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Abstract

Deep networks allow to obtain outstanding results in se-
mantic segmentation, however they need to be trained in a
single shot with a large amount of data. Continual learn-
ing settings where new classes are learned in incremental
steps and previous training data is no longer available are
challenging due to the catastrophic forgetting phenomenon.
Existing approaches typically fail when several incremental
steps are performed or in presence of a distribution shift of
the background class. We tackle these issues by recreating no
longer available data for the old classes and outlining a con-
tent inpainting scheme on the background class. We propose
two sources for replay data. The first resorts to a generative
adversarial network to sample from the class space of past
learning steps. The second relies on web-crawled data to re-
trieve images containing examples of old classes from online
databases. In both scenarios no samples of past steps are
stored, thus avoiding privacy concerns. Replay data are then
blended with new samples during the incremental steps. Our
approach, RECALL, outperforms state-of-the-art methods.

1. Introduction
A common requirement for many machine learning ap-

plications is the ability to learn a sequence of tasks in multi-
ple incremental steps, e.g., progressively introducing novel
classes to be recognized, instead of using a single-shot train-
ing procedure on a large dataset [34]. This problem has been
widely studied in image classification and many methods
propose to alleviate the forgetting of previous tasks and in-
transigence of learning new ones [22, 35, 45]. When the
model is exposed to samples of novel classes and is trained
on them without additional provisions, the optimization leads
to the so-called catastrophic forgetting phenomenon [36, 16],
i.e., knowledge about previously seen classes tends to be lost.

Incremental learning on dense tasks (e.g., semantic seg-
mentation), where pixel-wise predictions are performed, has
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Figure 1: Replay images of previously seen classes are re-
trieved by a web crawler or a generative network and further
labeled. Then, the network is incrementally trained with a
mixture of new and replay data.

only recently been explored and the first experimental stud-
ies show that catastrophic forgetting is even more severe than
on the classification task [29, 31]. Current approaches for
class-incremental semantic segmentation re-frame knowl-
edge distillation strategies inspired by previous works on
image classification [29, 5, 23, 31]. Although they partially
alleviate forgetting, they often fail when multiple incremen-
tal steps are performed or when background shift [5] (i.e.,
change of statistics of the background across learning steps,
as it incorporates old or future classes) occurs.

In this paper, we follow a completely different strategy
and, instead of distilling knowledge from a teacher model
(i.e., the old one) to avoid forgetting, we propose to generate
samples of old classes by using replay strategies. We propose
RECALL (REplay in ContinuAL Learning), a method that
re-creates representations of old classes and mixes them with
the available training data, i.e., containing novel classes be-
ing learned (see Fig. 1). To reduce background shift we intro-
duce a self-inpainting strategy that re-assigns the background
region according to predictions of the previous model.

To generate representations of past classes we pursue two
possible directions. The first is based on a pre-trained gener-
ative model, i.e., a Generative Adversarial Network (GAN)
[15] conditioned to produce samples of an input class. The
GAN has been trained beforehand on a dataset different than
the target one (we chose ImageNet as it comprehends a wide
variety of classes and domains), thus requiring a Class Map-
ping Module to perform the translation between the two label
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spaces. The second strategy, instead, is based on crawling
images from the web, querying the class names to drive the
search. Both approaches allow to retrieve a large amount of
weakly labeled data. Finally, we generate pseudo-labels for
semantic segmentation using a side labeling module, which
requires only minimal extra storage.

Our main contributions are: 1) we propose RECALL,
which is the first approach to use replay data in continual
semantic segmentation; 2) to the best of our knowledge,
we are the first to introduce the webly-supervised paradigm
in continual learning, showing how we can extract useful
clues from extremely weakly supervised and noisy samples;
3) we devise a background inpainting strategy to generate
pseudo-labels and overcome the background shift; 4) we
achieve state-of-the-art results on a wide range of scenarios,
especially when performing multiple incremental steps.

2. Related Works
Continual Learning (CL). Deep neural networks wit-

nessed remarkable improvements in many fields; however,
such models are prone to catastrophic forgetting when they
are trained to continuously improve the learned knowledge
(e.g., new categories) from progressively provided data [16].
Catastrophic forgetting is a long-standing problem [36, 14]
which has been recently tackled in a variety of visual tasks
such as image classification [22, 35, 26, 43, 33], object de-
tection [40, 25] and semantic segmentation [29, 31, 5, 23].

Current techniques can be grouped into four main (non
mutually exclusive) categories [24]: namely, dynamic ar-
chitectures, regularization-based, rehearsal and generative
replays. Dynamic architectures can be explicit [42, 26], if
new network branches are grown, or implicit [13, 37], if
some network weights are available for certain tasks only.
Regularization-based approaches mainly propose to compute
some penalty terms to regularize training (e.g., based on the
importance of the weights for a specific task) [22, 45] or to
distill knowledge from the old model [40, 26, 31]. Rehearsal
approaches store a set of raw samples of past tasks into mem-
ory, which are then used while training for the new task
[35, 28]. Finally, generative replays approaches [39, 43, 21]
rely on generative models typically trained on the same data
distribution, which are later used to generate artificial sam-
ples to preserve previous knowledge. Generative models are
usually GANs [39, 43, 17] or auto-encoders [21]. In this
work, we employ two kinds of generative replays: either
resorting to a standard pre-trained GAN or to web-crawled
images to avoid forgetting, without storing any of the sam-
ples related to previous tasks. When using the generative
model, differently from previous works on continual image
classification, we do not select real exemplars as anchor to
support the learned distribution [17] nor we train or fine-
tune the GAN architecture on the current data distribution
[39, 17, 43], thus reducing memory and computation time.

CL in Semantic Segmentation. Semantic segmentation
has experienced a wide research interest in the past few
years and deep networks have achieved noticeable results on
this task. Current techniques are based on the auto-encoder
structure firstly employed by FCN [27] and subsequently im-
proved by many approaches [6, 7, 46, 44]. Recently, increas-
ing attention has been devoted to class-incremental semantic
segmentation [29, 5, 30, 11] to learn new categories from
new data. In [29, 31] the problem is first introduced and
tackled with regularization approaches such as parameters
freezing (e.g., fixing the encoder after the initial training
stage) and knowledge distillation. In [23] knowledge distil-
lation is coupled with a class importance weighting scheme
to emphasize gradients on difficult classes. Cermelli et al.
[5] study the distribution shift of the background class. In
[11] long- and short-range spatial relationships at feature
level are preserved. In [30] the latent space is regularized to
improve class-conditional features separation.

Webly-Supervised Learning is an emerging paradigm
in which large amounts of web data is exploited for learn-
ing CNNs [8, 10, 32]. Recently, it was employed also in
semantic segmentation to provide a plentiful source of both
images [20, 38] and videos [19] with weak image-level class
labels during training. The most active research directions
are devoted toward understanding how to query images, how
to filter and exploit them (e.g., assigning pseudo-labels). To
our knowledge, however, webly-supervised learning has not
yet been explored in continual learning as a replay strategy.

3. Problem Formulation
The semantic segmentation task consists in labeling each

pixel in an image by assigning it to a class from a collec-
tion of possible semantic classes C, which typically also
comprises a special background category that we denote as
b. More formally, given an image X ∈ X ⊂ RH×W×3,
we aim at producing a map Ŷ ∈ Y ⊂ CH×W that is a
prediction of the ground truth map Y. This is nowadays
usually achieved by using a suitable deep learning model
M : X 7� RH×W×|C|, commonly made by a feature extrac-
tor E followed by a decoding module D, i.e., M = D ◦ E.

In standard supervised learning, the model is learned in
a single shot over a training set T ⊂ X × Y , available
in its complete form to the training algorithm. In class-
incremental learning, instead, we assume that the training
is performed in multiple steps and only a subset of train-
ing data is made available to the algorithm at each step
k = 0, ...,K. More in detail, we start from an initial step
k = 0 where only training data concerning a subset of all
the classes C0 ⊂ C is available (we assume that b ∈ C0).
We denote with M0 : X 7� RH×W×|C0|, M0 = D0 ◦E0 the
model trained after this initial step. Moving to a generic step
k, a new set of classes Ck is added to the class collection
C0�(k−1) learned up to that point, resulting in an expanded
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set of learnable classes C0�k = C0�(k−1) ∪ Ck (we assume
C0�(k−1) ∩ Ck = ∅). The model after the k-th step of train-
ing is Mk : X 7� RH×W×|C0�k|, where Mk = Dk ◦ E0,
since in our approach the encoder E0 is not trained during
the incremental steps and only the decoder is updated [29].

Two main continual scenarios have been proposed (see
[29, 30, 5] for a more detailed description) and we tackle
both in a unified framework.
Disjoint setup: in the initial step all the images in the train-
ing set with at least one pixel belonging to a class of C0
(except for b) are assumed to be available. We denote with
YC0∪{b} ⊂ C

H×W
0 the corresponding output space where la-

bels can only belong to C0, while all the pixels not pertaining
to these classes are assigned to b. The incremental partitions
are built as disjoint subsets of the whole training set. The
training data associated to k-th step, Tk ⊂ X×YCk∪{b}, con-
tains only images corresponding to classes in Ck with just
classes of step k annotated (possible old classes are labeled
as b), and is disjoint w.r.t. previous and past partitions.
Overlapped setup: in the first phase we select the subset
of training images having only C0-labeled pixels. Then,
the training set at each incremental step contains all the
images with labeled pixels from Ck i.e. Tk ⊂ X × YCk∪{b}.
Similarly to the initial step, labels are limited to semantic
classes in Ck, while remaining pixels are assigned to b.

In both setups, b undergoes a semantic shift at each step,
as pixels of ever changing class sets are assigned to it.

4. General Architecture
In the standard setup, the segmentation model M is

trained with annotated samples from a training set T . Data
should be representative of the task we would like to solve,
meaning that multiple instances of all the considered se-
mantic classes C should be available in the provided dataset
for the segmentation network to properly learn them. Once
T has been assembled, the cross-entropy objective is com-
monly employed to optimize the weights of M :

Lce(M ; C, T )=− 1

|T |
∑

X,Y∈T

∑
c∈C

Y[c]·log
(
M(X)[c]

)
(1)

In the incremental learning setting, when performing an in-
cremental training step k only samples related to new classes
Ck are assumed to be at our disposal. Following the simplest
approach, we could initialize our model’s weights from the
previous step (Mk−1, k ≥ 1) and learn the segmentation
task over classes C0�k by optimizing the standard objective
Lce(Mk; C0�k, Tk) with data from the current training parti-
tion Tk. However, simple fine-tuning leads to catastrophic
forgetting, being unable to preserve previous knowledge.
Architecture of Replay Block. To cope with this issue,
we opt for a replay strategy. Our goal is to retrieve task-
related knowledge of past classes to be blended into the
ongoing incremental step, all without accessing training data

of previous iterations. To this end, we introduce a Replay
Block, whose target is twofold. First, it has to provide images
resembling instances of classes from previous steps, whether
generating them from scratch or retrieving them from an
available alternative source (e.g., a web database). Second,
it has to obtain reliable semantic labels of those images, by
resorting to learned knowledge from past steps.

The Replay Block’s image retrieval task is executed by
what we call Source Block:

S : Ck 7� X rp
Ck (2)

This module takes in input a set of classes Ck (background
excluded) and provides images whose semantic content can
be ascribed to those categories (e.g., Xrp ∈ X rp

Ck ). We adopt
two different solutions for the Source Block, namely GAN
and web-based techniques, both detailed in Sec. 5.

The Source Block provides unlabeled image data (if we
exclude the weak image-level classification labels), and for
this reason we introduce an additional Label Evaluation
Block {LCk}Ck⊂C , which aims at annotating examples pro-
vided by the replay module. This block is made of sepa-
rate instances LCk = DH

Ck ◦ E0, each denoting a segmenta-
tion model to classify a specific set of semantic categories
Ck ∪ {b} (i.e., the classes in Ck plus the background) :

LCk : XCk 7� RH×W×(|Ck∪{b}|) (3)
All LCk modules share the encoder section E0 from the
initial training step, so that only a minimal portion of the seg-
mentation network (i.e., DH

Ck , which accounts for only few
parameters, see Sec. 7.1) is stored for each block’s instance.
Notice that a single instance recognizing all classes could be
used, leading to an even more compact representation, but it
experimentally led to worse performance.

Provided that S and LCk are available, replay training
data can be collected for classes in Ck. A query to S out-
puts a generic image example Xrp

Ck = S(Ck), which is then
associated to its prediction Yrp

Ck = argmax
c∈Ck∪{b}

LCk(X
rp
Ck)[c].

By retrieving multiple replay examples, we build a replay
dataset RCk = {(Xrp

Ck ,Y
rp
Ck)n}

Nr
n=1, where Nr is a fixed

hyperparameter empirically set (see section 6).
Background Self-Inpainting. To deal with the background
shift phenomenon, we propose a simple yet effective in-
painting mechanism to transfer knowledge from the previous
model into the current one. While the replay block re-creates
samples of previously seen classes, background inpainting
acts on background regions of current samples reducing
the background shift and at the same time bringing a reg-
ularization effect similar to knowledge distillation [29, 5],
although its implementation is quite different. At every step
k with training set Tk, we take the background region of
each ground truth map and we label it with the associated
prediction from the previous model Mk−1 (see Fig. 3). We
call it background inpainting since the background regions in
label maps are changed according to a self-teaching scheme
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Figure 3: Background self-inpainting process.

based on the prediction of the old model. More formally, we
replace each original label map Y available at step k > 0
with its inpainted version Ybi:

Ybi[h,w]=

Y[h,w] if Y[h,w]∈Ck
argmax
c∈C0�k−1

Mk−1(X)[h,w][c] otherwise

(4)
where (X,Y) ∈ Tk, while [h,w] denotes the pixel coordi-
nates. Labels at step k = 0 are not inpainted, as at that stage
we lack any prior knowledge of past classes. When back-
ground inpainting is performed, each set T bi

k ⊂ X × YC0�k

(k > 0) contains all samples of Tk after being inpainted.
Incremental Training with Replay Block. The training
procedure of RECALL is detailed and summarized in Al-
gorithm 1 and the process is described in Fig. 2. Suppose
we are at the incremental step k, with only training data of
classes in Ck from partition Tk available. In a first stage, the
Replay Block is fixed and it is used to retrieve annotated data
for steps from 0 to k − 1 uniformly distributed among all
the past classes. Following the described pipeline, the gen-
erative and labeling models are applied independently over
each incremental class set Ci, i = 0, ..., k − 1. The replay

Algorithm 1 RECALL: incremental training procedure.

Input: {Tk}Kk=0 and {Ck}Kk=0

Output: MK

train M0 = E0 ◦D0 with Lce(M0; C0, T0)
train S on (C0, T0)
train DH

C0 with Lce(LC0 ; C0, T0)
for k ← 1 to K do

background inpainting on Tk to obtain T bi
k

train S on (Ck, Tk)
train DH

Ck with Lce(LCk ; Ck ∪ {b}, Tk)
generate T rp

k = T bi
k ∪RC0�(k−1)

train Dk with Lce(Mk; C0�k, T rp
k )

end for

training dataset for step k is the union of the single replay

sets for each previous step: RC0�(k−1)
=

k−1⋃
i=0

RCi . Once we

have assembledRC0�(k−1)
, by merging it with T bi

k we get an
augmented step-k training partition T rp

k = T bi
k ∪RC0�(k−1)

.
This new set, in principle, is complete of annotated samples
containing both old and new classes, thanks to replay data.
Therefore, we effectively learn the segmentation model Mk

through the cross-entropy objective Lce(Mk; C0�k, T rp
k ) on

replay-augmented training data. This mitigates the bias to-
ward new classes, thus preventing forgetting.

In a second stage, we exploit Tk to train the Class
Mapping Module if needed (see Sec. 5). In particular,
we teach the Source Block S to produce samples of Ck,
and we optimize the decoder DH

Ck to correctly segment,
in conjunction with E0, images from Tk by minimizing
Lce(LCk ; Ck ∪ {b}, Tk). This stage is not exploited in the
current step, but will be necessary in future ones.

During a standard incremental training stage, we follow
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a mini-batch gradient descent scheme, where batches of
annotated training data are sampled from T rp

k . However,
to guarantee a proper stream of information, we opt for an
interleaving sampling policy, rather than a random one. In
particular, at a generic iteration of training, a batch of data
Brp supplied to the network is made of rnew samples from
the current training partition T bi

k and rold replay samples
from RC0�(k−1)

. The ratio between rnew and rold controls
the proportion of replay and new data (see also Sec. 7.1).
We need, in fact, to carefully balance how new data is dosed
with respect to replay one, so that enough information about
new classes is provided within the learning process, while
concurrently we assist the network in recalling knowledge
acquired in past steps to prevent catastrophic forgetting.

5. Replay Strategies
In this section we describe more in detail the replay strate-

gies employed for the image generation task of the Source
Block S. As mentioned previously, we opt for a generative
approach based on a GAN framework and for an online re-
trieval solution, where images are collected by a web crawler.
Replay by GAN. The GAN-based strategy exploits a deep
generative adversarial framework to re-create the no longer
available samples for previously seen classes. We use a con-
ditional GAN, G, pre-trained on a generic large-scale visual
dataset with data from a wide set of semantic classes CG
and different domains. For the experiments, we choose an
ImageNet [9] based pre-training. On this regard, we remark
that classes and domains are not required to be completely
coherent: for instance person does not exist in ImageNet, but
related classes (e.g., hat) still allow to preserve its knowledge
(further considerations on this are reported in Suppl. Mat.).
When performing the k-th incremental step, we retrieve im-
ages containing previously seen classes by sampling the
GAN’s generator output, i.e., Xrp = G(n, cG) conditioned
on GAN’s classes cG ∈ CG corresponding to the target ones
from the original training data (n is a generic noise input).

Since the GAN is pre-trained on a separate dataset, typ-
ically it inherits a different label set. For this reason, the
Source Block with GAN is composed of two main modules,
namely the actual GAN for image generation and a Class
Mapping Module to translate each class of the semantic seg-
mentation incremental dataset to the most similar class of
the GAN’s training dataset. Provided that we have trained
both the GAN and class mapping modules, first we use the
latter to translate the class set Ck to the matching set CGk .
Then, a set of queries to the conditioned GAN’s generator:

Xrp
Ck = G(n, cG), cG ∈ CGk (5)

provides samples resembling the ones in Ck, as long as the
mapping is able to properly associate each original class to a
statistically similar counterpart in the GAN’s label space.

At each incremental step k, the Source Block with GAN
goes through two separate training and inference stages. In

a first training phase, samples from Tk are fed to an Image
Classifier I , which is pre-trained to solve an image classi-
fication task on the GAN’s dataset. In particular, for each
class c ∈ Ck we select the corresponding training subset
T c
k ⊂ Tk, i.e., all the samples of set Tk associated to class

c, and we sum the resulting class probability vectors from
the classification output. Then, the GAN’s class cG with the
highest probability score is identified by:

cG = argmax
j∈CG

∑
X←T c

k

I(X) [j] (6)

where X is extracted from T c
k (labels are not used) and

I(X) denotes the vector output of the last softmax layer of
I , whose j-th entry corresponds to the j-th GAN’s class. By
repeating this procedure for every class in Ck, we build the
mapped set CGk . Class correspondence is stored, so that at
each step we have access to class mappings of past iterations.

In a second evaluation phase, classes in C0�(k−1) are
given as input to the Source Block. Thanks to the class corre-
spondences saved in previous steps, C0�(k−1) are mapped to
CG0�(k−1). Next, image generation conditioned on each class
of CGAN

0�(k−1) is performed, and the resulting replay images
are fed to the Label Evaluation Block to be associated to their
corresponding semantic labels. By following this procedure,
we end up with self-annotated data of past classes suitable
to support the supervised training at the current step, which
otherwise would be limited to new classes.
Replay by Web Crawler. As an alternative we propose to
retrieve training examples from an online source. For the
evaluation, we searched images from the Flickr website,
but any other online database or search engine can be used.

Assuming we are at the incremental step k and we have
access to the names of every class in the past iterations
(e.g., ∀c ∈ C0�(k−1)), we download images whose tag and
description happen to both contain the class name through
the Flickr’s web crawler. Then, the web-crawled images
are fed to the Label Evaluation Block for their annotation.

Compared to the GAN-based approach, the online re-
trieval solution is simpler as no learnable modules are in-
troduced. In addition, we completely avoid to assume that
a larger dataset is available, whose class range should be
sufficiently ample and diverse to cope with the continuous
stream of novel classes incrementally introduced. On the
other side, this approach requires the availability of an inter-
net connection and in some way exploits additional training
data even if almost unsupervised. Plus, we lack control over
the weak labeling performed by the web source.

6. Implementation Details
We use the DeepLab-V2 [7] as segmentation architec-

ture with ResNet-101 [18] as backbone. Nonetheless, RE-
CALL is independent of the specific network architecture.
Encoder’s weights are pre-trained on ImageNet [9] and all
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network’s weights are trained in the initial step 0. In the fol-
lowing steps, only the main decoder is trained, together with
the additional {DH

Ck}k helper decoders, which are needed
to annotate replay samples (as discussed in Sec. 4). For fair
comparison, all competing approaches are trained with the
same backbone. SGD with momentum is used for weights
optimization, with initial learning rate set to 5× 10−4 and
decreased to 5 × 10−6 according to polynomial decay of
power 0.9. Following previous works [29, 31], we train the
model for |Ck|×1000 learning steps in the disjoint setup and
for |Ck| × 1500 steps in the overlapped setup. Each helper
decoder DH

Ck
is trained with a polynomially decaying learn-

ing rate starting from 2× 10−4 and ending at 2× 10−6 for
|Ck| × 1000 steps. As Source Block, we use BigGAN-deep
[4] pre-trained [1] on ImageNet. At each incremental step k,
we generate 500 replay samples per old class, i.e. Nr = 500.
To map classes from the segmentation dataset to the GAN’s
one, we use the EfficientNet-B2 [41] classifier implemented
at [2] and pre-trained on ImageNet. The interleaving ratio
rold/rnew is set to 1.

As input pre-processing, random scaling and mirroring
are followed by random padding and cropping to 321× 321
px. The entire framework is developed in TensorFlow [3]
and trained on a single NVIDIA RTX 2070 Super. Training
time varies depending on the setup, with the longest run
taking about 5 hours. Code and replay data are available at
https://github.com/LTTM/RECALL.

7. Experimental Results
In this section we present the experimental evaluation

on the Pascal VOC 2012 dataset [12]. Following previous
works on this topic [40, 29, 31, 5], we start by analyzing
the performance on three widely used incremental scenar-
ios: i.e., addition of the last class (19-1), addition of the last
5 classes at once (15-5) and addition of the last 5 classes
sequentially (15-1). Moreover, we report the performance
on three more challenging scenarios in which 10 classes
are added sequentially one by one (10-1), in 2 batches of 5
elements each (10-5) and all at once (10-10). Classes for
the incremental steps are selected according to the alphabeti-
cal order. We compare with the naı̈ve fine-tuning approach
(FT), which defines the lower limit to the accuracy of an
incremental model, and with the joint training on the com-
plete dataset in one step, which serves as upper bound. We
also report the results of a simple Store and Replay (S&R)
method, where at each incremental step we store a certain
number of true samples for newly added classes, such that
the respective size in average matches the size of the helper
decoders needed by RECALL (see Fig. 6). As comparison,
we include 2 methods extended from classification (i.e., LwF
[26] and its single-headed version LwF-MC [35]) and the
most relevant methods designed for continual segmentation
(i.e., ILT [29], CIL [23], MiB [5] and SDR [30]). Exhaustive

quantitative results in terms of mIoU are shown in Table 1.
For each setup we report the mean accuracy for the initial
set of classes, for the classes in the incremental steps and for
all classes, computed after the overall training.
Addition of the last class. First, we train over the first 19
classes during step 0. Then, we perform a single incremen-
tal step to learn tv/monitor. Looking at Table 1 (upper-left
section), we notice that FT results in a drastic performance
degradation w.r.t. joint training, due to catastrophic forget-
ting. RECALL, instead, shows higher overall mIoU than
competitors and it is especially effective on the last class,
whilst still retaining high accuracy on the past ones thanks
to the regularization brought in by background inpainting
and replay strategies. S&R, instead, heavily forgets previous
classes, thus confirming the usefulness of replay data.
Addition of last 5 classes. In this setup, 15 classes are
learned in the initial step, while the remaining 5 are added
in one shot (15-5) or sequentially one at a time (15-1). Com-
pared to the 19-1 setup, the addition of multiple classes in
the incremental iterations makes catastrophic forgetting even
more severe. The accuracy gap between FT and joint train-
ing, in fact, raises from about 41% of the 19-1 case to more
than 70% of mIoU in the 15-1 scenario. Taking a closer
look at the results in Table 1 (upper mid and right sections),
our replay approaches strongly limit the degradation caused
by catastrophic forgetting. This trend can be observed in
the 15-5 setup and more evidently in the 15-1 one, both in
the disjoint and overlapped settings: exploiting generated
or web-derived replay samples proves to effectively restore
knowledge of past classes, leading to a final mIoU approach-
ing that of the joint training. Storing and replaying original
samples, instead, improves the performance w.r.t. FT, but
ultimately leads to a mIoU lower of more than 20% if com-
pared to our approaches. This is due to the limited number
of samples to be stored in order to match the helper decoder
size: their sole addition is, in fact, insufficient to adequately
preserve learned knowledge. Finally, we observe that RE-
CALL can scale much better than competitors when multiple
incremental steps are performed (scenario 15-1), as typically
encountered in real-world applications.
Addition of last 10 classes. To analyze the previous claim,
we introduce some new challenging experiments, not eval-
uated in previous works. In these tests only 10 classes are
observed in the initial step, while the remaining ones are
added in a single batch (10-10), in 2 steps of 5 classes
each (10-5), or individually (10-1). Again, FT is heavily
affected by the information loss that occurs when perform-
ing incremental training without regularization, leading to
performance drops up to about 71% of mIoU w.r.t. the joint
training in the most challenging 10-1 setting. Thanks to
the introduction of replay data, RECALL brings a remark-
able performance boost to the segmentation accuracy and
becomes more and more valuable as the difficulty of the
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Table 1: mIoU on Pascal VOC2012 for different incremental setups. Results of competitors in the upper part come from
[30, 5], while we run their implementations for the new scenarios in the bottom part.

19-1 15-5 15-1
Disjoint Overlapped Disjoint Overlapped Disjoint Overlapped

Method 1-19 20 all 1-19 20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all

FT 35.2 13.2 34.2 34.7 14.9 33.8 8.4 33.5 14.4 12.5 36.9 18.3 5.8 4.9 5.6 4.9 3.2 4.5
S&R 55.3 43.2 56.2 54.0 48.0 55.1 38.5 43.1 41.6 36.3 44.2 40.3 41.0 31.8 40.7 38.6 31.2 38.9

LwF [26] 65.8 28.3 64.0 62.6 23.4 60.8 39.7 33.3 38.2 67.0 41.8 61.0 26.2 15.1 23.6 24.0 15.0 21.9
LwF-MC [35] 38.5 1.0 36.7 37.1 2.3 35.4 41.5 25.4 37.6 59.8 22.6 51.0 6.9 2.1 5.7 6.9 2.3 5.8
ILT [29] 66.9 23.4 64.8 50.2 29.2 49.2 31.5 25.1 30.0 69.0 46.4 63.6 6.7 1.2 5.4 5.7 1.0 4.6
CIL [23] 62.6 18.1 60.5 35.1 13.8 34.0 42.6 35.0 40.8 14.9 37.3 20.2 33,3 15.9 29.1 6.3 4.5 5.9
MiB [5] 69.6 25.6 67.4 70.2 22.1 67.8 71.8 43.3 64.7 75.5 49.4 69.0 46.2 12.9 37.9 35.1 13.5 29.7
SDR [30] 69.9 37.3 68.4 69.1 32.6 67.4 73.5 47.3 67.2 75.4 52.6 69.9 59.2 12.9 48.1 44.7 21.8 39.2

RECALL (GAN) 65.2 50.1 65.8 67.9 53.5 68.4 66.3 49.8 63.5 66.6 50.9 64.0 66.0 44.9 62.1 65.7 47.8 62.7
RECALL (Web) 65.0 47.1 65.4 68.1 55.3 68.6 69.2 52.9 66.3 67.7 54.3 65.6 67.6 49.2 64.3 67.8 50.9 64.8
Joint 75.5 73.5 75.4 75.5 73.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4

10-10 10-5 10-1
Disjoint Overlapped Disjoint Overlapped Disjoint Overlapped

Method 1-10 11-20 all 1-10 11-20 all 1-10 11-20 all 1-10 11-20 all 1-10 11-20 all 1-10 11-20 all

FT 7.7 60.8 33.0 7.8 58.9 32.1 7.2 41.9 23.7 7.4 37.5 21.7 6.3 2.0 4.3 6.3 2.8 4.7
S&R 25.1 53.9 41.7 18.4 53.3 38.2 26.0 28.5 29.7 22.2 28.5 27.9 30.2 19.3 27.3 28.3 20.8 27.1

LwF [26] 63.1 61.1 62.2 70.7 63.4 67.2 52.7 47.9 50.4 55.5 47.6 51.7 6.7 6.5 6.6 16.6 14.9 15.8
LwF-MC [35] 52.4 42.5 47.7 53.9 43.0 48.7 44.6 43.0 43.8 44.3 42.0 43.2 6.9 1.7 4.4 11.2 2.5 7.1
ILT [29] 67.7 61.3 64.7 70.3 61.9 66.3 53.4 48.1 50.9 55.0 44.8 51.7 14.1 0.6 7.5 16.5 1.0 9.1
CIL [23] 37.4 60.6 48.4 38.4 60.0 48.7 27.5 41.4 34.1 28.8 41.7 34.9 7.1 2.4 4.9 6.3 0.8 3.6
MiB [5] 66.9 57.5 62.4 70.4 63.7 67.2 54.3 47.6 51.1 55.2 49.9 52.7 14.9 9.5 12.3 15.1 14.8 15.0
SDR [30] 67.5 57.9 62.9 70.5 63.9 67.4 55.5 48.2 52.0 56.9 51.3 54.2 25.5 15.7 20.8 26.3 19.7 23.2

RECALL (GAN) 62.6 56.1 60.8 65.0 58.4 63.1 60.0 52.5 57.8 60.8 52.9 58.4 58.3 46.0 53.9 59.5 46.7 54.8
RECALL (Web) 64.1 56.9 61.9 66.0 58.8 63.7 63.2 55.1 60.6 64.8 57.0 62.3 62.3 50.0 57.8 65.0 53.7 60.7
Joint 76.6 74.0 75.4 76.6 74.0 75.4 76.6 74.0 75.4 76.6 74.0 75.4 76.6 74.0 75.4 76.6 74.0 75.4

settings increases. In the 10-10 case, our method achieves
slightly lower mIoU results than competitors (although com-
parable). As we increase complexity, our approach is able
to outperform competitors by about 8% of mIoU in 10-5
and by 37% of mIoU in 10-1. We remark how RECALL
shows a convincing capability of providing a rather steady
accuracy in different setups, regardless of the number of in-
cremental steps used to introduce new classes. For example,
in the disjoint scenario, when moving from simpler to more
challenging setups (i.e., from 10-10 to 10-1, passing through
10-5), the mIoU of FT drops as 33.0% � 23.7% � 4.3%
and the one of SDR (i.e., the best compared approach) as
62.9%� 52.0%� 20.8%, while our approach maintains a
stable mIoU trend of 61.9%�60.6%�57.8%. Finally, we
report the mIoU after each incremental step on the 10-1 dis-
joint scenario in Fig. 4, where our approaches show much
higher mIoU at every learning step, indicating improved re-
silience to forgetting and background shift, than competitors.

In the qualitative results in Fig. 5 we observe that RE-
CALL effectively alleviates forgetting and reduces the bias
towards novel classes. In the first row, the bus is correctly
preserved while FT, S&R and inpainting wrongly classify it
as train (i.e., one of the novel classes); in the second row, FT
places sheep and tv (newly added classes) in place of cow;
in the third row, some horse’s features are either mixed with
those of person and cat or completely destroyed, while they
are preserved by our methods (the web scheme shows higher
accuracy than the GAN here). Additional results, a few tests
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Figure 4: Evolution of mIoU on the 10 tasks of 10-1 disjoint.

combining RECALL with competitors and a preliminary
evaluation on ADE20K [47] are presented in Suppl. Mat.

7.1. Ablation Study

To further validate the robustness of our approach, we
perform some ablation studies. First of all, we analyze the
memory requirements. The plot in Fig. 6 shows in semi-log
scale the memory occupation (expressed in MB) of the data
to be stored at the end of each incremental step, as a function
of the number of classes learned up to that point. We denote
with standard an incremental approach which do not store
any sample (e.g., FT, LwF, ILT, MiB, SDR). The saved model
generally corresponds to a fixed size encoder and a decoder,
whose dimension slightly increases at each step to account
for additional output channels for the new learnable classes.
Saving images, instead, refers to the extreme scenario where
training images of past steps are stored, thus being available
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Figure 5: Qualitative results on disjoint incremental setups: from top to bottom 15-1, 15-5 and 10-1. (best viewed in colors).
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throughout the entire incremental process. As concerns our
approach, to annotate originally weakly-labeled replay im-
ages, we devise a specific module (Sec. 4), which requires
to save a set of helper decoders {DH

Ci}
k
i=0, one for each past

step. Finally, for the GAN-based approach we add the stor-
age required for the generative model. Fig. 6 shows that
our web-based solution is very close to the standard ones in
terms of memory occupation. The space required to store
the GAN is comparable to that needed to save images in the
very initial steps, but then remains constant while the space
for saving all training data quickly grows.

We further analyze the contribution of the background in-
painting and replay techniques in Table 2. While inpainting
alone provides a solid contribution in terms of knowledge
preservation acting similarly to knowledge distillation, we

Table 2: mIoU results showing the contribution of each
module, D: Disjoint, O: Overlapped.

19-1 15-5 15-1 10-10 10-5 10-1
Method D O D O D O D O D O D O

Bgr inp. 65.6 66.7 52.2 52.5 49.7 49.9 58.8 60.7 47.5 47.1 34.0 39.0
GAN 54.5 56.2 49.8 49.1 47.9 48.2 45.8 48.8 38.1 43.7 36.6 40.8
Web 57.3 57.4 55.2 54.7 55.0 53.7 55.2 58.2 47.9 52.1 45.4 50.1

GAN+inp. 65.8 68.4 63.5 64.0 62.1 62.7 60.8 63.1 57.8 58.4 53.9 54.8
Web+inp. 65.4 68.6 66.3 65.6 64.3 64.8 61.9 63.7 60.6 62.3 57.8 60.7

observe that its effect tends to attenuate with multiple in-
cremental steps. For example, moving from 10-10 to 10-1
overlapped setups, the mIoU drops more than 20%. On the
other hand, the proposed replay techniques prove to be ben-
eficial when multiple training stages are involved. On the
same setting, replay techniques alone limit the degradation
to only 8%. Yet, jointly employing replay and inpainting fur-
ther boosts the final results in all setups (up to 15%), proving
that they can be effectively combined.

Finally, we analyze how results vary w.r.t. the proportion
of new (rnew) and replay (rold) samples seen during training
(Fig. 7): the mIoU is quite stable w.r.t. this ratio, however
the maximum value is reached when the same number of old
and replay samples is used, i.e., rnew/rold = 1.

8. Conclusions
In this paper we introduced RECALL, which targets con-

tinual semantic segmentation by means of replay strategies to
alleviate catastrophic forgetting and background inpainting
to mitigate background shift. Two replay schemes are pro-
posed to retrieve data related to former training stages, either
reproducing it via a conditional GAN or crawling it from the
web. The experimental analyses proved the efficacy of our
framework in improving accuracy and robustness to multiple
incremental steps compared to competitors. New research
will improve the generative model, coupling it more strictly
with the incremental setup, and explore how to control and
refine weak supervision during web-crawling. Evaluation on
different datasets, such as ADE20K, will also be performed.
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