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Figure 1: Diverse and controllable motion prediction. Given a past human motion, shown with blue and red skeletons, our

model can predict diverse future motions, as shown in the red box. It also allows us to produce future motions with the same

lower-body motion but diverse upper-body ones, i.e., to perform controllable motion prediction, as shown in the blue box.

Abstract

Recent progress in stochastic motion prediction, i.e., pre-

dicting multiple possible future human motions given a sin-

gle past pose sequence, has led to producing truly diverse

future motions and even providing control over the motion

of some body parts. However, to achieve this, the state-of-

the-art method requires learning several mappings for di-

versity and a dedicated model for controllable motion pre-

diction. In this paper, we introduce a unified deep gen-

erative network for both diverse and controllable motion

prediction. To this end, we leverage the intuition that re-

alistic human motions consist of smooth sequences of valid

poses, and that, given limited data, learning a pose prior

is much more tractable than a motion one. We there-

fore design a generator that predicts the motion of dif-

ferent body parts sequentially, and introduce a normaliz-

ing flow based pose prior, together with a joint angle loss,

to achieve motion realism. Our experiments on two stan-

dard benchmark datasets, Human3.6M and HumanEva-I,

demonstrate that our approach outperforms the state-of-

the-art baselines in terms of both sample diversity and accu-

racy. The code is available at https://github.com/

wei-mao-2019/gsps

1. Introduction

Predicting future human motions from historical pose se-

quences has broad applications in autonomous driving [41],

animation creation in the game industry [50] and human

robot interaction [32]. Most existing work focuses on deter-

ministic prediction, namely, predicting only the most likely

future sequence [16, 40, 34, 38, 37]. However, future hu-

man motion is naturally diverse, especially over a long-term

horizon (> 1s).

Most of the few attempts to produce diverse future mo-

tion predictions exploit variational autoencoders (VAEs) to

model the multi-modal data distribution [51, 54, 4]. These

VAEs-based models are trained to maximize the motion

likelihood. As a consequence, and as discussed in [55],

because training data cannot cover all possible diverse mo-

tions, test-time sampling tends to concentrate on the major

data distribution modes, ignoring the minor ones, and thus

limiting the diversity of the output. To address this Yuan

et al. [55] proposed to learn multiple mapping functions,

which produce multiple predictions that are explicitly en-

couraged to be diverse. While this framework indeed yields

high diversity, it requires training several mappings in paral-

lel, and separates the training of such mappings from that of

the VAE it employs for prediction. Furthermore, while the

approach was shown to be applicable to controllable motion

prediction, doing so requires training a dedicated model and

does not guarantee the controlled part of the motion, e.g.,

the lower body, to be truly fixed to the same motion in dif-

ferent predictions as the remaining body parts vary.

In this paper, we introduce an end-to-end trainable ap-

proach for diverse motion prediction that does not require

learning several mappings to achieve diversity. Our frame-

work yields fully controllable motion prediction; one can

strictly fix the motion of one portion of the human body and

generate diverse predictions for the other portion only.

To this end, we rely on the observation that diverse fu-

ture motions are composed of valid human poses orga-

nized in smooth sequences. Therefore, instead of learn-
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Figure 2: Our generator (a) vs a standard one (b). (a) We

predict the motions of different body parts sequentially. (b)

Existing methods directly produce the whole motion.

ing a motion prior/distribution, for which sufficiently di-

verse training data is hard to obtain, we propose to learn

a pose prior and enforce a hard constraint on the predicted

poses to form smooth sequences and to satisfy human kine-

matic constraints. Specifically, we model our pose prior as

a normalizing flow [45, 15], which allows us to compute

the data log-likelihood exactly, and further promote diver-

sity by maximizing the distance between pairs of samples

during training.

To achieve controllable motion predictions, as illustrated

in Fig. 2 (a), we generate the future motions of the different

body parts of interest in a sequential manner. Our design

allows us to produce diverse future motions that share the

same partial body motion, e.g., the same leg motion but di-

verse upper-body motions. This is achieved by fixing the

latent codes for some body parts while varying those of the

other body parts. In contrast to [55], our approach allows us

to train a single model that achieves both non-controllable

and controllable motion prediction.

Our contributions can be summarized as follows: (i) We

develop a unified framework achieving both diverse and

part-based controllable human motion prediction, using a

pre-ordered part sequence; (ii) We propose a pose prior and

a joint angle constraint to regularize the training of our gen-

erator and encourage it to produce smooth pose sequences.

Such strategy overcomes the difficulty of learning the dis-

tribution of diverse motions as other VAE-based methods

do.

Our experiments on standard human motion prediction

benchmarks demonstrate that our approach outperforms the

state-of-the-art methods in terms of sample diversity and ac-

curacy.

2. Related Work

Human motion prediction. Early attempts at human mo-

tion prediction [9, 46, 49, 53] relied on non-deep learning

approaches, such as Hidden Markov Model [9] and Gaus-

sian Process latent variable models [53]. Despite their suc-

cess on modeling simple periodic motions, more compli-

cated ones are typically better handled via deep neural net-

works. Deep learning based methods can be roughly cate-

gorized into deterministic approaches and stochastic ones.

Deterministic models focus on predicting the most likely

human future motion sequence given historical observa-

tions [16, 27, 10, 40, 44, 19, 34, 3, 38, 52, 18, 37, 11, 39].

Motivated by the success of RNNs for sequence model-

ing [48, 31], many such methods employ recurrent archi-

tectures [16, 27, 40, 44, 19, 18]. Nevertheless, feed-forward

models have more recently been shown to effectively lever-

age the human kinematic structure and long motion his-

tory [34, 38, 3, 10]. In any event, while deterministic human

motion prediction models have achieved promising results,

especially for short-term prediction (< 0.5s), they strug-

gle with predictions for long-term horizons (> 1s). This is

because human motion is an inherently stochastic process,

where one observed motion can lead to multiple possible

future ones.

Addressing this has been the focus of stochastic mo-

tion prediction methods. Existing ones are mainly based

on deep generative models [51, 35, 6, 22, 33, 54, 4, 55],

such as variational autoencoders (VAEs) [29] and genera-

tive adversarial networks (GANs) [17]. In the context of

VAE-based ones, Yan et al. [54] proposed to jointly learn a

feature embedding for motion reconstruction and a feature

transformation to model the motion mode transitions; Ali-

akbarian et al. [4] introduced a perturbation strategy for the

random variable to prevent the generator from ignoring it.

In both cases, once the generator is trained, possible future

motions are obtained by feeding it randomly-sampled latent

codes. However, as argued in [55], such likelihood-based

sampling strategy concentrates on the major mode(s) of the

data distribution while ignoring the minor ones. To address

this, Yuan et al. [55] introduced a learnable sampling strat-

egy equipped with a prior explicitly encouraging the diver-

sity of the future predictions obtained from a pre-trained

generator. Despite their promising performance, their fu-

ture predictions are constrained by the use of a pre-trained

generator. As an alternative to VAE-based models, GAN-

based methods [35, 6, 22, 33] train the generator jointly

with a discriminator. While, in principle, one could also em-

ploy a diversity-promoting prior in these methods, in prac-

tice, the resulting additional constraints further complicate

the inherently-difficult training process [5]. As such, exist-

ing GAN-based methods tend to produce limited diversity.

Here, instead of using a discriminator to regularize the gen-

eration process, we employ a normalizing-flow-based pose

prior, accounting for the fact that training data can more

easily cover the diversity of poses than that of motions, and

encourage the resulting poses to be valid and form smooth

sequences.

3D human pose prior. In the 3D human pose estimation

literature, many works [8, 43, 57] have attempted to learn

3D pose priors to avoid invalid human poses. Such priors
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Figure 3: Overview of our approach. Given a past motion X, we first sample K latent codes {z
(1)
i }Ki=1 and decode them

to future lower-body motions {Y
(1)
i }Ki=1. For each such future motion Y

(1)
i , we again sample K latent codes {z

(2)
i }Ki=1 to

generate future upper-body motions {Y
(2)
i,j }

K
j=1.

include Gaussian mixture models [8] and VAEs [43]. How-

ever, as discussed in [57], these priors only approximate

the pose log-likelihood and may lead to instability [57]. To

evaluate the exact log-likelihood, Zanfir et al. [57] thus pro-

posed a normalizing flow based pose prior. Normalizing

flows (NFs) [45, 15] have recently become popular for den-

sity estimation precisely because they allow one to com-

pute the exact log-likelihood. Here, we use a pre-trained NF

model to evaluate the log-likelihood of the generated future

poses, and by maximizing the log-likelihood, encourage the

generator to produce realistic poses.

Joint angle constraint. Joint angle limits have been ex-

plored for the task of human pose estimation [21, 12, 1, 13].

In particular, Akhter et al. [1] introduced a pose-dependent

joint limit function learned from a motion capture dataset.

However, their function is non-differentiable, which makes

it ill-suited for deep neural networks. Our angle loss is sim-

ilar to that of [13]. However, unlike Dabral et al. [13] who

only consider angle constraints on arms and legs, consist-

ing of manually-defined valid angle ranges, we encompass

all angles between different body parts/joints and exploit

the training data to determine the valid angle ranges.

Controllable motion prediction. To the best of our knowl-

edge, Dlow [55] constitutes the only attempt at control-

lable motion prediction, e.g, fixed lower-body motion but

diverse upper-body motions. This was achieved by training

a dedicated model, different from the uncontrollable one,

yet sill not guaranteeing absolute control of the body parts

that should undergo the same motion. By contrast, we de-

velop a unified model that can achieve both controllable and

uncontrolled diverse motion prediction, while guaranteeing

the controlled parts to truly follow a fixed motion.

Controllable motion prediction/generation has also been

studied in computer graphics, specifically for virtual char-

acter control [24, 23, 36]. These works focus on generat-

ing human motions for a specific goal, such as following a

given path or performing pre-defined actions. In particular,

[36] relies on a motion VAE to capture motion dynamics

and searches for motions that achieve the desired task via

sampling policies, while accounting for neither motion di-

versity nor the detailed body movements. By contrast, our

work aims to predict diverse future motions and control the

detailed motion of body parts.

3. Our Approach

Let us now introduce our approach to diverse and con-

trollable motion prediction. We represent a human pose

x ∈ R
D as the concatenation of 3D joint coordinates

in a single frame. Given a past motion sequence X =
[x1,x2, · · · ,xH ]T of H frames, we aim to predict a set

of poses Y = [xH+1,xH+2, · · · ,xH+T ]
T representing a

possible future motion. To this end, we rely on a deep gen-

erative model, which we design to yield diversity and allow

for controllable motion prediction, as discussed below.

3.1. Diverse Motion Prediction

In this section, we first briefly review the use of deep

generative models in the context of human motion predic-

tion and then introduce our solution for diverse prediction.

Deep Generative Models. Let p(Y|X) denote the data

distribution of future motions Y ∈ Y , where Y is the set

of all possible future motions, conditioned on past motions

X ∈ X , with X encompassing all possible motion history.

By introducing a latent variable z ∈ Z , the data distribution

can be reparameterized as p(Y|X) =
∫

p(Y|X, z)p(z)dz,

where p(z) is a Gaussian distribution. Generating a future

motion Y can then be achieved by sampling a latent vari-

able z and mapping it to Y using a deterministic generator

function G : Z×X → Y . Formally, this is expressed as

z ∼ p(z) , (1)

Y = G(z,X) , (2)
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(a) (b)
Figure 4: Examples of angle limits. We consider the angles between the red and blue arrows on the left figures, and show

their distributions in the right plots. We define the valid scope based on the minimal and maximal angles. (a) Angle between

the head and body; (b) Angle between the left and right shoulders.

where the generator G is commonly implemented as a deep

neural network. To train such a generator, VAE-based

methods [54, 4] typically rely on maximizing the evidence

lower bound (ELBO) of the motion likelihood, i.e., mini-

mizing the data reconstruction error and the KL divergence.

However, this does not encourage diversity across different

randomly-sampled vectors z; instead it focuses on maxi-

mizing the likelihood of the training motions, and test-time

diversity is thus limited by that of the training motions.

To overcome this, we propose to explicitly generate K

future motions {Ŷj}
K
j=1 for each sample during training,

and explicitly promote their diversity. Because we aim

for diversity, we cannot encourage all generated motions to

match the ground truth. Therefore, we redefine the recon-

struction error so that at least one of them is close to the

ground truth. This yields the loss

Lr = min
j

∥Ŷj −Y∥2 , (3)

where j ∈ {1, 2, · · · ,K} indexes over the generated mo-

tions for one sample.

This loss, however, imposes constraints on only one of

the K generated motions. To better constrain the others, we

leverage the intuition that, while the dataset contains only

one ground-truth future motion for each past motion, sev-

eral sequences have similar past motions. For each past mo-

tion, we therefore search for the training samples with sim-

ilar past motions, based on a distance threshold, and take

their future motion as pseudo ground truth. Let {Yp}
P
p=1

denote the resulting pseudo ground truths. Then, we define

the multi-modal reconstruction error

Lmm =
1

P

P
∑

p=1

min
j

∥Ŷj −Yp∥
2 , (4)

where j ∈ {1, 2, · · · ,K}. It encourages our generator to

cover each pseudo ground truth with at least one sampled

motion.

To further explicitly encourage diversity across the gen-

erated motions, following [55], we use the diversity-

promoting loss

Ld =
2

K(K − 1)

K
∑

j=1

K
∑

k=j+1

e−
∥Ŷj−Ŷk∥1

α , (5)

where α is a normalizing factor.

One drawback of this diversity loss, however, is that it

may lead the model to produce unrealistic and physically-

invalid motions, particularly if P < K above, which leaves

some motions unregularized. The most straightforward way

to overcome this would be to learn a motion prior. This,

however, would require an impractically large amount of

training data. Instead, we therefore leverage the observation

that natural motions are composed of valid human poses

and thus introduce the pose prior and angle losses discussed

below.

Pose prior. We model our pose prior using a normaliz-

ing flow [45, 15], which is an invertible transformation that

aims to transfer an unknown data distribution to a distri-

bution with a tractable density function, e.g., a Gaussian

distribution. In other words, we model the 3D human pose

distribution p(x) by learning a bijective and differentiable

functionf(·), which maps a pose sample x ∼ p(x) to a la-

tent representation h = f(x) following a standard Gaussian

distribution, i.e., h ∼ N (0, I).
Following the normalizing flow literature [45, 15], this

allows us to compute the likelihood of a pose x as

p(x) = g(h)

∣

∣

∣

∣

det

(

∂f

∂x

)∣

∣

∣

∣

, (6)

where g(h) = N (h|0, I) and det(∂f
∂x

) is the determinant of

the Jacobian matrix of f(·).
In practice, the function f is modeled via a deep network.

Considering model size and inference efficiency, we choose

a simple network with only 3 fully-connected layers, which

is in stark contrast with the much larger architectures in the

recent normalizing flow literature [15, 28, 42, 25]. To en-

sure that f(·) is invertible, we compute the weights of each

layer via a QR decomposition and use monotonic activation

functions. More details about our normalizing flow archi-

tecture are provided in the supplementary material.

Given a dataset D of valid human poses, we learn the

function f by maximizing the log-likelihood of the samples
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in D. This can be written as

f∗ = argmaxf
∑

x∈D

log p(x) (7)

= argmaxf
∑

x∈D

log g(h) + log

∣

∣

∣

∣

det

(

∂f

∂x

)
∣

∣

∣

∣

. (8)

Given the trained function f , we then define a loss func-

tion to encourage our generator to produce valid poses.

Specifically, we write it as the negative log-likelihood of

a generated human pose x̂, which yields

Lnf = − log p(x̂) (9)

= − log g(ĥ)− log

∣

∣

∣

∣

det

(

∂f∗

∂x̂

)
∣

∣

∣

∣

, (10)

where ĥ = f(x̂) and g(ĥ) = N (ĥ|0, I).
Joint angle loss. In addition to our learnt pose prior, we

leverage the fact that human movements are constrained by

the physiological structure of the human body, e.g., one can-

not turn their head fully backwards. In our context, this

means that the angles between some body parts are limited

to a certain range. Here, instead of manually encoding these

different ranges, we discover them by analysing a valid hu-

man pose dataset D.

To this end, as shown in Fig. 4, we first compute unit

length vectors, which represent either the orientations of

body parts or the directions of limbs. A body part orien-

tation is the normal of the plane defined by 3 joints. For

example, the torso plane, shown in blue in Fig. 4 (a), is de-

fined by the left and right shoulders and the pelvis. A limb

direction is defined by 2 joints of the limb. We then com-

pute the angle between those vectors for every pose in D
and define the valid range based on the minimal and maxi-

mal such angle. We list all angles and their valid ranges in

the supplementary material.

Let {aj}
L
j=1 denote the L pre-defined angles, and laj

and

uaj
the lower bound and upper bound of angle aj , respec-

tively. Given a human pose x̂, we write our joint angle loss

for aj as

Laj
=











(aj(x̂)− laj
)2, if aj < laj

(aj(x̂)− uaj
)2, if aj > uaj

0, otherwise

(11)

where aj(x̂) is the angle value calculated from pose x̂. We

then combine the different angles in our final angle loss

La =
∑L

j=1 Laj
.

Predicting smooth trajectory. In the stochastic motion

prediction literature, human movements are commonly rep-

resented by a sequence of 3D joint coordinates. With such a

representation, encouraging the generated poses to be valid,

as discussed above, does not ensure that the resulting se-

quence will look natural. To enforce temporal smoothness,

we therefore adopt a trajectory representation based on the

Discrete Cosine Transform (DCT), as suggested in [38]. In

particular, using a reduced number of low-frequency DCT

components guarantees the resulting trajectory to be smooth

as shown in Fig. 5.
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Figure 5: A smooth trajectory can be compactly repre-

sented by a linear combination of predefined DCT bases [2].

Specifically, given the past motion sequence X, we first

replicate the last pose T times to generate a temporal se-

quence X̃ of length H + T , where T is the length of the

future sequence to predict. We then compute the DCT co-

efficients of this sequence C as

C = X̃T , (12)

where T ∈ R
(H+T )×M and each column of T represents a

predefined DCT basis; X̃ ∈ R
D×(H+T ) and each row of X̃

is the trajectory of a joint coordinate; C ∈ R
D×M and each

row of C represents the first M ≤ H + T DCT coefficients

for a trajectory.

We then make our generator predict the DCT coefficients

of the future motion Ĉ given those of the past motion C.

Given the predicted coefficients, we recover the future mo-

tion via inverse DCT as

Ŷ = ĈT
T , (13)

where Ĉ ∈ R
D×M and Ŷ ∈ R

D×(H+T ). As in [38], our

generator also outputs the past motion to encourage the tran-

sition from past poses to future ones to be smooth. See the

supplementary material for more detail.

3.2. Controllable Motion Prediction

The diverse motion prediction framework discussed

above does not provide any control over the generated mo-

tions. For controllable motion prediction, our goal is to pre-

dict future sequences that share the same motion for parts of

the body while being diverse for the other parts, e.g., same

leg motion but diverse upper-body motion. To this end, in-

stead of directly modeling the joint data distribution as dis-

cussed above, we propose to model a product of sequential

conditional distributions.

Specifically, let a human motion be split into N different

body part motions, that is, Y = [Y(1),Y(2), · · · ,Y(N)],
where Y

(i) ∈ R
T×Di defines the motion of the ith body

part, e.g., the left leg. Then, the future body motion distri-

bution p(Y|X) can be expressed as

p(Y|X) = p(Y(1)|X)p(Y(2)|X,Y(1)) · · · p(Y(N)|X, {Y(i)}N−1
i=1 ) . (14)

Each of the N conditional distributions describes the

motion of a particular body part given the motion of the

previous body parts. Similar to the standard deep genera-

tive model discussed above, we model each conditional dis-

tribution as
z
(i) ∼ p(i)(z) , (15)
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Method
Human3.6M [26] HumanEva-I [47]

APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓

ERD [16] 0 0.722 0.969 0.776 0.995 0 0.382 0.461 0.521 0.595

acLSTM [58] 0 0.789 1.126 0.849 1.139 0 0.429 0.541 0.530 0.608

Pose-Knows [51] 6.723 0.461 0.560 0.522 0.569 2.308 0.269 0.296 0.384 0.375

MT-VAE [54] 0.403 0.457 0.595 0.716 0.883 0.021 0.345 0.403 0.518 0.577

HP-GAN [6] 7.214 0.858 0.867 0.847 0.858 1.139 0.772 0.749 0.776 0.769

BoM [7] 6.265 0.448 0.533 0.514 0.544 2.846 0.271 0.279 0.373 0.351

GMVAE [14] 6.769 0.461 0.555 0.524 0.566 2.443 0.305 0.345 0.408 0.410

DeLiGAN [20] 6.509 0.483 0.534 0.520 0.545 2.177 0.306 0.322 0.385 0.371

DSF [56] 9.330 0.493 0.592 0.550 0.599 4.538 0.273 0.290 0.364 0.340

DLow [55] 11.741 0.425 0.518 0.495 0.531 4.855 0.251 0.268 0.362 0.339

Ours 14.757 0.389 0.496 0.476 0.525 5.825 0.233 0.244 0.343 0.331

Table 1: Quantitative results on Human3.6M and HumanEva-I. Our model consistently outperforms others on all metrics.

Y
(i) = G(i)(z(i),X, {Y(j)}i−1

j=1) , (16)

where i ∈ {1, 2, · · · , N} and p(i)(z) is a standard Gaussian

distribution N (0, 1). In other words, to compute a future

motion, we sample different random variables {z(i)}Ni=1

and decode them sequentially to obtain the future mo-

tion of each body part. By fixing some random variables

{z(i)}Ji=1 while varying the others {z(i)}Ni=J+1, our model

can generate multiple times the same motion for body parts

{Y(i)}Ji=1 while producing diverse motions for the other

body parts {Y(i)}Ni=J+1.

Note that our generator design lets us achieve both di-

verse and controllable motion prediction at the same time.

During training, for each past motion of the i-th body part,

we generate K motions for the (i + 1)-th body part lead-

ing to KN future motions given one past motion. For ex-

ample, as illustrated in Fig. 3, we sample K different leg

motions {Y
(1)
j }Kj=1 and for each leg motion Y

(1)
j , we gen-

erate K different upper-body motions {Y
(2)
j,k}

K
k=1. In this

context, we then re-write our diversity-promoting loss as a

per-body-part loss, leading to

Ldi
=

2

K(K − 1)

K
∑

j=1

K
∑

k=j+1

e
−

∥Ŷ
(i)
·,j

−Ŷ
(i)
·,k

∥1

α(i) , (17)

where i ∈ {1, 2, · · · , N} is the index of the body part, and

Y
(i)
·,k is the k-th future motion for the i-th body part1. Alto-

gether, our final training loss is then expressed as

L = λnfLnf + λaLa +
∑N

i=1 λdi
Ldi

+ λrLr + λmmLmm , (18)

where N is the number of body parts.

In practice, inspired by [38], we define each genera-

tor G(i) as a Graph Convolutional Network (GCN) [30]

with several graph convolution layers. Given a feature map

F ∈ R
D×|F|, each such layer computes a transformed fea-

ture map F
′

∈ R
D×|F

′
| as F

′

= tanh(AFW), where

1Note that we eliminate the sample index of previous body parts for

simplicity. For example, the k-th future motion of the 2nd body part should

be represented as Y
(2)
j,k

, where j ∈ {1, 2, · · · ,K} is the sample index of

the 1st body part.

A ∈ R
D×D represents a fully connected graph with learn-

able connectivity and W ∈ R
|F|×|F

′
| is a matrix of train-

able weights. The details of our network architecture are

provided in the supplementary material.

4. Experiments

4.1. Dataset

Following [55], we evaluate our method on 2 motion

capture datasets, Human3.6M [26] and HumanEva-I [47],

and adopt the same training and testing settings as in [55]

on both datasets.

Human3.6M consists of 7 subjects performing 15 actions.

We use 5 subjects (S1, S5, S6, S7, S8) for training and the

remaining 2 subjects (S9, S11) for testing. We use the orig-

inal frame rate (50 Hz) and a 17-joint skeleton. We remove

the global translation. Our model is trained to observe 25

past frames (0.5s) and predict 100 future frames (2s).

HumanEva-I consists of 3 subjects performing 5 actions,

depicted by videos captured at 60 Hz. A person is repre-

sented by a 15-joint skeleton. We adopt the official train/test

split [47] and also remove the global translation. The model

predicts 60 future frames (1s) given 15 past frames (0.25s).

4.2. Metrics, Baselines & Implementation

Metrics. We follow the same evaluation protocol as in [55]

to measure diversity and accuracy. (1) To measure the

prediction diversity, we use the Average Pairwise Distance

(APD) defined as 2
K(K−1)

∑K
i=1

∑K
j=i+1 ∥Ŷi − Ŷj∥2. (2)

To measure the reconstruction accuracy over the whole se-

quence, we use the Average Displacement Error (ADE)

computed as 1
T
min
i

∥Ŷi − Y∥2. (3) To measure the re-

construction accuracy of the last future pose, we use the

Final Displacement Error (FDE) defined as min
i

∥Ŷi[T ] −

Y[T ]∥2. We further report (4) the multi-modal version of

ADE (MMADE), similar to Lmm, and (5) the multi-modal

version of FDE (MMFDE).

Baselines. We compare our method with 3 types of base-

lines. (1) Deterministic motion prediction methods, includ-
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DLow

Ours

History GT End Poses of 10 Samples History GT End Poses of 10 Samples

Human 3.6M HumanEva-I

Figure 6: Results of diverse motion prediction. We show the past motion with red and blue skeletons, and future poses with

green and purple ones.

DLow Ours

End Poses of 10 Samples (1st row)

0 s 0 s

Figure 7: Visualization of poses on Human3.6M. In the first row, we show the end poses of 10 samples. Below, we then

show different frames corresponding to the two samples highlighted by the magenta and blue dashed boxes. As highlighted

by the red boxes, DLow [55] yields invalid poses. This is because it lacks a pose level and kinematics prior.

DLow

Ours

History End Poses of 10 Samples History End Poses of 10 Samples

Human 3.6M HumanEva-I

Figure 8: Controllable motion prediction. Our approach can generate future motions with the same lower-body motion but

diverse upper-body ones.

APD
Human3.6M [26] HumanEva-I [47]

Lower ↓ Upper ↑ Lower ↓ Upper ↑

BoM [7] w/ Eq. 14 0 4.408 0 1.319

DLow [55]-Control 1.071 12.741 0.937 4.671

DLow [55] w/ RS 0.780 7.280 0.571 1.821

Ours 0 13.150 0 5.096

Table 2: APD for controllable motion prediction. From

first to last row, we show results of BoM [7] with our con-

ditional formulation (Eq. 14), the controllable version of

DLow [55], the controllable version of DLow [55] with re-

jection sampling (RS) and our model respectively. We out-

perform DLow [55] on both lower-body and upper-body.

Note that DLow [55] uses a different model here, whereas

our results are obtained using the same model as in Table 1.

ing ERD [16] and acLSTM [58]; (2) Stochastic motion pre-

diction methods without diversity-promoting technique, in-

cluding CVAE based methods, Pose-Knows [51] and MT-

VAE [54], as well as a CGAN based method, HP-GAN [6];

(3) Diverse motion prediction methods, including BoM [7],

GMVAE [14], DeLiGAN [20], DSF [56], and DLow [55].

The results of all baselines are directly reported from[55].

Implementation. We set the hidden size of the genera-

tor G(i) to 256 and the dimension of the random variable

z
(i) to 64. To compare with the controllable version of

DLow [55], we divide a human pose into 2 parts: lower

and upper body (N = 2). We also provide qualitative re-

sults for N > 2 in our supplementary material. The num-

ber of samples K is set to 10. Thus, during training, we

predict 10 future lower body motions, and for each motion,

we generate 10 upper body motions. For Human3.6M, the

model is trained using a batch size of 16 for 500 epoch with

5000 training examples per epoch. The weights of the dif-

ferent loss terms (λnf , λa, λd1
, λd2

, λr, λmm) and the nor-

malizing factors (α1, α2) are set to (0.01, 100, 8, 25, 2, 1)
and (100, 300), respectively. For HumanEva-I, the model

is trained using a batch size of 16 for 500 epoch with

2000 training examples per epoch. The weights of differ-

ent loss terms (λnf , λa, λd1
, λd2

, λr, λmm) and the normal-
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Lnf La Ld Lr Lmm
Human3.6M [26] HumanEva-I [47]

APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ NLL ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ NLL ↓

✓ ✓ ✓ ✓ 15.257 0.389 0.497 0.477 0.527 251.190 7.574 0.245 0.293 0.416 0.430 363.838

✓ ✓ ✓ ✓ 19.608 0.397 0.534 0.506 0.575 97.774 6.569 0.235 0.276 0.406 0.410 119.673

✓ ✓ ✓ ✓ 6.318 0.370 0.488 0.478 0.529 64.731 2.048 0.214 0.259 0.384 0.398 75.375

✓ ✓ ✓ ✓ 20.030 0.479 0.562 0.513 0.569 89.726 6.778 0.567 0.625 0.606 0.633 109.777

✓ ✓ ✓ ✓ 18.079 0.394 0.538 0.520 0.587 91.977 6.474 0.234 0.283 0.415 0.421 113.630

✓ ✓ ✓ ✓ ✓ 14.757 0.389 0.496 0.476 0.525 74.872 5.826 0.233 0.244 0.343 0.331 103.306

Table 3: Ablation Study on Human3.6M and HumanEva-I.

izing factors (α1, α2) are set to (0.01, 100, 5, 10, 2, 1) and

(15, 50), respectively. Additional implementation details

are provided in the supplementary material.

4.3. Results

Diverse Motion Prediction. In Table 1, we compare our

results with the baselines on Human3.6M and HumanEva-

I. For all stochastic motion prediction baselines, the results

are computed over 50 future motions per test sequence.

Our method consistently outperforms all baselines on

all metrics. In general, stochastic motion prediction meth-

ods outperform deterministic ones in accuracy (ADE, FDE,

MMADE, MMFDE). The reason is that, for multi-modal

datasets, deterministic prediction models tend to predict an

average mode, which leads to higher errors. For stochas-

tic motion prediction, there is a trade-off between sample

diversity (APD) and accuracy. One can achieve high diver-

sity while sacrificing some performance in accuracy, e.g.,

DSF [56], or vice versa, e.g., BoM [7].

Let us now focus on DLow [55], which constitutes the

state of the art. Although, its learnable sampling strategy

balances diversity and accuracy well, leading to better re-

sults than the other baselines, our method outperforms it on

all metrics for both datasets. Note that, on Human3.6M,

our method achieves 8% lower reconstruction error (ADE)

with 25% higher sample diversity (APD). The qualitative

comparisons in Fig. 6 further evidence that our predictions

are closer to the GT and more diverse. We further pro-

vide a detailed comparison in Fig. 7, which shows that

DLow [55] still produces some invalid poses, highlighted

with red boxes. This can be caused by its lack of a pose-

level prior.

Controllable Motion Prediction. We also compare our

method with DLow for controllable motion prediction in

Table 2. Here, the prediction model aims to predict fu-

ture motions with the same lower-body motion but diverse

upper-body motions. Our method gives a full control of the

lower-body with higher diversity on upper-body. By con-

trast, DLow [55] cannot guarantee the lower-body motion

for different samples to be exactly the same. Although re-

jection sampling2 helps to achieve a better control of the

lower-body motion (third row), the diversity of upper body

motion also drops. In Fig. 8, we compare our results with

2For each test sequence, we sampled 1000 future motions and chose

the 50 with lower-body motion closest to the target one.

those of DLow [55], which further supports our conclu-

sions. Moreover, DLow [55] requires a different model for

controllable motion prediction, whereas our method yields

a unified model able to achieve diverse and controllable mo-

tion prediction jointly. We further adapt our conditional

formulation (Eq. 14) to one of the most recent baselines

(BoM [7]). The results in Table 2 confirm that it also ap-

plies to other generators.

4.4. Ablation Study

In Table 3, we evaluate the influence of our different loss

terms. In general, there is a trade-off between the diversity

loss Ld and the other losses. Without the diversity loss, the

model yields the best ADE at the cost of diversity. By con-

trast, removing any other loss term leads to higher diversity

but sacrifices performance on the corresponding accuracy

metrics. Note that, in Table 3, we also report the negative

log-likelihood (NLL) of the poses obtained from our pose

prior to demonstrate their quality. Although, without the

pose prior loss Lnf (first row), we can achieve higher di-

versity and almost the same accuracy, such diversity gain

comes with a dramatic decrease in pose quality (NNL). In

other words, while some samples are accurate, many others

are not realistic. For qualitative comparison, please refer to

the supplementary material.

5. Conclusion

In this paper, we have introduced an end-to-end train-

able approach for both diverse and controllable motion pre-

diction. To overcome the likelihood sampling problem that

reduces sample diversity, we have developed a normalizing

flow based pose prior together with a joint angle loss to en-

courage producing realistic poses, while enforcing temporal

smoothness. To achieve controllable motion prediction, we

have designed our generator to decode the motion of differ-

ent body parts sequentially. Our experiments have demon-

strated the effectiveness of our approach. Our current model

assumes a predefined sequence of body parts, thus not al-

lowing one to control an arbitrary part at test time. We will

focus on addressing this in the future.
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