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Abstract

Recent studies have shown that cascade cost volume
can play a vital role in deep stereo matching to achieve
high resolution depth map with efficient hardware usage.
However, how to construct good cascade volume as well
as effective sampling for them are still under in-depth
study. Previous cascade-based methods usually perform
uniform sampling in a predicted disparity range based on
variance, which easily misses the ground truth disparity
and decreases disparity map accuracy. In this paper, we
propose an uncertainty adaptive sampling network (UAS-
Net) featuring two modules: an uncertainty distribution-
guided range prediction (URP) model and an uncertainty-
based disparity sampler (UDS) module. The URP explores
the more discriminative uncertainty distribution to handle
the complex matching ambiguities and to improve disparity
range prediction. The UDS adaptively adjusts sampling
interval to localize disparity with improved accuracy. With
the proposed modules, our UASNet learns to construct
cascade cost volume and predict full-resolution disparity
map directly. Extensive experiments show that the proposed
method achieves the highest ground truth covering ratio
compared with other cascade cost volume based stereo
matching methods. Our method also achieves top perfor-
mance on both SceneFlow dataset and KITTI benchmark.

1. Introduction
Inferring disparity (or depth) from stereo images is a

fundamental task in many applications, such as robotics
[19], autonomous driving [20] and augmented reality [29].
State-of-the-art stereo matching algorithms can be divided
into two categories according to their cost volume represen-
tation. One is to construct 4D cost volume throughout the
entire disparity search range [2][27][4][5][30][8], and the
other is to construct cascade cost volume with a narrowed
disparity range [7][24][3][12][13][17]. Nowadays, cascade
cost volume methods are popular since they can achieve
high resolution depth map with efficient hardware usage.

Figure 1. Comparison of disparity estimation results between a
recent method [7] (middle column) and our proposed UASNet
(right column). The baseline method [7] estimates wrong
disparities in areas depicted by red boxes, where similar textures
lead to stereo matching ambiguity. In comparison, our UASNet
estimates correct disparities based on our novel design of URP
to improve disparity range prediction and UDS to improve the
disparity sampling (see text for details).

For cascade cost volume methods, an important compo-
nent is the method to narrow the disparity range. Previous
methods [7][24] narrow disparity range through simply
adding a constant offset to the initial predicted disparity.
This assigns the same offset for all pixels and may miss the
ground truth disparity when the predicted error is large as in
Figure 1. Recently, UCS-Net [3] predicts per-pixel disparity
range based on variance. However, only using statistical
variance and manually designed rules to predict the offset
is not enough to handle the complex matching ambiguities.
For example, a number of different matching distributions
may produce the same variance, which is insufficient to
predict disparity range. With the predicted disparity range,
another key challenge is designing of disparity sampling.
Constrained by cost volume construction implementation,
the number of samples of per-pixel disparity range has to
be the same. Previous methods [3][6] utilize a uniform
sampling, which easily misses the ground truth disparity in
a large disparity range. As shown in Figure 2, the uniform
sampling causes the sampling points (red circles) far away
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Figure 2. Comparison of two disparity sampling methods. The black blue curve describes matching probability distribution along the
disparity dimension. Subfigure (a) shows uniform disparity sampling. The sampling points (red circles) may fall far away from the true
disparity (red dashed line). Subfigure (b) shows our proposed UDS. The sampling points are dense in intervals of high matching certainty,
which significantly increases opportunity to obtain the true disparity sample.

from the true disparity (red dashed line).
In order to address the above issues, this paper proposes

an uncertainty adaptive sampling network (UASNet) to
construct cascade volume with improved disparity range
prediction as well as effective sampling. The key to our
method is that we propose a novel uncertainty distribution-
guided range prediction (URP) to precisely estimate per-
pixel disparity range and an uncertainty-based disparity
sampler (UDS) to adaptively adjust sampling interval to
localize disparity with improved accuracy. Specifically,
the URP explores the more discriminative uncertainty dis-
tribution to handle the complex matching ambiguities. It
utilizes a deep learning module to learn per-pixel disparity
range from the uncertainty distribution. A disparity range
supervision is added to the network to learn discriminative
features to improve disparity range prediction. The UDS
discretizes per-pixel predicted candidate range according to
matching uncertainty. In this way, samples are dense in
high matching certainty range and it becomes easy to obtain
the true disparity sample of the subsequent stage. With the
proposed modules, cascade cost volume is constructed and
the full resolution disparity map is obtained.

Figure 1 visualizes comparison between a recent cascade
cost volume method [7] and our UASNet. It can be seen that
some pixels on the top area of traffic sign and a part of road
curb denoted by red boxes can not find the correct matches
in [7]. In comparison, our UASNet in the right column can
learn the correct disparities with improved range prediction
and accurate uncertainty-based sampling.

To summarize, our network improves stereo matching
accuracy by the proposed UASNet with a cascade cost
volume representation. Our contributions are summarized
as follows:

• We propose an URP module to explore the uncer-
tainty distribution to handle the complex matching
ambiguities and improve disparity ranges prediction.
It achieves the highest ground truth covering ratio
in comparison with other range prediction methods
[7][3][6].
• We propose an UDS strategy to adaptively adjust

per-pixel sampling interval according to the matching
uncertainty which achieves dense sampling in high
matching certainty range and thus is easy to obtain the
true disparity sample for the subsequent stage.
• Our proposed method achieves top performance on

both SceneFlow dataset [15] and KITTI benchmark
[16].

2. Related Work

2.1. Deep Stereo Matching

The stereo matching problem has been intensively s-
tudied for a long time and has achieved significant pro-
gresses in recent years [27][1][25][32][22]. Most of the
stereo matching processes can be summarized as four steps
[2][18], e.g. feature extraction, cost construction, cost
aggregation and disparity computation. Compared with tra-
ditional methods [9][11][10], deep stereo matching shows
great potential in feature extraction and cost aggregation
processes, which significantly boost the matching accuracy
on stereo benchmarks [21][31].

Early work in deep stereo matching was started by Zbon-
tar and LeCun [28] that proposed a deep network to match
image patches, followed by traditional cost regularization.
Later, GC-Net [14] incorporated all components of stereo
matching into a single end-to-end learning model. Follow-
ing GC-Net, PSM-Net [2] proposed a stacked 3D convo-
lution hourglasses structure to aggregate cost volume. To
further improve the matching accuracy, CSPN [4] proposed
a convolutional spatial propagation network to aggregate
non-local cost information and GANet [30] introduced a
semi-global aggregation layer for cost aggregation. Later,
GwcNet [8] proposed an enhanced cost volume presentation
by introducing a group-wise correlation cost volume. It
worths noticing that these methods constructed cost volume
in the entire disparity search range. However, due to high
computation and memory cost, they have to construct low
resolution cost volume, which limits further improvement
in matching accuracy.
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Figure 3. The pipeline of our proposed UASNet in a cascade cost volume representation. We firstly compute per-pixel disparity range
by URP as well as uncertainty-based adaptive samples by UDS. Then, we apply feature warping based on the adaptive samples to build
sparse cost volume. Finally, we regress disparity map from cost volume. In our experiments, we construct effective three-stage cascade
cost volumes with spatial resolution changes from 1/16, 1/4 to 1 times of the original resolution.

2.2. Coarse-to-fine Stereo Matching

To deal with issues in computation and memory cost,
coarse-to-fine stereo matching methods have been proposed
to gradually construct high-resolution cost volumes with ef-
ficient hardware usage [24][23][12][13][7][3]. AnyNet [24]
constructed a high-resolution cost volume of a narrowed
disparity range by adding a small fixed offset on the initial
disparity. An early work with cascade cost volume method
[7] leveraged the predicted disparity in previous stage to
progressively reduce the search range. Both methods assign
the same disparity range for all pixels and may easily miss
the right matches if prediction errors are large in the coarse
stage. An inherent design issue that all cascade-based stereo
methods must address is how to choose the disparity range
and sampling to construct the cascade cost volume.

Recent works [6] [3] predicted per-pixel disparity ranges
to address the range selection issue. DeepPruner [6] used
a differentiable PatchMatch layer to prune per-pixel range.
UCS-Net [3] improved accuracy of predicted range based
on the variance of the probability distribution. However, it
is still insufficient to estimate the disparity range using the
simple one-dimensional variance, especially for complex
scenes with matching ambiguities. Meanwhile, in large
disparity range, uniform sampling performed in the above
methods [6] [3] results in sparse sampling that easily misses
the true disparity.

Different from previous works, here we explore the more
informative uncertainty distribution to predict the disparity

range and discretize per-pixel range by uncertainty-based
disparity sampling. Notably, our proposed modules can be
plugged into any exiting cascade cost volume networks to
provide accurate disparity range prediction and sampling
strategy. Here, we select cascade cost volume method
[7] and iterative stereo depth estimation method [6] as the
backbone.

3. Method
Figure 3 illustrates the pipeline of our network. It

consists of three-stage cascade cost volumes, for which the
spatial resolution increases from 1/16, 1/4 to 1 times of
the original resolution. The network first extracts multi-
scale features through a feature pyramid module. In the
first stage, our method builds a low-resolution cost volume
by warping right feature map across a full disparity search
range and concatenating it with left feature map. Then,
a probability volume is learned from the cost volume to
predict the corresponding disparity map. In the second
stage, an upsampled disparity map and the probability
volume are passed through URP and UDS for generating
fine adaptive disparity samples. Based on the samples, a
high-resolution cost volume is established to predict the
disparity map. In the final stage, a full resolution cost
volume is constructed based on the estimated finer samples
and regressed to predict the full resolution disparity map.
The following sections will introduce our proposed URP,
UDS and loss function.
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Figure 4. Uncertainty distribution-guided range prediction
process. This module inputs uncertainty-based offset vector
uol−1

(
sl−1

)
from l−1 stage, and learns per-pixel offset ol through

an encoder-decoder network. The output disparity range rl is
calculated by the offset ol and the upsampled disparity map ↑dl−1

of l−1 stage.

3.1. Uncertainty Distribution-guided Range Predic-
tion

In stereo matching problem, disparity is generally re-
gressed from probability volume p and disparity sample set
s. It can be represented as a probability weighted average of
disparity sample set with (Eq.(1)) [14].

d̂ =

sn∑
d=s1

d× p (d) (1)

here, d̂ denotes the regressed disparity, s = {s1, ..., sn} is
the set of disparity samples, and p (d) is the probability that
disparity equal to d. In practice, the probability distribution
of disparity samples varies with each pixel. For a pixel in
textured regions, the probability distribution is a unimodal
distribution and the true disparity generally corresponds to
the peak. For a pixel in texture-less or repeated texture
areas, the probability distribution tends to have several local
peaks due to ambiguous feature matching. For a pixel in
occluded region, the probability distribution is flat because
there is no correct matching.

To describe the uncertainty of probability distribution,
UCS-Net [3] leverages the variance for uncertainty esti-
mation. The UCS-Net considers the uncertainty of each
pixel and uses statistical variance to predict per-pixel off-
set. Actually, different distributions can correspond to
the same variance. In the supplementary material (Figure
S2), we show six different distributions generating the
same variance, in which four cases cannot estimate the
disparity range correctly, and the other two cases predict
a larger disparity range than the offset between the true and
predicted disparities.

To deal with this issue, our proposed URP explores the
more informative uncertainty distribution to predict per-
pixel disparity ranges. Instead of using one-dimension
variance information as in [3], we leverage multi-dimension
uncertainty distribution of each pixel. The offset between
disparity sample si and the regressed disparity d̂ also affects
the final offset estimation. Therefore, we calculate the
uncertainty-based offset of each-pixel sample by multiply-

ing the uncertainty with the offset, as shown in Eq.(2). Here,
the uncertainty refers to the matching probability of the
disparity sample.

uol−1
(
sl−1
i

)
= pl−1

(
sl−1
i

)
∗
(
sl−1
i − d̂l−1

)2
(2)

here, uol−1 and pl−1 denote the uncertainty-based offset
and the probability of sample si at stage l−1. d̂l−1 is the
regressed disparity at stage l−1.

For each pixel, we obtain a multi-dimension
uncertainty-based offset vector uol−1

(
sl−1

)
={

uol−1
(
sl−1
1

)
, ..., uol−1

(
sl−1
n

)}
corresponding to

sample set s. Then, instead of manually designed rules as
in [3], our URP model uses a deep learning module to learn
per-pixel disparity offset from uol−1

(
sl−1

)
. A disparity

range loss supervises the network to learn discriminant
features to solve the complex matching ambiguities and
predict a compact range to cover the true disparity.

Figure 4 visualizes the URP process. Given the per-pixel
uncertainty-based offset vector uol−1

(
sl−1

)
, an encoder-

decoder structure is applied to learn informational feature
and predict the per-pixel offset ol at stage l. Finally, we
compute the per-pixel lower bound by subtracting per-pixel
offset from regressed disparity map d̂l−1 and upper bound
by summing the offset and d̂l−1.

3.2. Uncertainty-Based Disparity Sampler

To successfully construct regular cost volume, the num-
ber of samples of each pixel has to be the same. However
the uniform sampling easily misses the true disparity in a
large search range. To handle this problem, our proposed
UDS discretizes per-pixel predicted candidate range based
on matching uncertainty, which enables the sampling point
distribution consistent with the matching probability dis-
tribution. In this way, dense samples are located in high
matching certainty range and it is easy to obtain the true
disparity sample at later stage.

Figure 5 visualizes our proposed UDS process. Inputing
an upsampled probability volume pl−1 and a predefined
sampling number N , the estimated range rl is discretized
into N − 1 parts. Firstly we normalize the probability
within range rl along the disparity dimension. Then,
starting from the lower bound, if the area of accumulative
probability histogram reaches i/(N−1) accordingly, where
i = 0, 1, ..., N − 1, then each end point is considered as
sample si. Finally, we obtain N samples s0, s1, ..., sN−1.
In this way, samples are dense in high probability area.

Specifically, the disparity sample si is computed as
follows:
if p (d ≤ dk−1) < i/(N − 1) ≤ p (d ≤ dk) :

si = dk−1 +
i

N−1 − p (d ≤ dk−1)

p (dk)
, k = 1, 2, ...,K

(3)
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Figure 5. Example of uncertainty-based disparity sampler. We truncate each pixel probability distribution with the predicted range rl and
normalize it. Then, disparity samples are obtained by equalizing the accumulative probability.

here, dk = dmin + k ∗ dmax−dmin

K refers to disparity value
within range rl, K is a fixed constant, and dmin and dmax

are the lower bound and upper bound of range rl, respec-
tively. The lower bound dmin is sample s0. p (d ≤ dk) =∑dk

d=dmin
pl−1 (d) is the accumulative probability.

3.3. Loss Function

Disparity Loss. The end point error (EPE) with smooth L1

is used for computing disparity loss.

EPE
(
dgt, d̂

)
= Lsmooth

(
dgt − d̂

)
(4)

here, dgt refers to ground truth disparity and d̂ is the
predicted disparity. We supervise the disparity outputs of all
stages and the total predicted disparity loss for our network
as follows:

Ldisp =

3∑
l=1

wl
4∑

i=1

λi · EPE
(
dlgt, d̂

l
i

)
(5)

where EPE
(
dlgt, d̂

l
i

)
refers to the loss for the ith disparity

prediction at stage l, andwl and λi refer to their correspond-
ing loss weights. Each stage has four outputs from a pre-
hourglass module and three stacked 3D hourglass modules.
In our training process, each stage outputs the disparity
maps and the loss is back propagated. For testing process,
only the final stage outputs the disparity map.

Disparity Range Loss. In order to learn a compact search
space for each pixel, we use a disparity range loss [6]. This
loss includes two parts: a relaxation loss and a absolute loss.
The relaxation loss aims to ensure the disparity range large
enough to cover the ground truth disparity and the absolute
loss constrains the disparity range as small as possible.

Eq.(6) introduces the relaxation loss. If the lower bound
is larger than the ground truth disparity, a large penalty is
implemented to encourage the lower bound to be smaller
than the ground truth. In contrast, for the predicted upper
bound, the relaxation loss encourages it to be bigger than

the ground truth.

Lrelax min =

{
γ · L1 (dgt, dmin) , if dmin ≤ dgt
(1− γ) · L1 (dgt, dmin) , otherwise

Lrelax max =

{
γ · L1 (dgt, dmax) , if dgt ≤ dmax

(1− γ) · L1 (dgt, dmax) , otherwise
(6)

where γ is a weight and smaller than 0.1 in the experiments.
L1 refers to L1 loss. Lrelax min and Lrelax max constrain
the lower and upper bounds, respectively, which allows
the disparity range to be large enough to cover the ground
truth. However, a too large range reduces the possibility of
sampling at the ground truth disparity. To deal with this,
the EPE absolute loss is used to enforce that the range does
not become too large. Therefore our design combines both
the Lrelax min, Lrelax max, EPE(dgt, dmin) and EPE(dgt,
dmax) together to guarantee a reasonable predicted range.

Lrange loss =

3∑
l=2

(αl ·
(
Ll
relax min + Ll

relax min

)
+ βl ·

(
EPE

(
dlgt, d

l
min

)
+ EPE

(
dlgt, d

l
max

))
)

(7)

where the αl and βl are two balancing weights at stage l,
and a bigger β means a smaller coverage range. Here, we
only need to predict the disparity range of stage2 and stage3.
Total Loss Function. Total loss function is defined as:
L = Ldisp + Lrange loss.

4. Experiments
In this section, we describe the details of experiments

including the datasets, evaluation metrics, training settings
and make ablation study to verify the proposed components
of the network. Then, we compare our results with the
SOTA methods on public datasets.

4.1. Datasets and Implementation Details

SceneFlow[15] is a large synthetic dataset that contains
35,454 pairs of training image and 4,370 pairs of test image.
Finalpass version is used to train our model because it is
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Method Cascade Cost1 Cost2 Cost3 Range Sampling SceneFlow KITTI2015
1/16 1/4 1 Uniform UDS EPE ↓ [px] CR ↑ [%] All ↓ [%] CR ↑ [%]

Cas2[7] 2 X X FIX X 0.649 99.04 2.0 99.35
Cas2+variances[3] 2 X X VAN X 0.645 97.72 1.91 98.62
Cas2+Ours(URP) 2 X X URP X 0.623 99.39 1.87 99.70

Cas2+Ours(URP+UDS) 2 X X URP X 0.619 99.35 1.86 99.73

Cas3[7] 3 X X X FIX X 0.581 97.36 1.75 98.66
Cas3+Ours(URP) 3 X X X URP X 0.554 98.71 1.69 99.28

Cas3+Ours(URP+UDS) 3 X X X URP X 0.527 98.70 1.66 99.34

Table 1. The ablation study on SceneFLow and KITTI2015 benchmark. Here, FIX, VAN and URP refer to range prediction methods with
a fixed offset, variance-based and URP-based modules, respectively. CR refers to covering ratio.

Method Range Sampling SceneFlow
Unif UDS EPE ↓[px] CR ↑[%]

DeepPruner*[6] PRU X 0.996 98.34
DeepPruner*+Ours(URP) URP X 0.934 98.99

DeepPruner*+Ours(URP+UDS) URP X 0. 901 98.97

Table 2. The ablation study on SceneFLow dataset. Here, PRU
and URP refer to prunered range and URP-based predicted range.
Unif refers to uniform sampling. CR refers to covering ratio.

close to the real scene which has motion blur and defocus.
The network is trained for 64 epochs with Adam optimizer.
The initial learning rate is 0.001 and is down-scaled by 2
after epoch 10, 12, 14 and ends at 1.25e−4. In training
process, we randomly crop input image to 512× 256 patch.
The coefficients wl and λi in disparity loss are the same as
[7]. For disparity range loss, the coefficients α2, β2 are set
as 4.0, 0.7 and α3, β3 are set as 4.0, 2.8.

KITTI [16]. KITTI 2012 dataset consists of 194 training
image pairs and 195 test image pairs. KITTI 2015 dataset
contains 200 training images and 200 test images. In our
implementation, we combine KITTI 2012 with 2015 dataset
together and there are totally 394 stereo image pairs. We
randomly select 347 images for training and the rest are
used for validation. The pretrained model on SceneFlow
dataset is finetuned on KITTI for a further 600 epochs. The
learning rate is 0.001 for the first 200 epochs and 1e−4

for the rest epochs. Since the ground truth of KITTI is
captured by laser scanner directly, it is much more sparser
than SceneFlow dataset, so we augment data like HSM-Net
[26]. Specifically, asymmetric chromatic augmentation is
used to improve the robustness of the network to handle
different lighting and exposure conditions. We also apply
asymmetric occlusion augmentation by replacing the ran-
domly selected rectangular area on the left image with the
average value of the entire image, which helps disparity
estimation in the occluded area.

Figure 6. Qualitative comparison results on SceneFlow dataset.
Our proposed methods work better on textureless regions, such
as the area highlighted with black bounding box, while baseline
method predicts wrong disparity due to fixed offset and uniform
sampling method.

4.2. Ablation Study

In this section, we make ablation study to validate the
improvement of our proposed URP and UDS. On Scene-
Flow dataset and KITTI 2015 benchmark, we improve
Cas2 and Cas3 methods [7] with our proposed modules and
denote them as Cas2+Ours(URP), Cas2+Ours(URP+UDS),
Cas3+Ours(URP) and Cas3+Ours(URP+UDS). Cas2 refers
to 2-stage cascade cost volume model, the size of cost
volume isH/4×W/4×C×12 andH/2×W/2×C/2×12
respectively. For Cas3, additional H × W × C/4 × 8
cost volume is constructed to directly output full resolution
disparity map.

Besides, we compare our model with current SOTA
range prediction methods [3] [6]. Specifically, for UCS-
Net[3], we replace range prediction module in Cas2
with variances-based method in UCS-Net and names it
as Cas2+variances. For DeepPruner* [6], we replace
the range predictor model of DeepPruner* with our
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Method
SceneFlow KITTI2012 KITTI2015

EPE ↓ Bad2.0 ↓ Bad3.0 ↓ Ref2.0 ↓ Ref3.0 ↓ D1-bg ↓ D1-fg ↓ ALL ↓ Noc ↓
[px] noc[%] noc[%] noc[%] noc[%] all[%] all[%] all[%] noc[%]

PSMNet [CVPR18’][2] 1.09 2.44 1.49 13.77 8.36 1.86 4.62 2.32 2.14
DeepPruner* [ICCV19’][6] 0.86 - - - - 1.87 3.56 2.15 1.95

GwcNet [CVPR19’][8] 0.77 2.16 1.32 12.49 7.80 1.74 3.93 2.11 1.92
Cas [CVPR20’][7] 0.62 - - - - 1.59 4.03 2.00 1.78

GA-Net [CVPR19’][30] 0.84 1.89 1.19 10.75 6.22 1.48 3.46 1.81 1.63
AcfNet [AAAI20’][32] 0.87 1.83 1.17 11.17 6.93 1.51 3.80 1.89 1.72
CSPN [TPAMI19’][4] 0.78 1.79 1.19 - 6.92 1.51 2.88 1.74 1.61

LEAStereo [NIPS20’][5] 0.78 1.90 1.13 9.66 5.35 1.40 2.91 1.65 1.51
UASNet(Ours) 0.53 1.81 1.18 8.02 4.55 1.44 2.79 1.66 1.51

Rank 1 2 3 1 1 2 1 2 1

Table 3. Quantitatively comparison with the SOTA methods. UASNet(Ours) refers to Cas3+Ours(URP+UDS).

URP and name it as DeepPruner*+Ours(URP). Here,
DeepPruner* refers to DeepPruner-Best model. For a fair
comparison, the model size of DeepPruner*+Ours(URP)
is slightly smaller than the DeepPruner*. Furthermore,
we add UDS to DeepPruner*+Ours(URP) and name it as
DeepPruner*+Ours(URP+UDS).
Evaluation of Predicted Disparity Precision. As shown
in Tabel 1, Cas2+Ours(URP) decreases EPE error by 4%
and ALL error (bad pixel ratio with 3 pixel threshold
for all labeled pixels) by 6.5% in comparison with Cas2.
Cas3+Ours(URP+UDS) decreases EPE error by 9.3% and
ALL error by 5.1% when comparing with Cas3. Further-
more, Cas2+Ours(URP) has lower EPE and ALL errors than
Cas2+variances[3].

As shown in Table 2, DeepPruner*+Ours(URP) decreas-
es EPE error by 6.2% and improves covering ratio from
98.34% to 98.99% when comparing with DeepPruner*.
DeepPruner*+Ours(URP+UDS) decreases EPE error by
9.5% than DeepPruner*. Here, the EPE result of Deep-
Pruner* is slightly higher than the result stated in [6],
because we use the finalpass version of SceneFlow dataset
which is harder than the cleanpass version.

Figure 6 visualizes comparison results of Cas2[7] and
Cas2+Ours(URP+UDS) on SceneFlow dataset. Our method
performs a better disparity estimation in some challenging
areas, such as the area highlighted with black bounding
box, where baseline method predicts wrong disparity due
to fixed offset and uniform sampling. In the supplementary
material (Figure S3), we visualize some comparison results
of uniform sampling and our UDS method on KITTI 2015
benchmark. It demonstrates that UDS can adaptively
adjust sampling interval to correctly estimate the disparity,
especially for thin and long structures.
Evaluation of Predicted Disparity Range. We quantify
the pixel proportion that the predicted disparity range covers
ground truth disparity in an image, named covering ratio
(CR). The result shows that the CR of Cas2+Ours(URP) and

Cas3+Ours(URP) achieves 99.39%, 98.71% on SceneFlow
and 99.70%, 99.28% on KITTI respectively, which vali-
dates our predicted range can cover almost all ground truth
disparity. Here, the CR of the stage3 is lower than stage2
because we use a bigger β in disparity range loss to ensure
a compact range. When evaluated on sceneflow dataset
with 960*540 image resolution, our URP method can
additionally cover the ground truth disparity in 1814 pixels
and 6998 pixels for stage2 and stage3 respectively than
the Cas method. Furthermore, our URP method achieves
the highest ground truth covering ratio in comparison with
the fixed offset method [7], variance-based range prediction
method [3] and range pruning method[6].

Figure 7 visualizes our predicted disparity range of stage
2 and stage 3. It can be seen that the predicted ranges are
small in most cases, which greatly reduce the computation
and memory burdens for building cost volume. Meanwhile,
almost all the ground truth disparities lie between the upper
bound curve and lower bound curve.

4.3. Comparison with the SOTA Methods

Table 3 quantitatively compares our method with the
SOTA methods containing PSM-Net [2], DeepPruner* [6],
GwcNet [8], Cas[7], GA-Net [30], AcfNet[32], CSPN[4]
and LEAStereo[5]. Among them, LEAStereo is a Neural
Architecture Search (NAS) method. Our method achieves
the best performance on SceneFlow testing dataset and
achieves top performance on the KITTI Stereo 2012 and
2015 benchmarks.

Figure 8 visualizes the comparison of our method and
the SOTA methods. Three images posted on KITTI 2015
leaderboard are presented and compared. Notice that
our method has better performance on foreground object
boundaries, such as road signs, which are highlighted by
yellow squares in the images and the error map is zoomed
in for better visualization.
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Figure 7. Predicted disparity range visualization of stage 2 and stage 3. The predicted disparity range (red line: upper bound; blue line:
lower bound) is large enough to cover the ground truth disparity (black points), and small enough to reduce the computation and memory
burden of cost volume building.

Figure 8. Visualized comparison of our results with the SOTA methods. The results are the colorized disparity maps generated from KITTI.

5. Conclusion
In this paper, we propose an uncertainty adaptive sam-

pling network (UASNet) to construct cascade cost volume
with improved disparity range prediction as well as effective
sampling. Through experiments we validate the effective-
ness of each design component, which work together to
improve our UASNet performance over recent SOTA meth-
ods such as the cascade cost volume [7] and DeepPruner*
[6]. Further experiments show that our method achieves

top performance on three stereo matching benchmarks:
SceneFlow[15] , KITTI2012 and KITTI2015 [16].
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