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Abstract

Semi-supervised video object segmentation is a task of
segmenting the target object in a video sequence given only
a mask annotation in the first frame. The limited infor-
mation available makes it an extremely challenging task.
Most previous best-performing methods adopt matching-
based transductive reasoning or online inductive learning.
Nevertheless, they are either less discriminative for similar
instances or insufficient in the utilization of spatio-temporal
information. In this work, we propose to integrate trans-
ductive and inductive learning into a unified framework
to exploit the complementarity between them for accurate
and robust video object segmentation. The proposed ap-
proach consists of two functional branches. The transduc-
tion branch adopts a lightweight transformer architecture
to aggregate rich spatio-temporal cues while the induction
branch performs online inductive learning to obtain dis-
criminative target information. To bridge these two diverse
branches, a two-head label encoder is introduced to learn
the suitable target prior for each of them. The generated
mask encodings are further forced to be disentangled to bet-
ter retain their complementarity. Extensive experiments on
several prevalent benchmarks show that, without the need
of synthetic training data, the proposed approach sets a se-
ries of new state-of-the-art records. Code is available at
https://github.com/maoyunyao/JOINT.

1. Introduction

Semi-supervised video object segmentation (VOS) aims
at segmenting the target object in a video sequence with the
supervision given in the first frame by a pixel-wise segmen-
tation mask. It has received tremendous attention in recent
years for its wide applications. Since the target-specific in-
formation is only given in the first frame, and the target
may undergo fast-moving and dramatic deformation, how
to make full use of the limited information to perform accu-
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Figure 1. An overview of our approach. The transduction branch
(TB) aggregates rich spatio-temporal cues from sampled history
frames and propagates them to the current frame, and the induc-
tion branch (IB) performs online inductive learning to obtain dis-
criminative target information.

rate segmentation is thus extremely challenging.
Top-performing methods can be roughly categorized as

transductive reasoning and online inductive learning. In
transductive formulation, direct reasoning from reference
frames (labeled samples) to the current frame (unlabeled
sample) is performed to facilitate segmentation. In recent
transductive solutions [19, 23, 28, 33, 37, 44, 45, 54], fea-
ture matching has become the mainstream choice, where
pixel-level affinity or distance maps between the current
frame and reference frames are obtained to deliver rich his-
torical target information. This specific-to-specific reason-
ing favorably retains the temporal information with attrac-
tive time efficiency. Despite achieving the state-of-the-art
performance, it heavily relies on the offline learned feature
embeddings for accurate matching, thus suffers limited gen-
eralization and discrimination capabilities.

On the other hand, online inductive learning utilizes ref-
erence frames to train a target model (general rule), which is
then applied to subsequent frames to perform segmentation.
Recently, efficient online discriminative learning [4, 12] in
visual object tracking has been introduced to the VOS com-
munity for its well-acknowledged adaptivity and generaliz-
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ability. The few-shot learner in [5, 36] provides superior
distractor discrimination capability. Nevertheless, this in-
ductive formulation treats reference frames as independent
training samples and fails to explore the underlying con-
text [48, 55, 58]. Rich temporal information that resides in
the video flow is thus not fully exploited, which has been
proven by previous transductive inference works [33, 57] to
be crucial for obtaining spatio-temporal consistent results.

The above analysis indicates that transductive reasoning
and online inductive learning are naturally complementary.
The former performs better in spatio-temporal dependency
modeling but struggles to discriminate similar distractors,
while the latter is just the other way around. Although it
is intuitive to jointly integrate these two models, how to ex-
plore their complementary potentials in a unified framework
has been rarely involved. Since they deal with the VOS
task via different perspectives, there exist two main chal-
lenges for this seemingly straightforward integration. First,
most transductive approaches rely on intermediate results
as features [33, 37, 25, 28] or distance maps [41, 54], while
the online inductive learning directly outputs masks [27, 36]
or intermediate encodings [5]. How to design an appropri-
ate merging strategy to effectively fuse these diverse repre-
sentations while retaining their complementarity is an open
problem. Second, how to tightly bridge these two different
models to avoid redundant computations for efficient online
VOS deserves further exploration.

In this work, as shown in Figure 1, we propose a novel
two-branch architecture to jointly integrate transductive rea-
soning and online inductive learning within a unified frame-
work for high-performance VOS. The transduction branch
aggregates rich spatial-temporal information while the in-
duction branch provides superior discrimination capabil-
ity. To solve the aforementioned problems and narrow the
gap between the two branches, we make several key de-
signs in the proposed framework: (1) In the transduction
branch, we extend the attention mechanism adopted in pre-
vious matching-based VOS frameworks [33, 57, 37] into a
lightweight transformer [7, 40] architecture, which is care-
fully designed to facilitate temporal information propaga-
tion. To unify the inputs and outputs of the two branches,
we further adopt a two-head label encoder for them to gen-
erate mask encodings as the target information carrier for
VOS. (2) We propose the mask encoding decoupling regu-
larization to reduce their redundancy and make the learned
target information more differentiable and complementary.
(3) Finally, our two lightweight branches mutually share
plentiful blocks such as backbone, partial label generator,
and segmentation decoder, making our framework efficient
and end-to-end trainable. We perform extensive experi-
ments on DAVIS [35] and YouTube-VOS [52] benchmarks.
Our proposed approach outperforms other state-of-the-art
methods with comparable running efficiency.

In summary, we make the following three contributions:
• We propose a novel two-branch architecture to tackle

the video object segmentation, which absorbs the mer-
its of both offline learned transductive reasoning and
online inductive learning.

• For the transduction branch, a lightweight transformer
architecture is proposed to conduct spatio-temporal de-
pendency modeling and content propagation. To our
best knowledge, this is the first attempt to leverage the
transformer architecture in VOS.

• To bridge the gap between two branches and better ex-
ploit their complementary characteristics, we propose
to learn disentangled mask encodings.

2. Related Work
Matching based methods. Recent methods [25, 28, 33, 37,
38, 41, 49, 54, 57] adopt feature matching for video object
segmentation. In these methods, embeddings are firstly ob-
tained through a backbone network for both reference and
current frames. Pixel-level comparison is then performed
between them to obtain target-specific information for the
current frame, which may further be fed into a segmentation
decoder to obtain the final result. Among them, STMVOS
[33] maintains a memory bank during online inference,
and feature matching is realized by applying the non-local
cross-attention mechanism, where the memory embeddings
are read out to facilitate object segmentation in the current
frame. GC [25], KMN [37], and GraphMemVOS [28] im-
prove STMVOS in different aspects. TVOS [57] is the first
to pose video object segmentation from a transductive infer-
ence perspective. In TVOS, a spatio-temporal dependency
graph is constructed by adopting a predefined pixel-wise
similarity metric. And the graph is utilized to propagate
labels from sampled history frames to the current frame.

Different from previous methods [33, 57] that adopt
isolated attention mechanisms for transductive reasoning,
in our transduction branch, we introduce a lightweight
yet complete transformer architecture to perform spatio-
temporal dependency modeling and target information
propagation. And we further learn the intermediate repre-
sentations suitable for the propagation operation.
Online learning based methods. In many early works
[1, 6, 21, 24, 29, 31, 42, 50], online fine-tuning is widely
used to online introduce the target information. Despite the
promising results, this plain inductive learning method is
extremely time-consuming, making it unfavorable for many
real-time applications. Thus, many efforts [9, 10, 30, 47, 53,
56] have been made to avoid first-frame fine-tuning.

In visual object tracking, online discriminative learning
[4, 11, 12, 13, 46] has received significant attention for its
superior performance and high efficiency. In these meth-
ods, efficient optimization strategies are adopted to online
train convolutional filters, which are applied to subsequent
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Figure 2. The overall pipeline of our approach. It consists of two complementary branches. The lightweight transformer architecture
in transduction branch produces fine-grained and spatio-temporal consistent cue while the few-shot learner in induction branch provides
discriminative information through online inductive learning. Two branches are integrated by learning disentangled mask encodings.

frames to carry out foreground-background classification.
In [27], the closed-form ridge regression [3] is introduced
to solve the VOS problem, it online optimizes a parameter
matrix that maps features to segmentation masks. In FRTM
[36], the online optimization paradigm in ATOM [12] is re-
visited and being carefully modified to adapt to the VOS
task. By applying Conjugate Gradient and Gauss-Newton
algorithms, the few-shot learner in FRTM is capable of
learning a powerful target-specific model from the limited
number of templates during inference. The learned target
model conducts foreground-background classification in a
pixel-wise manner, and the obtained low-resolution result is
further refined by a segmentation decoder. Later LWL [5]
further proposes to learn what the few-shot learner should
learn. Different from FRTM, it adopts a label encoder
to generate the few-shot label, which contains richer tar-
get information than the single-channel segmentation mask.
Thanks to the online inductive learning, the capability to
discriminate against similar instances is greatly enhanced.
But the spatio-temporal consistency of the result may not
be well guaranteed. In this work, we aim to integrate the
aforementioned matching-based transductive reasoning and
online inductive learning into a unified framework to fully
exploit the complementary characteristics between them.

3. Method

3.1. Overall Pipeline

We propose a new approach for video object segmen-
tation, which consists of two functional branches. The
main idea is that matching-based transductive reasoning
and online inductive learning are naturally complementary.
The overall pipeline of our approach is illustrated in Fig-
ure 2. The first frame and sampled history frames con-
stitute the template images, and the current frame serves

as the search image. Firstly, both template and search im-
ages are fed into the ResNet-50 [16] network to obtain the
res3 features Z ∈ RN×H×W×C and X ∈ RH×W×C

respectively, where N is the number of template images.
A two-head label encoder is employed to encode the tem-
plate masks into mask encodings Etra ∈ RN×H×W×D and
Eind ∈ RN×H×W×D for two parallel branches. After
that, the transduction branch takes both Z and X as input
and propagates Etra to search image according to the pixel-
level affinity between features. The propagated result is de-
noted as E∗

tra ∈ RH×W×D. Meanwhile, the online few-
shot learner in the induction branch learns a target model
by solving an optimization problem where Z and Eind are
treated as training sample pairs. The target model is then ap-
plied to X to obtain E∗

ind ∈ RH×W×D of the search image,
which contains discriminative target information. Finally,
the obtained mask encodings from both branches along with
search features from different backbone layers are incorpo-
rated and fed into the segmentation decoder to predict the
final result. Note that two branches are integrated in a com-
plementary manner by learning disentangled mask encod-
ings, which will be discussed in Section 3.4.

3.2. Transduction Branch

As shown in Figure 3, in the transduction branch, a
lightweight transformer [40] architecture is introduced to
perform spatio-temporal information transduction. The at-
tention mechanism, which is the most important component
in transformer, has a strong capability in non-local depen-
dency modeling. It transforms value V ∈ Rnk×dv ac-
cording to the dot-product similarity between query Q ∈
Rnq×dk and key K ∈ Rnk×dk . Here in our approach, the at-
tention mechanism is slightly modified to better adapt to the
VOS task. Firstly, query and key are normalized along the
channel dimension before the dot-product operation. Then,
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the intermediate result Q̄K̄⊤ ∈ Rnq×nk is rescaled to ob-
tain a suitable softmax distribution [8, 17]. The above com-
puting process can be formulated as follows:

Attention(Q,K,V) = Softmax
(
Q̄K̄⊤

τ

)
V, (1)

where ·̄ denotes ℓ2 normalization along channel dimension
and the denominator τ is the scaling factor.
Transformer encoder. The transformer encoder takes tem-
plate feature Z ∈ RN×H×W×C as input, which is further
flattened into Z̃ ∈ RNHW×C for subsequent matrix opera-
tions. In self-attention layer, the query and key are obtained
by applying a linear transformation ϕ(·) to the flattened fea-
ture Z̃ whose channel dimension is reduced from C to C/4.
And the attention value AZ̃ ∈ RNHW×C is computed ac-
cording to Eq. (1) as follows:

AZ̃ = Attention
(
ϕ(Z̃), ϕ(Z̃), Z̃

)
. (2)

This attention value, as a residual term, is added to the orig-
inal template feature Z̃, and the result is further fed into
the Instance Normalization [39] layer to obtain the encoded
template feature Z̃enc ∈ RNHW×C as follows:

Z̃enc = Instance Norm
(
AZ̃ + Z̃

)
. (3)

The transformer encoder enables template features to mutu-
ally reinforce to be more compact and representative, thus
suitable for subsequent feature matching procedures per-
formed in the transformer decoder.
Transformer decoder. The transformer decoder con-
sists of a self-attention layer and a cross-attention layer.
Firstly, the self-attention layer processes search feature X ∈
RH×W×C in a similar way to the transformer encoder, i.e.,
a residual attention term is obtained and being merged to
the original search feature as follows:

AX̃ = Attention
(
ϕ(X̃), ϕ(X̃), X̃

)
,

X̃attn = Instance Norm
(
AX̃ + X̃

)
,

(4)

where X̃ ∈ RHW×C is the flattened search feature, AX̃ ∈
RHW×C and X̃attn ∈ RHW×C denote the attention value
and output of the self-attention layer, respectively. Then, the
cross-attention layer, which is the most important compo-
nent in our lightweight transformer architecture, propagates
rich temporal information according to the pixel level corre-
spondence between the search image and template images.
It takes X̃attn ∈ RHW×C and the encoded template feature
Z̃enc ∈ RNHW×C as inputs to generate query ψ(X̃attn) and
key ψ(Z̃enc) respectively, and transforms template mask en-
coding Etra ∈ RN×H×W×D to search image according to
the similarity between query and key as follows:

Ẽ∗
tra = Attention

(
ψ(X̃attn), ψ(Z̃enc), Ẽtra

)
, (5)
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Figure 3. An overview of our lightweight transformer architecture,
which is adopted in the transduction branch. It is carefully de-
signed to provides fine-grained and temporally consistent target
information propagation.

where Etra is flattened into Ẽtra ∈ RNHW×D before being
used as the value. And Ẽ∗

tra ∈ RHW×D is reshaped back to
obtain the decoded mask encoding E∗

tra ∈ RH×W×D.

3.3. Induction Branch

The transduction branch provides fine-grained and tem-
porally consistent mask encoding propagation, but its per-
formance largely relies on the representation capability of
the offline trained feature embeddings. Due to the absence
of online adaptation, it does not perform well when encoun-
tering novel targets, and it is also difficult to discriminate
similar instances. To make up for these shortcomings, in the
induction branch, we adopt the few-shot learner proposed in
LWL [5] to perform online inductive learning. Taking tem-
plate feature Z and mask encoding Eind as training sample
pairs, it online optimizes the kernel of a convolutional layer
Tω : RH×W×C → RH×W×D by minimizing the following
squared error:

L(ω) =
1

2

N∑
i=1

∥Wi ·
(
Tω(Zi)−Eind,i

)
∥2 + λ

2
∥ω∥2, (6)

where ω is the kernel to be optimized, W represents the
element-wise importance weights generated from labels (as
with the mask encodings), i is the index of training samples,
and λ is a learned regularization term. The steepest descent
method is applied to iteratively minimize the squared error
instead of the direct closed-form solution [3], as the latter
requires time-consuming matrix inversion operations which
are harmful to the running speed. For the detailed deriva-
tion of the steepest descent method please refer to [5]. Note
that the entire optimization process is fully differentiable,
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so it can be offline trained together with the rest part of the
network in an end-to-end manner.

This online optimized inductive target model, i.e., the
convolutional kernel ω ∈ RK×K×C×D, has excellent
discrimination capability. It maps the search feature X
into a D-dimensional target-aware mask encoding E∗

ind =
Tω(X), which greatly compensates for the output of the
transduction branch.

3.4. Disentangled Mask Encodings

As stated above, both branches produce mask encodings
with rich target specific information. These mask encodings
are element-wisely added together in our approach. And the
result, along with the search features from different back-
bone layers, are processed by the segmentation decoder Dθ

to generate the mask prediction Y∗
t as follows:

Y∗
t = Dθ

(
E∗

tra +E∗
ind,X

[1,2,3,4]
t

)
, (7)

where X[1,2,3,4]
t is a simplified denotation of search features

from different backbone layers (layer 1 to 4).
Since the two branches show diverse characteristics in

dealing with the VOS task, the mask encoding suitable for
each of them should be different. To this end, we propose
a two-head label encoder to learn the intermediate expres-
sions suitable for each branch. Furthermore, to reduce their
redundancy and make the learned target information more
differentiable and complementary, we decouple the gener-
ated mask encodings by minimizing their similarity. Specif-
ically, we adopt the widely used cosine similarity in our ap-
proach. Given two vectors a and b, the cosine similarity can
be calculated by cos(a, b) = a·b

∥a∥·∥b∥ . The adopted regular-
ization loss is defined as follows:

Lt
cos =

{
cos(vec(Eθ1(Y0)), vec(Eθ2(Y0))) t = 0
cos(vec(Eθ1(Y

∗
t )), vec(Eθ2(Y

∗
t ))) t > 0

,

(8)
where vec(·) is the vectorization operator that flattens the
mask encodings into one-dimensional vectors, Y0 is the
ground-truth of I0 and Y∗

t is the predicted mask of It, θ1
and θ2 denote different parameters of the two-head label
encoder. Note that since each head ends with a ReLU layer,
the cosine similarity will not be negative. As shown in Fig-
ure 4, the two-head label encoder generates diverse mask
encodings for each branch. But there still exists plenty
of information redundancy in between. And if we further
adopt the regularization loss defined in Eq. (8), the gener-
ated mask encodings are well decoupled along the channel
dimension. This ensures that after element-wise addition,
the two mask encodings do not mutually disturb. So that
the segmentation decoder can make use of the complemen-
tary information provided by the two branches to generate
the final segmentation result.

Channels

w/o Cosine Loss

IB

TB

w/ Cosine Loss

IB

TB

Figure 4. Visualization of the generated mask encodings. IB and
TB denote induction branch and transduction branch, respectively.
We can find that different branches learn diverse mask encodings.
However, without any constraints, the generated encodings have
plenty of information redundancy (marked in red boxes), which is
alleviated by adopting the cosine loss in our approach.

3.5. Online Inference

During online inference, a memory bank M is main-
tained to memorize the sampled history images and corre-
sponding segmentation masks. Given a test video sequence
S = {It}Ntest

t=0 with the initial segmentation mask Y0 of
the first frame I0, we first initialize the memory bank with
M0 = {(X0,Y0)}, where X0 = Fθ(I0) is the res3 fea-
ture extracted from I0 by the backbone network Fθ. Then
the initialized memory bank is used to perform object seg-
mentation on subsequent frames as stated in Section 3.1. To
better exploit the temporal information and adapt to the ap-
pearance changes in the scene, we update the memory bank
with the most recently processed frames. Specifically, the
new template is sampled every T = 5 frame and added
to the memory bank along with the predicted segmentation
mask. And except for the first frame, we remove the oldest
sample to ensure that the size of the memory bank does not
exceed Nmax = 20. For multiple objects, our approach pro-
cesses each of them independently and merges the predicted
masks using the soft-aggregation operation [32]. Note that
the merging step is performed only during online inference.

3.6. Offline Training

The whole network in our approach is end-to-end trained
using generated mini-sequences Strain = {(It,Yt)}Ntrain−1

t=0 ,
which are randomly sampled from densely annotated video
segments. During offline training, our network processes
mini-sequences in a similar way to the online inference
stage. To fully exploit the generated mini-sequences, the
memory bank is updated every frame during offline train-
ing. We adopt two loss functions to supervise the learning
of our network, namely segmentation loss and cosine sim-
ilarity loss. The segmentation loss is used to supervise the
generated mask predictions, which is computed as follows:

Lt
seg = Llov (Y

∗
t ,Yt) , (9)
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where Y∗
t is the predicted segmentation mask of It, and

Llov is the Lovasz segmentation loss [2]. The final loss Lfinal
is the weighted sum of the segmentation loss Lt

seg and the
aforementioned cosine similarity loss Lt

cos, as follows:

Lfinal =
1

Ntrain − 1

Ntrain−1∑
t=1

Lt
seg +

λ

Ntrain

Ntrain−1∑
t=0

Lt
cos, (10)

where the hyperparameter λ is set to 0.01.

4. Experiments

We evaluate the proposed approach on DAVIS 2017 [35]
and YouTube-VOS [52] datasets. For the DAVIS bench-
mark, we follow its standard protocol, where the J score
measures the region similarity, the F score indicates bound-
ary accuracy, and J&F is the mean of them. For compari-
son on YouTube-VOS datasets, J and F scores are reported
on both the training (seen) categories and the unseen cate-
gories, and the overall score is their average. All results are
obtained through the official evaluation toolkit (for DAVIS)
or evaluation server (for YouTube-VOS).

4.1. Implementation Details

The backbone feature extractor used in our approach is
ResNet-50 [16], which is initialized with the Mask R-CNN
[15] weights. In both branches, an additional convolutional
block is adopted to reduce the channel dimension of back-
bone res3 feature from 1024 to 512. The scaling factor
τ in Eq. (1) is set to 1/30. For the few-shot learner in the
induction branch, we follow the settings used in LWL [5].
The adopted two-head label encoder generates mask encod-
ings with channel dimension D = 16.

Template and search images are cropped from original
frames, which are 5 times the previously estimated target
size (no larger than the original frames). And the cropped
patches are further resized to 832× 480.

Our network is trained on the train split of YouTube-VOS
[52] and DAVIS [34] datasets. We sampleNtrain = 4 frames
from a video segment of length N

′

train = 100 to generate the
mini-sequences, where the random flipping, rotation, and
scaling are adopted for data augmentation. The whole train-
ing process contains 180k iterations with a batch size of 20.
The ADAM [22] optimizer is adopted and the initial learn-
ing rate is set to 0.01, which is further reduced by a factor of
5 after 40k, 80k, 115k, and 165k iterations. The backbone
weights are fixed in the first 90k iterations and then being
optimized together in the rest 90k ones. It takes about 96
hours on 8 Nvidia GTX 1080Ti GPUs to finish the offline
training process. During online inference, our approach op-
erates at about 8 FPS on single object sequences. Code and
pre-trained models will be made publicly available.

Table 1. Ablation study for branch complementarity. TB and IB
denote the transduction branch and induction branch, respectively.
t/s denotes second per frame. The performance is evaluated on the
YouTube-VOS 2018 [52] validation set in terms of mean Jaccard
(J ) and boundary (F) scores on both seen and unseen categories.

TB IB Jseen Fseen Junseen Funseen Overall t/s

✓ 81.2 85.4 75.1 83.2 81.2 0.22
✓ 80.4 84.9 76.4 84.4 81.5 0.15

✓ ✓ 81.5 85.9 78.7 86.5 83.1 0.25

Table 2. Ablation study for disentangled mask encodings. For the
single-head label encoder, two branches share the same mask en-
coding. The performance is evaluated on the YouTube-VOS 2018
[52] validation set in terms of mean Jaccard (J ) and boundary (F)
scores on both seen and unseen categories.

Version Label Cosine Jseen Fseen Junseen Funseen OverallEncoder Loss

(1) single-head 80.7 85.3 76.8 84.5 81.8
(2) two-head 81.1 85.6 77.6 85.3 82.4
(3) two-head ✓ 81.5 85.9 78.7 86.5 83.1

4.2. Ablation Study

To validate the effectiveness of the key components in
our proposed method, we perform two comparative experi-
ments on the YouTube-VOS 2018 [52] validation set.
Branch complementarity. We first perform an abla-
tion study to demonstrate the complementarity of the two
branches in our approach. The experimental results are
presented in Table 1. The overall performance degrades
from 83.1% to 81.2% when the transduction branch is ap-
plied alone. And we can further discover that the perfor-
mance degradation is mainly reflected on the unseen cate-
gories, where Junseen and Funseen are dropped from 78.7%
and 86.5% to 75.1% and 83.2%, respectively. This proves
the insufficient generalization capability of matching-based
approaches to a certain extent. And we further report the
result of LWL [5] as the performance of applying induction
branch alone. Compared with the full version, LWL [5]
has decreased results in all performance metrics, with an
overall score of 81.5%. The above results show that there
does exist a strong complementary relationship between the
two branches of our approach. Qualitative comparisons on
DAVIS 2017 validation set are shown in Figure 5.
Disentangled mask encodings. We then conduct several
ablation experiments to verify the effectiveness of our pro-
posed disentangled mask encodings for exploiting the com-
plementarity of the two branches. Specifically, we set up
three mask encoding generation strategies as follows:
(1) We first adopt a single-head label encoder for the

mask encoding generation, i.e., both branches adopt
the same mask encoding.

(2) We next replace the above-mentioned single-head la-
bel encoder with a two-head one. In this setting, mask
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Figure 5. Qualitative comparisons on DAVIS 2017 validation set.
Noticeable failures are marked with yellow boxes. By jointly ex-
ploring induction branch (IB) and transduction branch (TB), our
method shows superior VOS accuracy. Best view in zoom in.

encoding for each branch is independently generated.
(3) Based on (b), in this version, we further introduce the

cosine similarity loss proposed in Section 3.4 to force
the generated mask encodings to be disentangled.

As shown in Table 2, directly applying a single-head label
encoder achieves an overall score of 81.8%. If we replace
it with a two-head one, the overall performance is improved
from 81.8% to 82.4%. This indicates that the intermediate
representations of masks suitable for the two branches are
different. And if we further apply the cosine similarity loss
to force the generated mask encodings to be disentangled,
the performance can be further improved to 83.1%.

4.3. Comparison with State-of-the-art Methods

We compare our approach with previous state-of-the-
art methods on several benchmarks including DAVIS 2017
[35], YouTube-VOS 2018, and YouTube-VOS 2019 [52].
In Figure 6, we show some qualitative results in many
challenging scenarios, such as occlusion, similar distrac-
tors, and appearance changes. Our JOint INductive and
Transductive learning-based method is denoted as JOINT.
YouTube-VOS [52]. YouTube-VOS is a large-scale bench-
mark for multi-object video segmentation which provides
a much larger scale of training and test data than DAVIS.
For the 2018 version, its validation set contains 474 videos,
including 65 training (seen) categories and 26 unseen cate-
gories. And the 2019 version further augments the dataset
with more video sequences, the number of videos in the val-

Table 3. State-of-the-art comparation on the YouTube-VOS [52]
validation datasets. S denotes using synthetic data for offline train-
ing, FT denotes online fine-tuning. Our approach has superior
generalization capability for unseen categories and outperforms all
previous methods by considerable margins on both versions.

Validation 2018 Split

Methods S FT Jseen Fseen Junseen Funseen Overall

OnAVOS [42] - ✓ 60.1 62.7 46.1 51.7 55.2
OSVOS [6] - ✓ 59.8 60.5 54.2 60.7 58.8
PReMVOS [29] ✓ ✓ 71.4 75.9 56.5 63.7 66.9
SiamRCNN [43] - ✓ 73.5 - 66.2 - 73.2
STMVOS [33] ✓ - 79.7 84.2 72.8 80.9 79.4
EGMN [28] ✓ - 80.7 85.1 74.0 80.9 80.2
KMNVOS [37] ✓ - 81.4 85.6 75.3 83.3 81.4

S2S [51] - - 71.0 70.0 55.5 61.2 64.4
AGAME [20] - - 67.8 69.5 60.8 66.2 66.1
CFBI [54] - - 81.1 85.8 75.3 83.4 81.4
LWL [5] - - 80.4 84.9 76.4 84.4 81.5
CFBIMS [54] - - 82.2 86.8 76.9 85.0 82.7
JOINT (Ours) - - 81.5 85.9 78.7 86.5 83.1

Validation 2019 Split

Methods S FT Jseen Fseen Junseen Funseen Overall

STMVOS [33] ✓ - 79.6 83.6 73.0 80.6 79.2

LWL [5] - - 79.6 83.8 76.4 84.2 81.0
CFBI [54] - - 80.6 85.1 75.2 83.0 81.0
CFBIMS [54] - - 81.8 86.1 76.9 84.8 82.4
JOINT (Ours) - - 80.8 84.8 79.0 86.6 82.8

idation set is increased to 507. The unseen object categories
make the YouTube-VOS much suitable for evaluating the
generalization capability of algorithms.

We evaluate the proposed approach on both versions of
the YouTube-VOS benchmark. As shown in Table 3, we
compare our method with previously best-performing al-
gorithms such as PReMVOS [29], STMVOS [33], EGMN
[28], KMNVOS [37], CFBI [54], and LWL [5]. We can ob-
serve that our approach achieves average scores of 83.1%
and 82.8% on the two versions of the validation set respec-
tively, which outperform other state-of-the-art methods by
a considerable margin. Moreover, we discover that the gen-
eralization capability of our approach is significantly bet-
ter than previous algorithms. For the training (seen) cat-
egories, the matching-based methods like KMNVOS [37]
and CFBI [54] perform well. However, when it comes to
the performance on unseen categories, the previously men-
tioned methods plummet sharply, while our approach still
maintains a relatively high level. Besides, our approach is
superior to inductive learning-based methods such as LWL
[5] thanks to the spatio-temporal consistency exploration of
our proposed lightweight transformer.
DAVIS 2017 [35]. DAVIS is a popular video object seg-
mentation benchmark. The validation set of DAVIS 2017
contains 30 densely annotated videos, and it is more chal-
lenging compared with DAVIS 2016 [34] since the multi-
object setting is introduced. Follow [5], we split our ap-
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Figure 6. Qualitative result of our approach on DAVIS [35] and YouTube-VOS 2018 [52] validation sets. Our approach shows superior
segmentation accuracy on both of them. In the first row, the pig in green and fish in yellow undergo severe occlusion. In the second
row, similar distractors and cluttered background exist in the scene. The third and fourth rows are scenes with changes in appearance and
perspective, respectively. Our approach successfully handles all these challenging scenarios.

Table 4. State-of-the-art comparation on the DAVIS 2017 [35] val-
idation dataset. S denotes using synthetic data for offline training,
FT denotes online fine-tuning, and t/s denotes second per frame.
For fair comparison, we initialize the backbone ResNet-50 pre-
trained on ImageNet [14] instead of the MaskRCNN [15] weights
when only adopting DAVIS 2017 dataset for training.

Add YouTube-VOS for Training

Methods S FT J F J&F t/s

AGSSVOS [26] ✓ - 64.9 69.9 67.4 0.10
STMVOS [33] ✓ - 79.2 84.3 81.8 0.32
EGMN [28] ✓ - 80.2 85.2 82.8 0.40
KMNVOS [37] ✓ - 80.0 85.6 82.8 0.24

AGAME [20] - - 67.2 72.7 70.0 0.14
FEELVOS [41] - - 69.1 74.0 71.5 0.51
FRTM [36] - - 73.8 79.8 76.7 0.09
LWL [5] - - 79.1 84.1 81.6 0.15
CFBI [54] - - 79.1 84.6 81.9 0.17
CFBIMS [54] - - 80.5 86.0 83.3 9
JOINT (Ours) - - 80.8 86.2 83.5 0.25

Only DAVIS 2017 for training

Methods S FT J F J&F t/s

OnAVOS [42] - ✓ 61.0 66.1 63.6 26
AGSSVOS [26] ✓ - 63.4 69.8 66.6 0.10
RGMP [32] ✓ - 64.8 68.6 66.7 0.28
STMVOS [33] ✓ - 69.2 74.0 71.6 0.32
KMNVOS [37] ✓ - 74.2 77.8 76.0 0.24
PReMVOS [29] ✓ ✓ 73.9 81.7 77.8 37.6

VideoMatch [18] - - 56.5 68.2 62.4 0.35
FRTM [36] - - 66.4 71.2 68.8 0.09
LWL [5] - - 72.2 76.3 74.3 0.15
CFBI [54] - - 72.1 77.7 74.9 0.17
JOINT (Ours) - - 76.0 81.2 78.6 0.25

proach into two versions depending on whether additional
training data is employed or not and report their perfor-
mance separately. We include the recently proposed LWL
[5], CFBI [54], KMNVOS [37], and EGMN [28] for com-

parison. As shown in Table 4, when additionally adopting
YouTube-VOS for training, our method exhibits the best
performance with an average (J&F) score of 83.5%, out-
performing all previous approaches in the literature. Com-
pared with CFBIMS [54] (enhanced version of CFBI), our
approach is free of multi-scale and flip strategy during eval-
uation, thus runs 30+ times faster.

When only adopting DAVIS 2017 for training, we initial-
ize the backbone ResNet-50 with ImageNet [14] pretrain-
ing weights instead of the MaskRCNN [15] weights for fair
comparison. As we can see, in this setup, our approach
still outperforms all previous methods with a J&F score
of 78.6%. Though the performance of PReMVOS [29] is
close to ours, it relies on extensive online fine-tuning, so our
approach runs about two orders of magnitude faster than it.
Note that methods like STMVOS [33], KMNVOS [37], and
PReMVOS [29] rely on additional synthetic data for pre-
training. In contrast, our method is free of such necessity.

5. Conclusion
In this work, we design a novel architecture for semi-

supervised video object segmentation, which takes advan-
tage of both transductive reasoning and online inductive
learning. To bridge the gaps between the two diverse mod-
els and better exploit their complementarity, we adopt a
two-head label encoder to generate disentangled mask en-
codings as the carrier of target information. Extensive ex-
periments show that the proposed approach sets several
state-of-the-art records on prevalent VOS benchmarks with-
out the need of simulated training data.
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