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Abstract
Object recognition has made great advances in the last
decade, but predominately still relies on many high-quality
training examples per object category. In contrast, learning
new objects from only a few examples could enable many
impactful applications from robotics to user personalization.
Most few-shot learning research, however, has been driven
by benchmark datasets that lack the high variation that these
applications will face when deployed in the real-world. To
close this gap, we present the ORBIT dataset and benchmark,
grounded in the real-world application of teachable object
recognizers for people who are blind/low-vision. The dataset
contains 3,822 videos of 486 objects recorded by people who
are blind/low-vision on their mobile phones. The benchmark
reflects a realistic, highly challenging recognition problem,
providing a rich playground to drive research in robustness
to few-shot, high-variation conditions. We set the bench-
mark’s first state-of-the-art and show there is massive scope
for further innovation, holding the potential to impact a
broad range of real-world vision applications including tools
for the blind/low-vision community. We release the dataset
at https://doi.org/10.25383/city.14294597 and benchmark
code at https://github.com/microsoft/ORBIT-Dataset.

1. Introduction
Object recognition systems have made spectacular ad-

vances in recent years [42, 47, 43, 37, 14, 30, 36] however,
most systems still rely on training datasets with 100s to
1,000s of high-quality, labeled examples per object category.
These demands make training datasets expensive to collect,
and limit their use to all but a few application areas.

Few-shot learning aims to reduce these demands by train-
ing models to recognize completely novel objects from only
a few examples [9, 49, 40, 2, 38, 11, 46]. This will enable
recognition systems that can adapt in real-world, dynamic
scenarios, from self-driving cars to applications where users
provide the training examples themselves. Meta-learning
algorithms which “learn to learn” [45, 9, 49, 11] hold partic-

(a) Frames from clean videos

(b) Frames from clutter videos
Figure 1: High-variation examples in the ORBIT dataset – a
facemask, hairbrush, keys, and watering can. Full videos in
the supplementary material. Further examples in Figure A.5.

ular promise toward this goal with recent advances opening
exciting possibilities for light-weight, adaptable recognition.

Most few-shot learning research, however, has been
driven by datasets that lack the high variation — in number
of examples per object and quality of those examples (fram-
ing, blur, etc.; see Table 1) — that recognition systems will
likely face when deployed in the real-world. Key datasets
such as Omniglot [23, 49] and miniImageNet [49], for exam-
ple, present highly structured benchmark tasks which assume
a fixed number of objects and training examples per object.
Meta-Dataset [48], another key dataset, poses a more chal-
lenging benchmark task of adapting to novel datasets given a
small (random) number of training examples. Its constituent
datasets [23, 17, 39, 26, 32, 50, 6], however, mirror the
high-quality images of Omniglot and miniImageNet, leav-
ing robustness to the noisy frames that would be streamed
from a real-world system unaddressed. While these datasets
have catalyzed research in few-shot learning, state-of-the-art
performance is now relatively saturated and leaves reduced
scope for algorithmic innovation [16, 4, 33].

To drive further innovation in few-shot learning for real-
world impact, there is a strong need for datasets that capture
the high variation inherent in real-world applications. We

10818



motivate that both the dataset and benchmark task should
be grounded in a potential real-world application to bring
real-world recognition challenges to life in their entirety. An
application area that neatly encapsulates a few-shot, high-
variation scenario are teachable object recognisers (TORs) for
people who are blind/low-vision [24, 18]. Here, a user can
customize an object recognizer by capturing a small number
of (high-variation) training examples of essential objects
on their mobile phone. The recognizer is then trained (in
deployment) on these examples such that it can recognize the
user’s objects in novel scenarios. As a result, TORs capture a
microcosm of highly challenging and realistic conditions that
can be used to drive research in real-world recognition tasks,
with the potential to impact a broad range of applications
beyond just tools for the blind/low-vision community.

We introduce the ORBIT dataset [31], a collection of
videos recorded by people who are blind/low-vision on
their mobile phones, and an associated few-shot benchmark
grounded in TORs. Both were designed in collaboration
with a team of machine learning (ML), human-computer in-
teraction, and accessibility researchers, and will enable the
ML community to 1) accelerate research in few-shot, high-
variation object recognition, and 2) explore new research
directions in few-shot video recognition. We intend both
as a rich playground to drive research in robustness to chal-
lenging, real-world conditions, a step beyond what curated
few-shot datasets and structured benchmark tasks can offer,
and to ultimately impact a broad range of real-world vision
applications. In summary, our contributions are:
1. ORBIT benchmark dataset. The ORBIT bench-
mark dataset [31] (Section 3) is a collection of 3822
videos of 486 objects recorded by 77 blind/low-vision
people on their mobile phones and can be downloaded
at https://doi.org/10.25383/city.14294597. Examples are
shown in Figures 1 and A.5. Unlike existing datasets [39,
8, 26, 49, 48], ORBIT show objects in a wide range of real-
istic conditions, including when objects are poorly framed,
occluded by hands and other objects, blurred, and in a wide
variation of backgrounds, lighting, and object orientations.
2. ORBIT teachable object recognition benchmark.
We formulate a few-shot benchmark on the ORBIT dataset
(Section 4) that is grounded in TORs for people who are
blind/low-vision. Contrasting existing few-shot (and other)
works, the benchmark proposes a novel user-centric formu-
lation which measures personalization to individual users.
It also incorporates metrics that reflect the potential compu-
tational cost of real-world deployment on a mobile device.
These and the benchmark’s other metrics are specifically
designed to drive innovation for realistic settings.
3. State-of-the-art (SOTA) on the ORBIT benchmark.
We implement 4 few-shot learning models that cover the
main classes of approach in the field, extend them to videos,
and establish the first SOTA on the ORBIT benchmark (Sec-

tion 5). We also perform empirical studies showing that
training on existing few-shot learning datasets is not suffi-
cient for good performance on the ORBIT benchmark (Ta-
ble 4) leaving significant scope for algorithmic innovation in
few-shot techniques that can handle high-variation data.

Code for loading the dataset, computing bench-
mark metrics, and running the baselines is available at
https://github.com/microsoft/ORBIT-Dataset.

2. Related Work
Few-shot learning datasets. Omniglot [23, 49],
miniImageNet [49], and Meta-Dataset [48] have driven re-
cent progress in few-shot learning. Impressive gains have
been achieved on Omniglot and miniImageNet [49, 16, 4,
33], however results are now largely saturated and highly
depend on the selected feature embedding. Meta-Dataset,
a dataset of 10 datasets, formulates a more challenging
task where whole datasets are held-out, but these datasets
contain simple and clean images, such as clipart drawings
of characters/symbols [23, 49, 17], and ImageNet-like im-
ages [26, 39, 32, 50, 6] showing objects in uniform lighting,
orientations, and camera viewpoints. The ORBIT dataset and
benchmark presents a more challenging few-shot task with
high-variation examples captured in real-world scenarios.
High-variation datasets. Datasets captured by users in
real-world settings are naturally high-variation [1, 12, 7,
21, 27, 18, 41, 13], but none collected thus far explic-
itly target few-shot object recognition. ObjectNet [1] is
a test-only dataset of challenging images (e.g. unusual
orientations/backgrounds) for “many-shot" classification.
Something-Something [12] and EPIC-Kitchens [7] are video
datasets collected by users with mobile and head-mounted
cameras, respectively, but are focused on action recog-
nition based on many examples and “action captions”.
Core50 [27] is a video dataset captured on mobile phones
for a continual learning recognition task. In contrast to
ORBIT, the videos are high quality (captured by sighted
people, with well-lit centered objects). Other high-variation
datasets include those collected by people who are blind/low-
vision [18, 41, 13] (see IncluSet for a repository of acces-
sibility datasets [19]) however, most are not appropriate
for few-shot learning. TeGO [18] contains mobile phone
images of 19 objects taken by only 2 users (1 sighted, 1
blind) in 2 environments (1 uniform background, 1 cluttered
scene). It validates the TOR use-case, but is too small to
deliver a robust, deployable system. VizWiz [13], although
larger scale (31,173 mobile phone images contributed by
11,045 blind/low-vision users) targets image captioning and
question-answering tasks, and is not annotated with object la-
bels. The ORBIT dataset and benchmark is motivated by the
lack of datasets that have the scale and structure required for
few-shot, high-variation real-world applications, and adds to
the growing repository of datasets for accessibility.
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Omniglot [23] miniImageNet [49] Meta-Dataset [48] TEgO [24] ORBIT Benchmark

Data type Image Image Image Image Video frames
# classes 1623 100 4934 19 486
# samples/class 20 600 6-340,029 180-487 33-3,600
# total samples 32,460 60,000 52,764,077 11,930 2,687,934
Goal Image classification Image classification Image classification Image classification Frame classification
Task Fixed shot/way Fixed shot/way Random shot/way Fixed shot/way Random shot/way
Source Turk Web Web Mobile phone Mobile phone
Data collectors Sighted (20) Sighted Sighted Sighted (1) Blind (1) Blind (67)

H
ig

h-
va

ri
at

io
n

fe
at

ur
es

Unbalanced classes ✗ ✗ ✓ ✗ ✓

Lighting variation ✗ ✓ ✓ ✗ ✓

Background variation ✗ ✓ ✓ ✓* ✓

Viewpoint variation ✗ ✗ ✗ ✓ ✓

Ill-framed objects ✗ ✗ ✗ ✓ ✓

Blur ✗ ✗ ✗ ✗ ✓

Table 1: Comparison of few-shot learning datasets. Note, the ORBIT benchmark dataset is a subset of all videos contributed
by collectors (see Appendix B). *Collected in 2 controlled environments – 1 uniform background, 1 cluttered space.

3. ORBIT Benchmark Dataset

Our goal is to drive research in recognition tasks under
few-shot, high-variation conditions so that deployed few-
shot systems are robust to such conditions. Toward this
goal, we focus on a real-world application that serves as a
microcosm of a few-shot, high-variation setting — TORs for
people who are blind/low-vision – and engage the blind/low-
vision community in collecting a large-scale dataset.

The collection took place in two phases, and collectors
recorded and submitted all videos (completely anonymously)
via an accessible iOS app (see Appendix A.2). The collec-
tion protocol was designed and validated through extensive
user studies [44] and led to the key decision to capture videos
rather than images of objects. This was based on the hypoth-
esis that a video increases a blind collector’s chances of
capturing frames that contained the object while reducing
the time/effort cost to the collector, compared to multiple at-
tempts at a single image. The study was approved by the City,
University of London Research Ethics Committee. The full
data collection protocol is described in Appendix A.1 and a
datasheet [10] for the dataset is included in Appendix E.

We summarize the benchmark dataset in Table 2 and
describe it in detail below (see Appendix B for dataset prepa-
ration, and Appendix C for example clips). The benchmark
dataset is used to run the benchmark described in Section 4.
Number of collectors. Globally, 77 collectors contributed
to the ORBIT benchmark dataset. Collectors who con-
tributed only 1 object were merged to enforce a minimum of
3 objects per user such that the per-user classification task
was a minimum of 3-way, resulting in an effective 67 users.
Numbers of videos and objects. Collectors contributed a
total of 486 objects and 3,822 videos (2,687,934 frames,
83GB). 2,996 videos showed the object in isolation, referred
to as clean videos, while 826 showed the object in a realistic,
multi-object scene, referred to as clutter videos. We col-
lected both types to match what a TOR will encounter in the
real-world (see Section 4.2.2). Each collector contributed on

average 7.3 (±2.8) objects, with 5.8 (±3.9) clean videos and
1.8 (±1.1) clutter videos per object. Figure 2 shows the num-
ber of objects (2a) and number of videos per collector (2b).
We discuss the impact of the 2 collectors who contributed
more videos than the average collector in Appendix B.3.
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(b) Number of videos (stacked by object) per collector.

Figure 2: Number of objects and videos across 67 collectors.

Types of objects. Collectors provided object labels for each
video contributed. Objects covered course-grained cate-
gories (e.g. remote, keys, wallet) as well as fine-grained
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Collectors Objects Videos Videos per object Frames per video
mean/std 25/75th perc. min/max mean/std 25/75th perc. min/max

Total 67 486 3822 7.9/4.8 7.0/7.0 3.0/46.0 703.3/414.1 396.2/899.0 33.0/3600.0

Clean 2996 6.2/4.6 5.0/6.0 2.0/44.0 771.3/420.6 525.8/900.0 33.0/3600.0
Clutter 826 1.7/1.5 1.0/2.0 1.0/13.0 456.7/272.9 248.5/599.0 40.0/3596.0

Per-collector 1 7.3/2.8 57.0/47.4 7.5/4.0 6.6/7.4 3.4/38.4 728.8/208.8 609.4/808.2 213.1/1614.3

Clean 44.7/44.0 5.8/3.9 4.8/6.0 2.4/36.5 809.9/244.7 664.7/898.5 219.3/1872.6
Clutter 12.3/10.8 1.8/1.1 1.0/2.0 1.0/9.9 728.8/208.8 609.4/808.2 213.1/1614.3

Table 2: ORBIT benchmark dataset.

categories (e.g. Apple TV remote, Virgin remote, Samsung
TV remote control). For summarization purposes, we clus-
tered the objects based on object similarity and observe a
long-tailed distribution (see Figure A.7b). The largest clus-
ters contained different types of remotes/controls, keys, wal-
lets/purses, guidecanes, doors, airpods, headphones, mobile
phones, watches, sunglasses and Braille readers. More than
half of the clusters contained just 1 object. The clustering
algorithm and cluster contents are included in Appendix D.
Bounding box annotations. Since the clutter videos could
contain multiple objects, we provide bounding box annota-
tions around the target object in all clutter videos (available
in the code repository). We use these to compute the propor-
tion of time the target object spends in- versus out-of-frame
per video, and show this in Figure A.6 averaged over all
clutter videos per collector. On average, the target object is
in-frame for ∼95% of any given clutter video.
Video lengths. Video lengths depended on the recording
technique required for each video type (see Appendix A.1).
On average, clean videos were 25.7s (∼771 frames at 30
FPS), and clutter videos were 15.2s (∼457 frames at 30 FPS).
Unfiltered ORBIT dataset. Some collectors did not meet
the minimum requirements to be included in the benchmark
dataset (e.g. an object did not have both clean and clutter
videos). The benchmark dataset was therefore extracted
from a larger set of 4733 videos (3,161,718 frames, 97GB)
of 588 objects contributed by 97 collectors. We summarize
the unfiltered dataset in Appendix A.3.

4. Teachable Object Recognition Benchmark
The ORBIT dataset can be used to explore a wide set of

real-world recognition tasks from continual learning [27, 28]
to video segmentation [25, 34, 29]. In this paper, we focus
on few-shot object recognition from high-variation examples
and present a realistic and challenging few-shot benchmark
grounded in TORs for people who are blind/low-vision.

In Section 4.1, we describe how a TOR works, mapping it
to a few-shot learning problem, before presenting the bench-
mark’s evaluation protocol and metrics in Section 4.2.

4.1. Teachable Object Recognition

We define a TOR as a generic recognizer that can be
customized to a user’s personal objects using a small number

of training examples – in our case, videos – which the user
has captured themselves. The 3 steps to realizing a TOR are:
(1) Train. A recognition model is trained on a large dataset

of objects where each object has only a few examples.
The model can be optimized to either i) directly recog-
nize a set of objects [46, 5] or ii) learn how to recognize
a set of objects (i.e. meta-learn) [9, 40, 49, 38]. This
happens before deploying the model in the real world.

(2) Personalize. A real-world user captures a few examples
of a set of their personal objects. The deployed model is
trained on this user’s objects using just these examples.

(3) Recognize. The user employs their now-personalized
recognizer to identify their personal objects in novel
(test) scenarios. As the user points their recognizer at a
scene, it delivers frame-by-frame predictions.

4.1.1 TORs as a few-shot learning problem

The (1) train step of a TOR can be mapped to the ‘meta-
training’ phase typically used in few-shot learning set-ups.
The (2) personalize and (3) recognize steps can be mapped
to ‘meta-testing’ (see Figure 3). With this view, we now
formalize the teachable object recognition task, drawing on
nomenclature from the few-shot literature [9, 40, 38, 11].

We construct a set of train users Ktrain and test users Ktest

(Ktrain ∩ Ktest = ∅) akin to the train and test object classes
used in few-shot learning. A user κ has a set of personal
objects Pκ that they want a recognizer to identify, setting
up a |Pκ|-way classification problem. To this end, the user
captures a few videos of each object, together called the
user’s “context” set Cκ = {(v̄, p)i}Ni=1, where v̄ is a context
video, p ∈ Pκ is its object label, and N is the total number
of the user’s context videos. The goal is to use Cκ to learn
a recognition model fθκ that can identify the user’s objects,
where θκ are the model parameters specific to user κ.

Once personalized, the user can point their recognizer
at novel “target” scenarios to receive per-frame predictions:

y∗f = argmax
yf∈Pκ

fθκ(vf ) vf ∈ v (v, p) ∈ T κ (1)

where vf is a target frame, v is a target video, T κ is all the
user’s target videos, and yf ∈ Pκ is the frame-level label.1

1Note, yf = p where p ∈ Pκ is the video-level object label
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Following the typical paradigm, during meta-training (i.e.
the train step), multiple tasks are sampled per user κ ∈ Ktrain

where a task is a random sub-sample of the user’s Cκ and
T κ (see Appendix G.2). The recognition model can be
trained on these tasks using an episodic [9, 40, 49, 38] or
non-episodic approach [5, 46, 22]. We formalize both in
the context of TORs in Appendix F. Then, at meta-testing,
one task is sampled per test user κ ∈ Ktest containing all
the user’s context and target videos. For each test user, the
recognizer is personalized using all their context videos Cκ

(i.e. the personalize step), and then evaluated on each of the
user’s target videos in T κ (i.e. the recognize step). In the
following section, we discuss this evaluation protocol.

𝑓𝑓𝜃𝜃𝜅𝜅 𝑦𝑦𝑓𝑓∗ ∈ 𝒫𝒫𝜅𝜅

𝒗𝒗,𝑝𝑝 ∈ 𝒯𝒯𝜅𝜅
𝜃𝜃𝜅𝜅𝒞𝒞𝜅𝜅 𝑣𝑣𝑓𝑓 ∈ 𝒗𝒗

Trained over Ttrain tasks per train user 𝜅𝜅 ∈ 𝒦𝒦train

Tested on test user 𝜅𝜅 ∈ 𝒦𝒦test

(1) Train

(2) Personalize (3) Recognize

P

Meta-training

Meta-testing

𝑓𝑓𝜃𝜃𝜅𝜅 𝑦𝑦𝑓𝑓∗ ∈ 𝒫𝒫𝜅𝜅

𝒗𝒗,𝑝𝑝 ∈ 𝒯𝒯𝜅𝜅
𝜃𝜃𝜅𝜅𝒞𝒞𝜅𝜅 𝑣𝑣𝑓𝑓 ∈ 𝒗𝒗P

Figure 3: Teachable object recognizers cast as a few-shot
learning problem. P is the personalization method, for ex-
ample, several gradient steps using a optimization-based
approach, or parameter generation using a model-based ap-
proach (see Section 5.1).

4.2. Evaluation protocol

ORBIT’s evaluation protocol is designed to reflect how
well a TOR will work in the hands of a real-world user —
both in terms of performance and computational cost to per-
sonalize. To achieve this, we test (and train) in a user-centric
way where tasks are sampled per-user (that is, only from a
given user’s objects and its associated context/target videos).
This contrasts existing few-shot (and other) benchmarks, and
offers powerful insights into how well a meta-trained TOR
can personalize to a single user.

4.2.1 Train/validation/test users

The user-centric formulation in Section 4.1.1 calls for a
disjoint set of train users Ktrain and test users Ktest. We
therefore separate the 67 ORBIT collectors into 44 train users
and 17 test users, with the remaining 6 marked as validation
users Kval. To ensure the test case is sufficiently challenging,

we enforce that test (and validation) users have a minimum
of 5 objects (see further details in Appendix B.3). The total
number of objects in the splits are 278/50/158, respectively.
We report statistics for each set of train/validation/test users
in Appendix C, mirroring those over all users in Section 3.

4.2.2 Evaluation modes

We establish 2 evaluation modes:
Clean video evaluation (CLE-VE). We construct a test
user’s context set Cκ from their clean videos, and target
set T κ from a held-out set of their clean videos. This mode
serves as a simple check that the user’s clean videos can
be used to recognize the user’s objects in novel ‘simple’
scenarios when the object is in isolation.
Clutter video evaluation (CLU-VE). We construct a test
user’s context set Cκ from their clean videos, and target set
T κ from their clutter videos. This mode matches the real-
world usage of a TOR where a user captures clean videos
to register objects, and needs to identify those objects in
complex, cluttered environments. We consider CLU-VE to
be ORBIT’s primary evaluation mode since it most closely
matches how a TOR will be used in the real-world.

4.2.3 Evaluation metrics

For a test user κ ∈ Ktest, we evaluate their personalized
recognizer fθκ on each of their target videos. We denote
a target video of object p ∈ Pκ as v = [v1, . . . , vF ], and
its frame predictions as y∗ = [y∗1 , . . . , y

∗
F ], where F is the

number of frames and y∗f ∈ Pκ. We further denote y∗mode
as the video’s most frequent frame prediction. For a given
target video, we compute its:

Frame accuracy: the number of correct frame predictions,
by the total number of frames in the video.

Frames-to-recognition (FTR): the number of frames (w.r.t.
the first frame v1) before a correct prediction is made,
by the total number of frames in the video.

Video accuracy: 1, if the video-level prediction equals the
video-level object label, y∗mode = p, otherwise 0.

We compute these metrics for each target video in all tasks
for all users in Ktest. We report the average and 95% confi-
dence interval of each metric over this flattened set of videos,
denoted T all (see equations in Table 3). We also compute a
further 2 computational cost metrics:

MACS to personalize: number of Multiply-Accumulate op-
erations (MACS) to compute a test user’s personalized
parameters θκ using their context videos Cκ, reported
as the average over all tasks pooled across test users.

Number of parameters: total parameters in recognizer.

We flag frame accuracy as ORBIT’s primary metric because
it most closely matches how a TOR will ultimately be used.
The remaining metrics are complementary: FTR captures
how long a user would have to point their recognizer at a

10822



FRAME ACCURACY (↑) FRAMES-TO-RECOGNITION (↓) VIDEO ACCURACY (↑)

1

|T all|
∑

(v,p)∈T all

|v|∑
f=1

1[y∗
f=p]

|v|

1

|T all|
∑

(v,p)∈T all

argmin
vf∈v

y∗
f=p

|v|
1

|T all|
∑

(v,p)∈T all

1

[
y∗mode = p

]
y∗

mode =argmax
p∈Pκ

|v|∑
f=1

1[y∗
f = p]

Table 3: ORBIT evaluation metrics. Symbols ↑ / ↓ indicate up / down is better, respectively. T all is the set of all target videos
pooled across all tasks for all test users in Ktest.

scene before it identified the target object (with fewer frames
being better) while video accuracy summarizes the predic-
tions over a whole video. MACS to personalize provides an
indication whether personalization could happen directly on
a user’s device or a cloud-based service is required, each
impacting how quickly a recognizer could be personalized.
The number of parameters indicates the storage and memory
requirements of the model on a device, and if cloud-based,
the bandwidth required to download the personalized model.
It is also useful to normalize performance by model capacity.

5. Experimental analyses and results
5.1. Baselines & training set-up

Baselines. There are 3 main classes of few-shot learning
approaches. In metric-based approaches, a per-class embed-
ding is computed using the (labeled) examples in the context
set, and a target example is classified based on its distance to
each [40, 49]. In optimization-based approaches, the model
takes many [51, 46, 5] or few [9, 52, 2] gradient steps on the
context examples, and the updated model then classifies the
target examples. Finally, in amortization-based approaches,
the model uses the context examples to directly generate the
parameters of the classifier which is then used to classify a
target example [38, 11].

We establish baselines on the ORBIT dataset across these
3 classes. Within the episodic approaches, we choose Pro-
totypical Nets [40] for the metric family, MAML [9] for
the optimization family, and CNAPs [38] for the amortiza-
tion family. We also implement a non-episodic fine-tuning
baseline following [46, 5] who show that it can rival more
complex methods. This selection of models offers good cov-
erage over those that are competitive on current few-shot
learning image classification benchmarks. For all implemen-
tation details of these baselines see Appendix G.1.

Video representation. In Section 4.1.1, tasks are con-
structed from the context and target videos of a given user’s
objects. We sample clips from each video and represent
each clip as an average over its (learned) frame-level fea-
tures. For memory reasons, we do not sample all clips from
a video. Instead, during meta-training, we randomly sample
Strain non-overlapping clips, each of L contiguous frames,
from both context and target videos. Each clip is averaged
and treated as an ‘element’ in the context/target set, akin to
an image in typical few-shot image classification. During
meta-testing, however, following Section 4.2 and Eq. (1), we

must evaluate a test user’s personalized recognizer on every
frame in all of their target videos. We, therefore, sample
all overlapping clips in a target video, where a clip is an
L-sized buffer of each frame plus its short history. Ideally,
this should also be done for context videos, however, due to
memory reasons, we sample Stest non-overlapping L-sized
clips from each context video, similar to meta-training. In
our baseline implementations, Strain = 4, Stest = 8, and
L = 8 (for further details see Appendices G.2 and G.3).

How frames are sampled during training/testing, and how
videos are represented is flexible. The evaluation protocol’s
only strict requirement is that a model outputs a prediction
for every frame from every target video for every test user.

Number of tasks per test user. Because context videos
are sub-sampled during meta-testing, a test user’s task con-
tains a random set, rather than all, context clips. To account
for potential variation, therefore, we sample 5 tasks per test
user, and pool all their target videos into T all for evaluation.
If memory was not a constraint, following Section 4.1.1,
we would sample one task per test user which contained all
context and all target clips.

5.2. Analyses

Baseline comparison. Performance is largely consistent
across the baseline models in both CLE-VE and CLU-VE
modes (see Table 4). In CLE-VE, all methods are equiv-
alent in frame accuracy, FTR and video accuracy, except
for ProtoNets and CNAPs which trail slightly in frame accu-
racy. Comparing this to CLU-VE, we see overall performance
drops of 10-15 percentage points. Here, models are overall
equivalent on frame and video accuracy, however ProtoNets
and FineTuner lead in FTR. Further, absolute CLU-VE scores
are in the low 50s. Looking at the best possible bounds (com-
puted using the bounding box annotations, see Figure A.6c)
suggests that there is ample scope for improvement and mo-
tivates the need for approaches that can handle distribution
shifts from clean (context) to real-world, cluttered scenes
(target), and are robust to high-variation data more generally.

In computational cost, ProtoNets has the lowest cost to
personalize requiring only a single forward pass of a user’s
context videos, while FineTuner has the highest, requiring
50 gradient steps. This, along with the total number of
parameters (which are similar across models), suggests that
ProtoNets and CNAPs would be better suited to deployment
on a mobile device.
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Clean Video Evaluation (CLE-VE) Clutter Video Evaluation (CLU-VE)

MODEL FRAME ACC FTR VIDEO ACC
MACS TO

PERSONALIZE
FRAME ACC FTR VIDEO ACC

MACS TO
PERSONALIZE

METHOD TO
PERSONALIZE

# PARAMS

Best possible - - - - 95.31 (1.37) 0.00 (0.00) 100.00 (0.00) - - -

ProtoNets [40] 65.16 (1.96) 7.55 (1.35) 81.88 (2.51) 2.82 × 1012 50.34 (1.74) 14.93 (1.52) 59.93 (2.48) 3.53 × 1012 1 forward pass 11.17M
CNAPs [38] 66.15 (2.08) 8.40 (1.40) 79.56 (2.63) 3.09 × 1012 51.47 (1.81) 17.87 (1.69) 59.53 (2.48) 3.87 × 1012 1 forward pass 12.75M
MAML [9] 70.58 (2.10) 8.62 (1.56) 80.88 (2.56) 84.63 × 1012 51.67 (1.88) 20.95 (1.84) 57.87 (2.50) 105.99 × 1012 15 gradient steps 11.17M
FineTuner [46] 69.47 (2.16) 7.82 (1.54) 79.67 (2.62) 282.09 × 1012 53.73 (1.80) 14.44 (1.50) 63.07 (2.44) 353.30 × 1012 50 gradient steps 11.17M

Table 4: Baselines on the ORBIT Dataset. Results are reported as the average (95% confidence interval) over all target
videos pooled from 85 test tasks (5 tasks per test user, 17 test users). Best possible scores are computed using bounding box
annotations which are available for the clutter videos (see Appendix C and Figure A.6).

MODEL FRAME ACC FTR VIDEO ACC

ProtoNets [40] 58.98 (2.23) 11.55 (1.79) 69.17 (3.01)
CNAPs [38] 51.86 (2.49) 20.81 (2.33) 60.77 (3.18)
MAML [9] 42.55 (2.67) 37.28 (2.99) 46.96 (3.25)
FineTuner [46] 61.01 (2.24) 11.53 (1.82) 72.60 (2.91)

Table 5: CLE-VE performance when meta-training on Meta-
Dataset and meta-testing on ORBIT (for CLU-VE see Ta-
ble A.3). Even on clean videos, models perform poorly
compared to when meta-training on ORBIT (Table 4) sug-
gesting that existing few-shot datasets may be insufficient
for real-world adaptation.

Meta-training on other few-shot learning datasets. A
meta-trained model should, in principle, have the ability
to learn any new object (from any dataset) with only a few
examples. We investigate this by meta-training the baseline
models on Meta-Dataset [48] using its standard task sam-
pling protocol and then testing them on the ORBIT dataset
(i.e. personalizing to test users with no training). We adapt
the meta-trained models to videos by taking the average
over frame features in clips sampled from context and target
videos (see Section 5.1). In Table 5, we see that even on the
easier, clean videos (CLE-VE), performance is notably lower
than the corresponding baselines in Table 4 (for CLU-VE
see Table A.3). MAML and CNAPs perform particularly
poorly while ProtoNets and FineTuner fare slightly better,
however, are still 6-8 percentage points below their above
counterparts in frame accuracy. This suggests that even
though much progress has been made on existing few-shot
benchmarks, they are not representative of real-world condi-
tions and models trained on them may struggle to learn new
objects when only high-variation examples are available.
Per-user performance. In addition to averaging over T all,
the benchmark’s user-centric paradigm allows us to average
per-user (i.e. over just their target videos). This is useful be-
cause it provides a measure of how well a meta-trained TOR
would personalize to an individual real-world user. In Fig-
ure 4 however, we show that ProtoNets’ personalization is
not consistent across users, for some going as low as 25% in
frame accuracy (for other metrics/models see Figure A.10).
A TOR should be able adapt to any real-world user, thus
future work should not only aim to boost performance on
the metrics but also reduce variance across test users.
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Figure 4: CLU-VE frame accuracy varies widely across test
users (error bars are 95% confidence intervals) with Pro-
toNets [40]. For other metrics and models see Figure A.10.

Train task composition. Finally, we investigate the impact
of the number of context videos per object (Figure 5), and
the number of objects per user (Figure 6) sampled in train
tasks on CLU-VE frame accuracy. In the first case, we expect
that with more context videos per object, the more diversity
the model will see during meta-training, and hence general-
ize better at meta-testing to novel (target) videos. To test this
hypothesis, we fix a quota of 96 frames per object in each
train task and sample these frames from increasing numbers
of context videos. Frame accuracy increases with more con-
text videos, but overall plateaus between 4-6 context videos
per object. Looking at the number of objects sampled per
user next, we cap all train user’s objects at {2, 4, 6, 8}, re-
spectively, when meta-training. We then meta-test in two
ways: 1) we keep the caps in place on the test users, and
2) we remove the caps. For 1), we see reducing accuracy
for increasing numbers of objects, as is expected – classify-
ing between 8 objects is harder than classifying between 2.
For 2), we see a significant drop in accuracy relative to 1)
suggesting that meta-training with fewer objects than would
be encountered at meta-testing is detrimental. This is an
important real-world consideration since it is likely that over
months/years, a user will accumulate many more objects than
is currently present per user in the ORBIT dataset. Overall,
however, training with a cap of 6 or more objects yields
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Figure 5: Meta-training with more context videos per object
leads to better CLU-VE performance. Frames are sampled
from an increasing number of clean videos per object using
the number of clips per video (Strain) to keep the total number
of context frames fixed per train task.
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Figure 6: Meta-training and -testing with more objects per
user poses a harder recognition problem (solid line), how-
ever, meta-training with fewer objects than encountered at
meta-testing (dashed line) shows only a small CLU-VE per-
formance drop compared to Table 4, suggesting that models
may be able to adapt to more objects in the real-world.

roughly equivalent performance to that reported in Table 4
where no caps are imposed during training. Since ORBIT
test users have up to 12 objects (see Figure A.3c), our results
suggest that a minimum of half the number of ultimate ob-
jects for a test user may be sufficient for meta-training. We
repeat these analyses for the other metrics in Figures A.8
and A.9, and include the corresponding tables in Tables A.5
and A.6. We also investigate the impact of the number of
tasks sampled per train user, included in Appendix H.

6. Discussion
We present the ORBIT dataset and benchmark, both

grounded in the few-shot application of TORs for people
who are blind/low-vision. Our baseline performance and

further analyses demonstrate, however, that current few-shot
approaches struggle on realistic, high-variation data. This
gap offers opportunities for new and exciting research, from
making models robust to high-variation video data to quanti-
fying the uncertainty in model predictions. More than just
pushing the state-of-the-art in existing lines of thought, the
ORBIT dataset opens up new types of challenges that derive
from systems that will support human-AI partnership. We
close by discussing three of these unique characteristics.

ORBIT’s user-centric formulation provides an opportu-
nity to measure how well the ultimate system will work in the
hands of real-world users. This contrasts most few-shot (and
other) benchmarks which retain no notion of the end-user.
Our results show that the baselines do not perform consis-
tently across users. In the real-world, the heterogeneity of
users, their objects, videoing techniques and devices will
make this even more challenging. It will therefore be impor-
tant for models to quantify, explain and ultimately minimize
variation across users, particularly as models are deployed in
a wider variety of scenarios outside the high-income coun-
tries in which the dataset was collected.

Directly involving users in collecting a dataset intended
to drive ML research comes with challenges: user-based
datasets are harder to scale than web-scraped datasets [8, 26,
48] and users need an understanding of the potential system
in order to contribute useful data. Building the system first
would address these challenges, but it cannot be done without
algorithmic innovation (which itself requires the dataset).
The ORBIT dataset is a starting point and can be used to
build the first generation of TORs, which can be deployed
and themselves be used to collect more real-world data to
drive a cycle of innovation between dataset and application.

Finally, grounding in a real-world application encourages
innovation in new directions to meet the real-world condi-
tions of deployment. This could range from new models
that are lightweight enough to be personalized directly on
a user’s phone to new research problems like handling the
scenario when none of a user’s objects are in the frame.

In conclusion, the ORBIT dataset and benchmark aims
to shape the next generation of recognition tools for the
blind/low-vision community starting with TORs, and to im-
prove the robustness of vision systems across a broad range
of other applications.
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