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Abstract

We find that images contain intrinsic structure that en-
ables the reversal of many adversarial attacks. Attack vec-
tors cause not only image classifiers to fail, but also collat-
erally disrupt incidental structure in the image. We demon-
strate that modifying the attacked image to restore the nat-
ural structure will reverse many types of attacks, provid-
ing a defense. Experiments demonstrate significantly im-
proved robustness for several state-of-the-art models across
the CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets.
Our results show that our defense is still effective even if the
attacker is aware of the defense mechanism. Since our de-
fense is deployed during inference instead of training, it is
compatible with pre-trained networks as well as most other
defenses. Our results suggest deep networks are vulnera-
ble to adversarial examples partly because their represen-
tations do not enforce the natural structure of images.

1. Introduction

Deep networks achieve strong performance over a num-
ber of computer vision tasks, yet they remain brittle un-
der adversarial attacks [13, 7, 19, 57]. With crafted per-
turbations, attackers can undermine predictions from the
state-of-the-art models by changing the features in the rep-
resentation [38]. These limitations prevent application of
deep networks to sensitive and safety-critical applications
[48, 54, 34, 55], underscoring the gap between current ma-
chine learning algorithms and human-level abilities [6].

A large body of work has studied how to train deep
networks such that they are robust to adversarial attacks.
Adversarial training and its variants [36, 38, 57, 44, 49],
including multitask learning [37, 28] and semi-supervised
learning [60], significantly improve robustness. However,
while existing methods focus on improving the training al-
gorithm, they are burdened because they need to find a sin-
gle representation that also works for all possible corrup-
tions and attacks. Training-based defenses cannot adapt to
the individual characteristics of each attack at testing-time.

In this paper, we introduce an approach for reversing the
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Figure 1: Reverse Attacks: Adversarial attacks are small
perturbations that cause classification networks to fail [36,
57]. In this paper, we show there are intrinsic signals in
natural images to reverse many types of attacks. In the right
column, we visualize our reverse attack on an ImageNet im-
age. Note that both attack vectors have been multiplied by
ten for visualization purposes only.

attack process, allowing us to formulate a defense strategy
that adapts to each attack during the testing phase. Just as
an attacker finds the right additive perturbation to break the
input, our approach will find the right additive perturbation
to repair the input. Figure 1 shows our reverse attack on
a poisoned ImageNet image. However, reverse attacks are
more challenging to produce than standard attacks because
the category label is unknown to us during testing.

Our key insight is that images contain natural and intrin-
sic structure that we can leverage to reverse many types of
adversarial attacks. We found that, although adversarial at-
tacks aim to fool the image classifier, they also collaterally
damage self-supervised objectives. Our approach shows
how to capitalize on this incidental signal in order to create
adversarial defenses. By using self-supervision for defense
at test time, we can guarantee that even the strongest adver-
sary cannot manipulate the intrinsic signals that naturally
come with the images, providing a more robust defense than
training-based methods.

A key advantage of our framework is that it factors out
the defense strategy from the visual representation. Since
reverse attacks are adaptive, this defense is able to effi-
ciently scale to any corruption that violates the natural im-
age manifold. Moreover, the modularity of our approach
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Figure 2: Defense Overview: We find that adversarial at-
tacks on classification networks will also collaterally at-
tack self-supervised contrastive networks [10]. Since self-
supervision is available during deployment, we exploit this
discrepancy to reverse adversarial attacks and provide a de-
fense. Our approach modifies the potentially attacked input
image such that contrastive distances L are restored.

allows it to work with any classifier and complements ex-
isting defense models. It can also be integrated into future
defense models and defend against novel attacks that cor-
rupt natural image structures.

Visualizations, empirical experiments, and theoretical
analysis show that our reversal strategy significantly im-
proves robust prediction for several established benchmarks
and attacks. Our method advances the state-of-the-art de-
fense methods by a large margin across four natural im-
age datasets including CIFAR-10 (over 7.5% gain), CIFAR-
100 (over 5.5% gain), SVHN (over 11.8% gain), and Ima-
geNet (over 3.0% gain). Our method is robust against es-
tablished attacks, including PGD [36], C&W [7], and Au-
toAttack [14]. In addition, our empirical results demon-
strate that, even when the attacker is aware of our de-
fense mechanism, our approach remains robust. Our mod-
els, data, and code are available at https://github.com/cvlab-
columbia/SelfSupDefense.

2. Related Work

Self-supervised Learning: Natural images contain rich
information for representation learning. Self-supervised
learning enables us to learn high quality representations
from images without annotations [16, 10, 71, 24, 11, 4, 8,
47]. By solving pretext tasks, such as jigsaw puzzles [42],
image inpainting [47], rotation prediction [20], image col-
orization [71, 62], random walk [29], and clustering [9],
the learned representations can generalize to unseen down-
stream tasks such as image recognition [10], and also al-
low domain adaptation at testing time [56]. Recently, con-
trastive learning has significantly advanced image recogni-
tion [10, 24, 39, 22]. In this paper, we leverage this inci-
dental structure to correct adversarial attacks. Our defense
uses the contrastive learning task [10], and it is extensible
to existing self-supervised tasks as well [47, 42, 20].

Adversarial Robustness: A large number of adver-
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Figure 3: Contrastive Score Distribution: We histogram
the constrastive loss value [10] for natural images (blue),
after adversarial attack (orange), and after our reverse attack
(green). This plot shows that adversarial attacks cause the
contrastive loss to increase. We create a counter-attack by
finding a perturbation that restores the self-supervised loss.

sarial attacks have been proposed to fool deep models
[57, 2,7, 33, 45, 40]. Special adversarial attacks that can
be reversed to clean images are also proposed [67]. Dif-
ferent from the existing approach to construct reversible at-
tacks [67], our approach aims to reverse any unknown at-
tacks for defense. While many defense methods are proved
to be not robust [50, 68, 66, 35, 3, 61, 43, 23, 52, 17, 5] as
they relied on gradient obfuscation, gradient masking [2, 6],
and weak adaptive attack evaluation [58], adversarial train-
ing and its variants are proved to achieve the true robust-
ness [21, 36, 38, 70, 49, 44, 64, 63, 65]. Moreover, re-
cent progress shows that unlabeled data [60, 27] and self-
supervised learning [28] improve the robustness of deep
models. While training a robust neural network to defense
is vastly studied, no existing work investigates algorithms
that improve robustness at inference time.

3. Method

We will first present a reverse attack that uses self-
supervision at deployment time to defend against adversar-
ial attacks. We then analyze the case where the attacker
is aware of our defense, and show our defense remains ef-
fective. We finally provide theoretical justification for the
robustness of our approach.

3.1. Attacks and Reverse Attacks

Let x be an input image, and y be its ground-truth cate-
gory label. To perform classification, neural networks com-
monly learn to predict the category y = Fy(x) by optimiz-
ing the cross entropy H(y,y) between the predictions and
the ground truth. The network parameters 6 are estimated
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by minimizing the expected value of the objective:

‘CC(X7y) =H (FG(X)7y)> (1

which can be optimized with gradient-based descent.

The Attack: In order to corrupt this model, the adver-
sarial attack finds additive perturbations 4 to the image such
that x, = x + § is no longer classified correctly by the
trained network Fy. Attackers create these worst-case im-
ages by maximizing the objective:

X, = argmax L.(Xq,y), St

Xa

||Xa - XHq <e (2

where the ¢ norm bound of the perturbation § = x, — x is
less than €, which keeps the perturbation minimal.

The Reverse: We aim to defend against these attacks by
reversing the attack process. Just as the attack finds an addi-
tive perturbation to break the input, we will find an additive
perturbation to repair the input. However, we cannot sim-
ply flip Equation 2 from a maximization to a minimization
because the category labels y are unknown at deployment.

The key observation is that self-supervised objectives are
always available because they do not depend on the labels y.
While adversarial attacks aim to corrupt the classifier, they
will also impact self-supervised representations, which is a
signal we will leverage for reversal. Let £4(x) be a self-
supervised objective on the input x. We create the reverse
attack vector r by minimizing the objective:

r = argmin £,(X, + 1), St
r

Ixflg <€ )

where ¢, defines the bound of our reverse attack. The so-
lution r will modify the adversarial image x, such that it
satisfies our choice of self-supervised objective.

After finding the optimal r, robust prediction is straight-
forward. Our defense adds the resulting perturbation vector
r to the input x, before predicting the classification result
with the normal network forward pass: y = Fp(x, + r).

An advantage of reverse attacks is that, since they do not
rely on offline adversarial training, the defense will gener-
alize to unseen adversarial attacks. Moreover, our defense
is able to fortify existing models without re-training.

3.2. Natural Supervision for Defense

While any self-supervised task [47, 42, 20] can con-
struct the loss £, we use the contrastive loss as our natural
supervision objective [10, 11], which is a state-of-the-art
self-supervised representation learning approach. The con-
trastive objective creates features that maximize the agree-
ment between positive pairs of examples while minimizing
the agreement between negative pairs of examples. Pairs
are typically created with an augmentation strategy [10]. In
our case, when we receive a potentially adversarial image
x, we create the positive examples by sampling different

Algorithm 1 Self-supervised Reverse Attack

1: Input: Potentially attacked image x, step size 1, num-
ber of iterations K, a classifier F', reverse attack bound
€y, and self-supervised loss function L.
Output: Class prediction g
Inference:
x' ¢~ x + n, where n is the initial random noise
fork=1,..., K do
x' < x' =V Ls(x)
x' ¢ Il(x,)x’, which projects the image back into
the bounded region.
end for
9: Predict the final output by § = F(x’)

NN RN

®

augmentations from it to create multiple positive pairs. We
create the negative pairs in a similar way, except applying
augmentations to the randomly selected images.

Since these pairs are constructible at evaluation time, we
create reverse attacks that minimize the term:

s exp(cos(2i, z;)/7)
Lo(x) = —E; . |y J 4
(X) 1,] yZJ Og Zk eXp(COS(ZZ', Zk)/T) 9 ( )
where z are the contrastive features. We use y,gj) to indi-

cate which pairs are positive and which are negative. This
indicator satisfies yl(?) = 1 if and only if the examples ¢
and j are both from x, and 0 otherwise. 7 is a scalar hyper-
parameter, and cos denotes cosine similarity.

Figure 3 shows that adversarial attacks on classification
objectives also attack the contrastive objective L,, even
though the attacker never explicitly optimizes for it. When
there is an attack, £4(x,) will be larger than on clean im-
ages Ls(x). This gap provides the signal for reverse attacks.

Figure 2 provides an overview of this defense mecha-
nism, and Algorithm 1 summarizes our procedure.

Contrastive Feature Estimation: To estimate the con-
trastive features z, we take the features before logits from
a backbone F' and pass them to a two-layer network G.
To compute the positive features, we sample augmentations
conditioned on the input image x. We follow a similar pro-
cedure to compute the contrastive features for the negative
examples zy, sampling random images from a collection of
images that form the negative set.

Offline, we fit the contrastive model G on a large set of
clean images using the same procedure as [10, 11]. We se-
quentially apply two augmentations: random cropping then
scale back to the original size, and random color distor-
tions including color jittering and random gray-scale. We
found removing the Gaussian blur from the augmentations
improved performance because it otherwise favored over-
smooth perturbations. After G is trained on clean images,
we use it during reverse attacks without any further training.
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3.3. Analysis of Defense Aware Attack

In this section, we analyze the effectiveness of our ap-
proach when the attacker is aware of our defense.

Attack Model: Let us assume the attacker knows the
contrastive model parameters and our defense strategy. In
this setting, the attacker can adversarially optimize against
our defense with the following alternating optimization:

r = argmin L4(x + 1), (5)

d =argmax L.(x+r+4d,y). (6)
5

From the attacker’s perspective, the above procedure is not
ideal because it involves an alternating, min-max optimiza-
tion. Past work suggests that this leads to unstable gradient
estimation, having a gradient obfuscation problem that re-
duces the attack efficiency [2].

Similar to C&W [7] and L-BFGS attack [57], the at-
tacker can reformulate the above equation as a constrained
optimization problem:

maximize L.(X.,y), st Ls(xqa) <€, ()
where €’ is the same value as the converged loss L for nat-
ural images. Intuitively, the attacker should maximize the
adversarial gain while respecting the self-supervised loss if
they want to render our defense ineffective.

To optimize Equation 7, they in practice maximize the
following equation w.r.t. X:

El(xav Yy, )\s) = Ec(xav Y) - Asﬁs(xa)' (8)

We derive Equation 8 from Equation 7 via the Lagrange
Penalty method [51], where £; is the new loss for the adap-
tive attack. Full derivations are in the supplementary.

Multi-objective Trade-off: The above derivation shows
that the attacker can attempt to bypass our reversal by
also minimizing L,(x,), so that attacks mimic the self-
supervised features of clean examples. If the attacker pro-
duces examples that are as good as the clean examples in
terms of L£;(x,), our defense would not be able to reverse
the attack by further decreasing the loss £4(x, + r).

However, as the attacker must solve a multi-objective op-
timization, they must trade-off between the two objectives.
The scalar A4 controls how aggressively the attacker will
corrupt the self-supervised model. The attacker’s ideal ad-
versarial attack will first optimize for the Pareto frontier by
maximizing £;(X,,y, As) for each ;. They should select
the A\, that yields the most damage (the lowest robust accu-
racy), and use the corresponding generated attack x,.

A larger A shifts the adversarial budget from attacking
the classification loss L. to attacking the self-supervised
loss L. If the attacker is to attack the self-supervised task,

they would then reduce the effectiveness of their classifica-
tion attack, undermining their goal. Attacking both £, and
L. jointly requires creating adversarial images for multiple
objectives, which is fundamentally more challenging [37].
Our defense creates a lose-lose situation for the attacker.
If they ignore our defense, then we improve accuracy. If
they account for our defense, then they hurt their attack.

3.4. Theoretical Analysis

We will show theoretical insights for why leveraging nat-
ural supervision improves adversarial robustness. Without
our defense, the model predicts the category on an image
with an incorrect estimate for the self-supervision label.
With our defense, the model uses an image for which the
self-supervision label is estimated correctly. We prove this
increases the upper bound of the prediction accuracy.

A feed forward pass is equivalent to also including a la-
tent self-supervised label to the model, since the informa-
tion which the self-supervised network uses is in the image
itself. We denote the ground-truth label of self-supervision
as y(®) and the predicted label of self-supervision under at-
tack as y((f). To make this latent label explicit in notation,
we rewrite the loss functions as: £,(x) — Ls(x,y®)) and

Lo(Xa) = Lo(Xa,ys)).

Lemma 1. The standard classifier under adversarial at-
tack is equivalent to predicting with P(Y|X = x4, Y®) =
yfls)), and our approach is equivalent to predicting with

P(Y|X =x,,Y® =y,
Proof. For the standard classifier under attack, we know

that P(Y®) = y$)|X = x,) = 1. Thus we know the
standard classifier under adversarial attack is equivalent to

P(Y|X=x%.) =Y _ P(YW|X =x,)P(Y[Y® X =2,)
Y (s)
=PY|Y® =y X =x,).

Our algorithm finds a new input image nggx that

argmax P(X™ = x™|X = x,)P(Y® =y x™ = x(")

x(n)
= argmax P(X™ = x"|X = x,, Y =y,
w(n)

Our algorithm first estimate xfﬁx with adversarial im-

age x, and self-supervised label y(*). We then predict the
label Y using our new image xfﬁgx. Thus, our approach in
fact estimates P(Y|X(™) = ngfa)x)P(X(") = Xl(r?a)x‘x =
X4, Y®) = y(5)). Note the following holds:

P(Y|X = x4, Y® =y)
=3 POYE™)P(x"™|X = x0, Y = y)

x(n)

~ POYIX™ = xGL)PX™ = xGLIX = %0, YO = )
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Thus our approach is equivalent to estimating P(Y|X =
Xa, Y = y(®). O

We use the maximum a posteriori (MAP) estimation
xs,?t)w to approximate the sum over X () because: (1) sam-
pling a large number of X (") is computationally expensive;
(2) our results in Figure 7 shows that random sampling is
ineffective; (3) our MAP estimate naturally produces a de-
noised image that can be useful for other downstream tasks.

Next we provide theoretical guarantees that our approach
can strictly improve the bound for classification accuracy
in Theorem 1. For convenience we introduce an additional
random variable X, representing the adversarial image.

Theorem 1. Assume the base classifier operates bet-
ter than chance and instances in the dataset are uni-
formly distributed over n categories. Let the predic-
tion accuracy bounds be P(Y|Y§S),Xa) € [by,c1] and
P(Y|Y®),X,) € [ba, ca]. If the conditional mutual infor-
mation I(Y;Y(S)|Xa) > 0, we have by > by and ¢ > c;,
which means our approach strictly improves the bound for
classification accuracy.

Proof. If I(Y;Y®)|X = x,) > 0, then it is straight-
forward that:

I(Y; Y™ X,) > I(Y; Y, X,) = I(Y; X,).

We define H(e,) = —eploge, — (1 —€p) log(l — €p).
Using the Fano’s Inequality [53] and the fact that Q(e,) =
H(ep) + €plog(n — 1) is a monotonically increasing func-
tion when error rate €, < 1 — %, i.e., accuracy higher than
random guessing,! we derive the upper bound of accuracy
c1 and ¢ to be:

l—eg<c=1-Q ' (—I(Y;X,) + H(Y)),
l—6<ca=1-Q 1 -I(Y; Y X,)+ H(Y)),

where the upper bound is a function of the mutual informa-
tion. Since H(Y) is a constant, a larger mutual information
will strictly increase the bound. Detailed proof is in the sup-
plementary material. O

Intuitively, the adversarial attack x, will corrupt some
mutual information between the label Y and natural struc-
ture Y (®). Thus, there is additional mutual information be-
tween Y and Y(*) given x,, i.e., [(Y; Y®)|X = x,) > 0.
Theorem 1 shows that by restoring information from the
correct Y (), the prediction accuracy can be improved.

Theoretically, by optimizing the self-supervision loss,
the defense aware attack is in fact predicting classifica-
tion label given the right self-supervision label Y, ie.,
P(Y|X = x,,Y® = y(). According to our theory, the
robust accuracy should increase due to the restored infor-
mation. Overall, our defense is robust even under a defense
aware adversary.

I'The validity of this fact are explained in the supplementary.
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Figure 4: The Trade-off: The robust accuracy for defense
aware attack under different A, setup. We increase the A, of
defense aware attack from O to 10, and show robustness ac-
curacy on two robust models, RO and Semi-SL, on CIFAR-
10 dataset. The plot shows a trade-off. While increasing
the value of \s decreases the gain of Ours compared with
Baseline, it also decreases the attacker’s effectiveness. To
achieve the best attack effectiveness, the attacker should use
As = 0, which is the standard attack without attempting to
corrupt the self-supervised task.

4. Experiments

Our experiments evaluate the robustness at image classi-
fication on four datasets: CIFAR-10 [31], CIFAR-100 [32],
SVHN [41], and ImageNet [15]. We compare with the state-
of-the-art defense methods, under several strong adversarial
attacks including a defense aware attack.

4.1. Baselines

We apply our method to seven established, scrutinized
[2] defense methods including the state-of-the-art adversar-
ial robust model. All studied methods are trained with ad-
versarial training [36], but achieve higher robust accuracy
than the initial version of Madry et al. [36].

TRADES [70] is the winning solution for NeurIPS
2018 Adversarial Vision Challenge. It introduces a KL-
divergence term to regularize the representation of adver-
sarial examples to match the ones of clean examples.

Robust Overfit (RO) [49] re-examines the existing ad-
versarial robust models through overfitting, which is the
state-of-the-art model trained with Pre-ResNet18.

Bag of Tricks (BagT) [44] conducts extensive exper-
iments on the effect of hyper-parameters on adversarial
training [36]. It is the state-of-the-art adversarial robust
model without additional unlabeled data for training.

Semi-supervised Learning (Semi-SL) [60] signifi-
cantly improves adversarial robustness using unlabeled
data. By training with pseudo labels of unlabeled images,
the model achieved the state-of-the-art robustness. How-
ever, this work neglects the information of natural images
beyond the pseudo classification label.

MART [63] uses misclassification aware adversarial
training to achieve improved robustness. We use its best
version trained on top of Semi-SL [60].
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Model Adversarial Attack Lo, = 8/255
Architecture PGD 50 PGD 200 BIM 200 C&W 200 AutoAttack
Inference Type Standard Ours Standard Ours Standard Ours Standard Ours Standard Ours
TRADES [70] WRN-34-10 55.05% 57.00% 55.02% 57.18% 55.06% 57.33% 53.72% 56.56% 53.16% 60.67 %
RO [49] PreRes-18 52.40% 54.59% 52.34% 54.62% 52.32% 54.54% 50.33% 53.48% 48.95% 58.20%
BagT [44] WRN-34-10 56.44% 58.33% 56.40% 58.47% 56.38% 58.55% 54.82% 57.35% 54.26% 61.70%
MART [63] WRN-28-10 62.72% 64.40% 62.63% 64.26% 62.54% 64.28% 58.96% 62.18% 57.29% 66.22%
AWP [65] WRN-28-10 63.67% 64.21% 63.64%  64.07% 63.64% 63.69 % 60.82% 61.90% 60.58% 67.15%
Semi-SL [60] WRN-28-10 62.30% 64.64% 62.22% 64.44% 62.18% 64.68 % 60.90% 63.83% 60.22% 67.79%

Table 1: Adversarial robust accuracy on the CIFAR-10 test set. Our method improves robustness of established work across different
adversarial attack setups by over 7.5%. Our method (boxed) obtained first place on the CIFAR-10 AutoAttack leaderboard.

Model Adversarial Attack Lo, = 8/255
Architecture PGD 50 PGD 200 BIM 200 C&W 200 AutoAttack
Inference Type Standard Ours Standard Ours Standard Ours Standard Ours Standard Ours
RO [49] ResNet18 21.90% 23.83% 20.90% 22.23% 21.00% 22.09% 20.42% 22.19% 19.23% 25.45%
TRADES* [70] WRN34-10 27.04% 28.55% 26.94% 28.16% 26.94% 28.18% 26.57% 27.88% 25.55% 31.26%
BagT * [44] WRN34-10 29.87% 31.21% 28.81% 31.15% 29.81% 31.44% 29.72% 31.40% 27.59% 33.16%

Table 2: Adversarial robust accuracy on the CIFAR-100 test set. Our method consistently improves robustness by over 5.5%.

Adversarial Weight Perturbation (AWP) [65] trains
robust model by smoothing the weights’ loss landscape. We
use its best version trained on top of Semi-SL [60].

Fast is Better than Free (FBF) [64] is the state-of-the-
art solution for training robust ImageNet classifier in rea-
sonable training budget and time.

4.2. Attack Methods

Fast Gradient Sign Method (FGSM) [21] is a one-step
adversarial attack to fool neural networks.

Projected Gradient Descent (PGD) [36] is the standard
evaluation for adversarial robustness. We use PGD attack in
the paper as robustness evaluation if attack is not stated.

Basic Iterative Attack (BIM) [33] is a variant of PGD
attack without the initial random start.

C&W Attack [7] is a powerful iterative attack, which
reduces the logit value for the right class while increasing
that for the second best class to fool the classifier.

AutoAttack [14] is the state-of-the-art attack, consisting
of an ensemble of parameter-free adversarial attacks includ-
ing auto-PGD [13], FAB [12], and Square Attack [1].

Defense Aware Attack is discussed in Section 3.3,
which is theoretically the optimal adaptive white-box attack
to bypass our defense algorithm.

4.3. Experimental Settings

Backbone Architectures. Following prior literature, we
conduct experiments with Pre-ResNetl8 [26], ResNet50
[25], and WideResNet [69]. We download the pretrained
models’ weights online. 2

Self-supervised Learning Branch. We use a network
with two fully connected layers that takes in the features
from the penultimate layer of the backbone network.

Implementation Details. We train our self-supervision
model with the Adam [30] optimizer. We use a learning rate

2We reproduce a few models that are not available and denote by *

of 0.001. When training the self-supervised model, we use
temperature 7 = 0.2 for the contrastive loss, with a batch
size of 128. For CIFAR-10 and CIFAR-100, we train the
self-supervised branch for 200 epochs. For SVHN, we train
it for 600 epochs. For ImageNet, we train for 30 epochs. We
set the reverse attack bound to be €, = 2¢ and optimization
iterations to be ' = 40. We implement our model with
Pytorch [46]. Please see supplementary for details.

4.4. Results of Defense Aware Adversarial Attacks

In Section 3.3, we discussed the strongest adaptive at-
tack that can be used to bypass our defense. We show
the results of the adaptive attacker on CIFAR-10 in Figure
4. We use attacks with 50 steps, with perturbation bound
Lo, = 8/255. We vary the value of the Ag from 0 to 10,
where O corresponds to the standard PGD attack without
considering our defense strategy. The results show that in-
creasing A, and focusing more attack budget to the self-
supervised defense, the gain of our approach is reduced (full
line falls under dotted line). However, as A, gets larger, the
attack for classification task also gets weaker (line goes up).
While adaptive attacks successfully reduce the additional
gain bought by our approach, it too significantly sacrifices
the initial attack success rate on the classification task. Min-
imizing the £, (x4, y(*)) hurts the original classification at-
tack so much that it is not worth it for the attacker to account
for our defense. We also show results with 500 steps in the
supplementary, where our conclusion also holds.

This finding matches our initial theory in Section 3.4,
where leveraging the incidental structure in the images im-
proves robustness. The decrease of attack success rate on
the target classification task is also consistent with prior
work [37], which suggests that it is harder to simultaneously
attack multiple tasks at once. In fact, the attacker is trading
off between classification attack success rate and fooling the
self-supervised defense. For the attacker, the optimal attack
is A; = 0, which is the standard adversarial attack without
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Model Adversarial Attack Lo, = 8/255
Architecture PGD 50 PGD 200 BIM 200 C&W 200 AutoAttack
Inference Type Standard Ours Standard Ours Standard Ours Standard Ours Standard Ours
RO [49] PreRes-18 51.03% 53.21% 50.82% 53.06% 50.84% 53.26% 48.90% 54.62% 47.15% 57.79%
Semi-SL [60] WRN-28-10 55.69% 62.40% 55.29% 62.12% 55.43% 62.53% 57.03% 63.34% 53.61% 65.50%

Table 3: Adversarial robust accuracy on the SVHN test set under different attacks. Our method improves robustness by over 11.8%.

Adversarial Attack Lo, = 4/255
FGSM | PGDIO | PGD20 | BIM20 | C&W20

28.68%
31.36%

28.52%
31.32%

28.49%
31.27%

27.81%
30.88%

32.47%

FBF [64]
33.51%

Ours + FBF

Table 4: Adversarial robust accuracy on the ImageNet test set.
Our method uses the same model and parameters as the baseline
FBF [64]. After reversing the adversarial attack with our natural
supervison, we improve robustness on ImageNet by over 3.07 % .

Adversarial Attack Lo, = 256/255
PGD 200 C&W 200
Inference Type | Standard Ours Standard Ours
TRADES [70] 36.90% 39.16% 35.89% 38.07%
RO [49] 40.00% 41.98% 38.31% 40.17 %
BagT [44] 38.80% 41.28% 37.01% 39.20%
Semi-SL [60] 42.07% 44.47% 39.97% 42.72%
AWP [65] 44.39% 47.15% 40.97% 43.72%
MART [63] 43.24% 45.85% 43.23% 45.85%

Table 5: L2 norm bounded adversarial robust accuracy on the
CIFAR-10. Our natural supervision is agnostic to the attack type
and can improve the robustness by over 2.6% for Lo attack with-
out retraining the defense model. The lower bound for the best

achieved robustness on Lo is | boxed |.

considering our self-supervised defense. Therefore, we use
this setup in the remaining experiments.

4.5. Results with Optimal Adversarial Attacks

In the optimal setup, A; = 0. The attack is equivalent
to the standard adversarial attack without considering the
defense branch. Thus the gain from Standard to Ours is
the lower bound of our self-supervised correction. We now
show the gain on four datasets.

CIFAR-10 [31] contains 10 categories. In Table 1, we
add our approach to six existing robust models, where we
constantly correct by up to 7.5% of the adversarial exam-
ples, as shown in the gain from Standard to Ours.

CIFAR-100 [32] contains 100 categories. In Table 2, we
show over 5.5% gain compared with the baselines.

SVHN [41] is a 10 category street view house number
dataset. In Table 3, we experiment on two methods that
have pretrained models available, including the state-of-the-
art semi-supervised learning [60]. Ours demonstrate over
11.8% gain compared with the original defense method.

ImageNet [15] contains 1000 categories. We use the pre-
trained model from Wong et al. [64], which is the state-of-
the-art ResNet50 robust model. In Table 4, we use 5 differ-
ent attacks to access the adversarial robustness of the origi-
nal model and our model with natural supervision defense.
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Figure 5: Speed versus Robust Accuracy: Trade-off be-
tween inference time and adversarial robustness on CIFAR-
10 dataset. As our approach is iterative, we can stop early
if the application prefers speed over the robustness.

Our approach achieved over 3% gain on robustness.

4.6. Analysis

Accuracy vs. Time Budget. As our method is iterative,
we can adjust the number of iterations according to differ-
ent time budget. We use the number of iterations conducted
as a indicator of time, and plot the accuracy vs. time bud-
get in Figure 5, where we can see even a few updates can
significantly improves the robustness.

Robustness Curve. We adopt the robustness curve eval-
uation of adversarial robustness accuracy vs. the perturba-
tion budget [18]. We show the trend in Figure 6. We ap-
ply our inference algorithm as additional defense to exist-
ing robust models [49, 64], where our approach achieved
up to 14% robustness gain compared with standard infer-
ence method, especially when the attack gets stronger with
larger perturbation bound.

Trade-off between clean accuracy and adversarial ro-
bustness. It has been proved that there exists a natural
trade-off between clean accuracy and adversarial robustness
given a classifier [59, 70]. In Figure 7, we compare our
natural supervised reverse defense with the random reverse
defense (baseline). We increase the additive noise level ¢,
that is applied to reverse the adversarial examples as well as
the clean examples (we use the same algorithm to clean ex-
amples because during inference we cannot distinguish ad-
versarial ones from clean ones). The clean accuracy often
drops as the noise level goes up. While there is a trade-off
between clean accuracy and robust accuracy [59, 70], our
approach achieved a better trade-off between them.

Robustness on L, norm bounded adversarial attacks.
We measure whether our defense can also generalize be-
yond the L., bounded attack. Table 5 shows results under
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Figure 6: The adversarial robust accuracy vs. perturbation budget curves on CIFAR-10, CIFAR-100, SVHN, and ImageNet, under the
Lo norm. The red line is applying our inference algorithm to the baseline models [49, 60, 64]. Using our inference algorithm significantly

improves the robustness.
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Figure 8: Feature Trajectories: We project the features
onto a plane with PCA to visualize their trajectory under at-
tack and our reverse attack. The green cross indicates the
clean examples, the red square indicates the misclassified
adversarial examples, and the blue dot indicates our rever-
sal method. Our approach pushes the misclassified exam-
ples (red) back to the original features (green), improving
adversarial robustness.

L5 norm bounded attack on CIFAR-10, where our approach
consistently improves robustness under Lo norm bounded
attacks by over 2.6%.

Feature visualization. Figure 8 visualizes the trajec-
tory of images’ penultimate layer’s feature as it transitions
through an attack and the reversal. We use PCA to project
the features onto a plane. The plot demonstrates that the
attack shifts the feature embedding from the right class to
the wrong class. Then, the reverse attack often returns the
features back to the right class.

To quantify this effect, we take the Euclidean distance
between the clean embedding and the attacked embedding,

denoted D, , as well as the Euclidean distance between the
clean embedding and the inverse attacked embedding, de-
noted D,,, for the triples that have the same clean class and
inverse attacked class. For all but one combination of cat-
egories, D., > D.,. Additionally, across all triplets, we
checked how much the average distance from clean to re-
verse attacked is reduced from the average distance from
clean to attacked, and obtained a value of roughly 10% de-
crease. These results together demonstrate that, on average,
our reverse attack returns the attacked embedding closer to
the original embedding.

5. Conclusions

We introduce an approach to use natural supervision to
reverse adversarial attacks on images. Our results demon-
strate improved robustness across several benchmarks and
several state-of-the-art attacks. Our findings suggest inte-
grating defense mechanisms into the inference algorithm is
a promising direction to improve adversarial robustness.
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