation of the basis functions will involve non-trivial
integration over the circular aperture [9].

To bypass the complication arising from (6), we intro-
duce a computational technique. The idea is to build a shal-
low neural network to perform the conversion from α ∈ RK

to β ∈ RM . We refer to the process as the phase-to-space
transform and the network as the P2S network, as the input-
output relationship is from the phase domain to the spatial
(PSF) domain.

Figure 8. Illustration of the Phase-to-Space transform. We bypass
the computationally expensive PSF formation process by a learned
mapping between the Zernike and spatial domain. We also note the
sizes of the P2S layers here.

A schematic diagram of the P2S transform is shown in
Figure 8. Given the two Zernike coefficients representing
the tilts and the other Zernike coefficients representing the
higher-order aberrations, the P2S transform uses the first
two Zernike coefficients to displace the pixels, and uses the
network to converts the last K − 2 Zernike coefficients to
M basis representations.

The architecture of the P2S transform network consists
of three fully connected layers as summarized in Figure 8.
In terms of training, we re-use the 50,000 PSFs generated
for Idea 2 train the P2S network. The training loss is de-
fined as the ℓ2 distance between the predicted basis coeffi-
cients and the true coefficients (found offline by projecting
the PSF onto the learned basis functions). Note that this

network is light-weight because the P2S transform is per-
formed per pixel. For an image with a large field-of-view,
the P2S network can be executed in parallel. Therefore,
even with a 512 × 512 image, the entire transformation is
done in a single pass.

3.4. Interpolation across the grid

We now address the computational difficulty for gener-
ating a dense set of Zernike coefficients α ∈ RK for a high
resolution image. To accomplish this goal, we partition the
image into a user-defined grid of anchor points, for exam-
ple, a 64 × 64 grid. This grid corresponds to a correlation
matrix of size 642 × 642 = 4096× 4096 which can be pre-
computed. Following Figure 7, 4096 sets of Zernike coef-
ficients are drawn from the correlation matrix. To go from
the grid of 64×64 anchor points to the full image, we inter-
polate the Zernike coefficients using bilinear interpolation.

For generation of the anchor points, we implement the
angle-of-arrival statistics according to [31], in conjunction
with [2, 4]. The process is mathematically tedious but con-
ceptually simple: One just needs to rewrite the entries of the
correlation matrix in [5] with the formula provided by [31].
The output of the new correlation matrix is a set of spatially
correlated Zernike coefficients.

It is important to emphasize the difference between the
way we interpolate and the interpolation used in [5]. In [5],
the interpolation is performed in the spatial domain where
two PSFs are superimposed to generate a new PSF. In our
simulator, we interpolate the Zernike coefficients to super-
impose two phase functions. If the phase ϕ and the PSF h

is related by the P2S transform, ϕ P2S←→ h, it is important to
note that for any 0 ≤ λ ≤ 1,

λϕ1 + (1− λ)ϕ2 �
��P2S←→ λh1 + (1− λ)h2.

Therefore, the interpolation used in [5] is less justifiable. In
Figure 9 we illustrate the two interpolation schemes. We
have selected a realistic and easily-observable case for il-
lustration in which interpolation in the Zernike spaces gen-
erates a near-diffraction-limited PSF (the lucky effect [8])
but in the spatial domain is missed.

3.5. Extension to color images

Most deep neural networks today are designed to handle
color images. To ensure that our simulator is compatible
with these networks, we extend it to handle color.

In principle, the spectral response of the turbulent
medium is wavelength dependent, and the distortion must
be simulated for a dense set of wavelengths. However, if
the turbulence level is moderate, wavelength-dependent be-
havior of the Fried parameter is less significant for the visi-
ble spectrum (roughly 400nm to 700nm) when compared to
other factors of the turbulence.
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Figure 9. Comparison between the spatial interpolation scheme
from [5] and our interpolation in the phase domain. For both cases,
we show the PSFs and example resultant images. [Top] Spatial in-
terpolation of two PSFs is performed via λh1 +(1−λ)h2, which
is a superposition of the two PSFs. [Bottom] Phase interpolation is
performed via λϕ1+(1−λ)ϕ2. In this example, the superposition
of the two phase functions will lead to a PSF with very mild phase
distortion known as a lucky observation [8]. This lucky observa-
tion is absent in the spatial domain interpolation.

To illustrate this observation, we show in Figure 10 the
individual PSFs for several wavelength from 400nm (blue)
to 700nm (red). It is evident that the shape of the PSFs
barely changes from one wavelength to another. In the same
figure, we simulate two color images. The first image is
simulated by using a single PSF (525nm) for the color chan-
nels (and displayed as an RGB image). The second image is
simulated by considering 3 PSFs with wavelengths 450nm,
540nm, and 570nm. We note that (c) is a more realistic sim-
ulation but requires 3× computation. However, the similar
PSFs across the color makes difference is visually indistin-
guishable, as seen in (d). The small gap demonstrated in
Figure 10 suggests that we can simulate the RGB channels
identically in such conditions.

(a)

(b) (c) (d)
Figure 10. (a) PSFs across the visible spectrum. (b) Same dis-
tortion applied to three channels using center wavelength of the
visible spectrum . (c) Wavelength dependent distortions applied to
three channels. (d) Error map between (b) and (d).

4. Experimental Evaluation

Our experimental results consist of four parts: (i) Quan-
titative evaluation based on known turbulence statistics, (ii)
visual comparison with real turbulence data, (iii) impact to
deep neural network image reconstruction methods, (iv) run
time comparison. Additionally, videos are included in the
supplementary materials.

4.1. Quantitative evaluation

Evaluation schemes. In the turbulence simulation liter-
ature, there are two standard ways to quantitatively evaluate
a simulator: (i) the Z-tilt and the differential tilt statistics,
and (ii) the short and long exposure statistics. For a simu-
lator to be valid, it is necessary to match the simulated data
with the theoretical curves.

Turbulence conditions. To conduct this evaluation, we
follow a similar setting as [5] and [11]. The parameters of
the turbulence are listed in the supplementary material.

Evaluation 1: Tilt statistics. We first report the Z-
tilt and the differential-tilt statistics. The Z-tilt and the
differential-tilt statistics measure tilt correlation across the
angle-of-arrivals. For example, the Z-tilt should drop as the
angle-of-arrival increases, because two pixels that are far
apart should have less (but non-zero) correlation. The re-
sults of the Z-tilt and the differential-tilt are shown in Fig-
ure 11. It is evident that the tilt statistics of the proposed
simulator matches well with the theoretical predictions.

0 5 10 15 20 25 30 35 40 45 50
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3
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10

-11

Simulated Z-Tilt

Theoretical Z-tilt

Simulated Differential-Tilt

Theoretical Differential-Tilt

Figure 11. The Z-tilt and differential-tilt statistics produced by our
simulator match with the theoretical values.

Evaluation 2: Long and short exposure. We also ana-
lyze the long and short exposure (LE and SE, respectively)
behavior of the generated PSFs. The LE PSF is a standard
temporal average over the PSF realizations, while the SE is
a temporal average over the centered PSFs. Since the LE
includes pixel shifts, the spread of the LE PSF is larger than
its SE counterpart. Furthermore, the SE is a valuable metric
as it quantifies the blur the system experiences regardless
of its shift behavior. We present these results in Figure 12,
where we again see a match between the simulated and the-
oretical behavior.
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(a) Short exposure (b) Long exposure
Figure 12. The short and long exposure PSFs produced by our
simulator match with the theoretical PSFs.

4.2. Visual comparison with real data

We emphasize the results of the previous quantitative
discussion are significant statistically. However, visual
comparisons with real data, while subjective, are an impor-
tant consideration and serve as a useful reality check. In
the following discussion, we present data simulated at the
same optical parameters as those provided and show their
real counterparts for visual comparison.

NATO dataset. The carefully recorded NATO RTG40
dataset [25, 33] contains both optical and estimated turbu-
lence parameters. For these particular sets of images, the
target is 1 km from the imaging system using passive vis-
ible light for imaging. Turbulence parameters were mea-
sured that help to evaluate what the appropriate turbulence
level was at the time of taking the images. We select these
parameters to use in our simulation technique, with compar-
isons shown in Figure 13.

In comparing simulated against their real counterparts,
we can see a match in blur and shifting effects. At higher
turbulence levels, there are some small observable differ-
ences, though we argue this is inherent to modeling just the
phase in this type of problem as well as differences in il-
lumination (e.g. digital representation of target pattern vs.
illumination by the sun).

Datasets used in [12] and [1]. In addition to the NATO
dataset, there are also those used in [12] and [1]. The im-
ages in Figure 14 show a method of collecting turbulence
data that uses stream of gas in front of the camera to pro-
duce images at different turbulence levels. While this is a
different scenario than the typical long-distance imaging se-
quences, this data serves as a decent proxy and is useful as
it is easier to collect and can provide ground truth by sim-
ply turning the gas system off. We present for visual com-
parison the results in Figure 14 and note the similarity in
random draws vs. observations.

4.3. Impact on training deep networks

We conduct an experiment to demonstrate the impact of
the proposed simulator on a multi-frame turbulence image
reconstruction task. The goal of this experiment is to show
that a deep neural network trained with the data synthesized
by the proposed simulator outperforms the same network

(a) real (b) simulated (c) tilt map
Figure 13. Contrast balanced NATO RTG-40 dataset reported by
[25, 33]. The optical parameters are listed in supplementary mate-
rials.

(a) ground truth (b) real frame (c) sim. frame

Figure 14. Visual comparison of simulated and real turbulence
data. With comparing individual frames, we can see similar blur-
ring and warping effects.

trained with the data generated by simulators that are less
physically justified.

To demonstrate the impact of the simulator, we do not
use any sophisticated network structure or training strategy.
Our network has a simple U-Net architecture [28] with 50
input channels and is trained with an MSE loss for 200
epochs. The network is trained with 5000 simulated se-
quences, where each sequence contains 50 degraded frames.
The ground truth images used for simulation are obtained
from the Places dataset [35]. The sequences are simulated
with a turbulence level D/r0 uniformly sampled from [1,8].

For comparison, we train the same network using a simu-
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(a) Input (real) (b) Temp. Avg. (c) Mao et al. [21] (d) [17]+U-Net (e) Ours+U-Net
Figure 15. Image reconstruction using real data (so ground truth is not available). For (d) and (e), we train a UNet using data synthesized
by [17] and our simulator, respectively. Notice the artifacts in (d).

D/r0 Mao et al. [21] Ours+U-Net [17]+U-Net
1.5 27.33dB 27.18dB 26.59dB
3.0 27.04dB 26.98dB 26.11dB
4.5 25.85dB 26.01dB 25.40dB

Table 1. PSNR values of the reconstruction results, averaged over
30 testing sequences. The testing data is synthesized by the split-
step propagation method [11].

lation technique proposed by Lau et al. [17]. This simulator
has been used in several recent works [18, 34]. To ensure a
fair comparison, we perform a uniform sweep for the Gaus-
sian blur (σ2 sampled from [1, 3]) and tilt strength (sampled
from [0.1, 0.4]). As a reference, we also report the results of
a deterministic (non-learning based) state-of-the-art recon-
struction method by Mao et al. [21].

Two qualitative reconstruction results are shown in Fig-
ure 15. It can be seen that the network trained with proposed
simulator has performance close to state-of-the-art. Visible
artifacts are generated from the network trained with [17].
We also include a quantitative evaluation, where a split-step
simulator [11] is used to generate 30 testing sequences un-
der low, medium, and high (D/r0 = 1.5, 3, and 4.5). PSNR
values are reported in Table 1. It is worth nothing that the
network trained with the data synthesized by our simulator
achieves a comparable performance to the state-of-the-art.

4.4. Run time

Finally, we compare the run time of the proposed method
with several existing methods [5, 11, 17]. The simulators
are run on a computing cluster node with Intel Xeon “Sky
Lake” processors (16 cores) and a Tesla V100 GPU. We use
16× 16 PSF grid for [5], which is comparable to our initial
PSF grid. The for-loop in [17] is executed 1000 times as
suggested by the authors. The run time of [11] is reported

Reference Method CPU (s) GPU (s)
Hardie et al. [11] split-step 119.63 24.36
Chimitt-Chan [5] collapsed 5.88 N/A

Lau et al. [17] subsampling 3.13 N/A
Ours P2S 0.35 0.026

Table 2. Average run time for each method to process a 256× 256
frame. Unit are in seconds.

by the authors. The required time to process a 256 × 256
frame is reported in Table 2. The proposed method offers
300×–1000× speed up compared to Hardie et al. [11].

5. Conclusion
The simulation approach towards imaging through atmo-

spheric turbulence we have presented in this work has desir-
able advantages over existing methods. The key innovation
of the P2S transform network allows for significant speedup
and additional reconstruction utility. With respect to deep-
learning based reconstruction, the outlined approach allows
for the generation of large amounts of training data not pre-
viously feasible. Additionally, the ability to use the simula-
tion approach as a differentiable module in a neural-network
suggests additional benefit towards reconstruction. Finally,
we expect the ability to produce statistically accurate data
far more efficiently will allow for further statistical analysis
of turbulent imaging properties through numerical analysis
methods not previously possible.
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