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Abstract

We introduce GNeRF, a framework to marry Generative
Adversarial Networks (GAN) with Neural Radiance Field
(NeRF) reconstruction for the complex scenarios with un-
known and even randomly initialized camera poses. Recent
NeRF-based advances have gained popularity for remark-
able realistic novel view synthesis. However, most of them
heavily rely on accurate camera poses estimation, while
few recent methods can only optimize the unknown camera
poses in roughly forward-facing scenes with relatively short
camera trajectories and require rough camera poses initial-
ization. Differently, our GNeRF only utilizes randomly ini-
tialized poses for complex outside-in scenarios. We propose
a novel two-phases end-to-end framework. The first phase
takes the use of GANs into the new realm for optimizing
coarse camera poses and radiance fields jointly, while the
second phase refines them with additional photometric loss.
We overcome local minima using a hybrid and iterative op-
timization scheme. Extensive experiments on a variety of
synthetic and natural scenes demonstrate the effectiveness
of GNeRF. More impressively, our approach outperforms
the baselines favorably in those scenes with repeated pat-
terns or even low textures that are regarded as extremely
challenging before.

1. Introduction

Recovering 3D representations from multi-view 2D im-
ages is one of the core tasks in computer vision. Recently,
significant progress has been made with the emergence of
neural radiance fields methods (e.g., NeRF [31]), which rep-
resents a scene as a continuous 5D function and uses vol-
ume rendering to synthesize new views. Although NeRF
and its follow-ups [6, 26, 29, 53, 61] achieve an unprece-
dented level of fidelity on a range of challenging scenes,
most of these methods rely heavily on knowing the accurate

Figure 1. Our approach estimates both camera poses and neural
radiance fields using only randomly initialized poses in complex
scenarios, even in the extreme case when the input views are only
texture-less gray masks.

camera poses, which is yet a long-standing but challenging
task. The conventional camera pose estimation process suf-
fers in challenging scenes with repeated patterns, varying
lighting, or few keypoints, and building on these methods
adds additional uncertainty to the NeRF training process.

To explore the possibilities of alleviating the dependence
on accurate camera pose information, recently, iNeRF [60]
and NeRF−− [55] attempt to optimize camera pose along
with other parameters when training NeRF. While certain
progress has been made, both of them can only optimize
camera poses when relatively short camera trajectories with
reasonable camera pose initialization are available. It is
worth noting that, NeRF−− is limited to roughly forward-
facing scenes, the focus of iNeRF is camera pose estimation
but not radiance field estimation, and it assumes a trained
NeRF which in turn requires known camera poses as super-
vision. When greater viewpoint uncertainty presents, cam-
era poses estimation is extremely challenging and prone to
falling into local minima.
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To this end, we propose GNeRF, a novel algorithm that
can estimate both camera poses and neural radiance fields
when the cameras are initialized at random poses in com-
plex scenarios. Our algorithm has two phases: the first
phase gets coarse camera poses and radiance fields with
adversarial training; the second phase refines them jointly
with a photometric loss. Taking the use of Generative Ad-
versarial Networks (GANs) into the realm of camera poses
estimation, we extend the NeRF model to jointly optimize
3D representation and camera poses in complex scenes with
large displacements. Instead of directly propagating the
photometric loss back to the camera pose parameters, which
is sensitive to challenging conditions (e.g., less texture and
varying lighting) and apt to fall into local minima, we pro-
pose a hybrid and iterative optimization scheme. Our learn-
ing pipeline is fully differentiable and end-to-end trainable,
allowing our algorithm to perform well in the challenging
scenes where COLMAP-based [44] methods suffer from
challenges such as repeated patterns, low textures, noise,
even in the extreme cases when the input views are a col-
lection of gray masks, as shown in Fig. 1. In addition,
our method can predict new poses of images belonging
to the same scene through the trained inversion network
without tedious per-scene pose estimation (e.g., COLMAP-
like methods) or time-consuming gradient-based optimiza-
tion (e.g., iNeRF and NeRF−−). We experiment with
our GNeRF on a variety of synthetic and natural scenes.
We demonstrate results on par with COLMAP-based NeRF
methods in regular scenes; more impressively, our method
outperforms the baselines in cases with less texture that are
regarded as extremely challenging before.

2. Related Works

Neural 3D Representations Classic approaches largely
rely on discrete representations such as meshes [13], voxel
grids [7, 49, 58], point clouds [10]. Recent neural con-
tinuous implicit fields are gaining increasing popularity,
due to their capability of representing a high level of de-
tails [30, 39, 40]. But these methods need costly 3D anno-
tations. To bridge the gap between 2D information and 3D
representations, differential rendering tackles such integra-
tion for end-to-end optimization by obtaining useful gradi-
ents of the rendering process [18, 27, 31, 43, 48]. Liu et al.
[27] proposes the first usage of neural implicit surface rep-
resentations in differentiable rendering. Mildenhall et al.
[31] proposes differentiable volume rendering and achieves
more view-consistent reconstructions of the scene. How-
ever, they all assume accurate camera poses as a prerequi-
site.

Recently, several methods attempt to reduce dependence
on precomputed camera poses. Adding noise to the ground-
truth camera poses, IDR [59] produces accurate 3D surface
reconstruction by simultaneously learning 3D representa-

tion and camera poses. Adding random offset to ground-
truth camera poses, iNeRF [60] performs pose estimation
by inverting a trained neural radiance field. Initializing
camera poses to the identity matrix, NeRF−− [55] demon-
strates satisfactory novel view synthesis results in forward-
facing scenes by optimizing camera parameters and radi-
ance field jointly. In contrast to these methods, our method
does not depend on camera pose initialization and is not
sensitive to challenging scenes with less texture and re-
peated patterns.
Pose Estimation Traditional techniques typically rely on
Structured-from-Motion (SfM) [1, 11, 56, 44] which ex-
tracts local descriptor (e.g., SIFT [28]), performs match-
ing to find 2D-3D correspondence, estimates candidate
poses, and then chooses the best pose hypothesis by
RANSAC [12]. Other retrieval-based methods [8, 16, 41,
47] find images similar to the query image and establish the
2D-3D correspondence efficiently by matching the query
image against the database images. Recently, deep learning-
based methods attempt to regress the camera pose directly
from 2D images without the need of tracking. PoseNet [22]
is the firstly end-to-end approach that adopts a modified
truncated GoogleNet as pose regressor. Different architec-
tures [35, 52, 57] or pose losses [3, 21] are utilized which
lead to a significant improvement. Auxiliary tasks such
learning relative pose estimation [51, 42] or semantic seg-
mentation [42] lead to a further improvement. For a better
generalization of the network, hybrid pose learning methods
shift the learning towards local or related problems: [2, 25]
propose to regress the relative pose of a query image to the
known poses based on image retrieval.

These learning-based methods require large labeled
training data, SSV [34] proposes to estimate viewpoints
from unlabeled images via self-supervision. Although great
progress has been made, it still needs abundant training im-
ages. Our method belongs to learning-based methods but is
trained per scene in a self-supervised manner.
3D-Aware Image Synthesis Generative adversarial nets,
or more generally the paradigm of adversarial learning,
have led to significant progress in various image synthesis
tasks [20, 32, 46]. But these methods operate on 2D space
of pixels, ignoring the 3d structure of our natural scene.
3D-aware image synthesis correlates 3D model with 2D im-
ages, enabling explicit modification of 3D model [4, 5, 15,
36, 37, 38, 45]. Earlier 3D-aware image synthesis meth-
ods like RenderNet [36] introduce rendering convolutional
networks with a projection unit that can render 2D images
from 3D shapes. PLATONICGAN [15] uses a voxel-based
representation and a family of differentiable rendering lay-
ers to discover the 3D structure of an object from an un-
structured collection of 2D images. HoloGAN [37] intro-
duces deep voxels representation and learns it also without
any 3D shapes supervision. For these methods, the com-
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bination of differentiable rendering layers and implicit 3D
representation can lead to entangled latent variables and de-
stroy multi-view consistency. The most recent and relevant
to ours are GRAF [45], GIRAFFE [38] and pi-GAN [4],
with the expressiveness of NeRF, these methods allow dis-
entangled shape, appearance modification of the generated
objects.

However, these methods require abundant data and fo-
cus on simplistic objects (e.g., faces, cars) instead of photo-
realistic and complex scenes. Conversely, our method can
handle complex real scenes with limited data by learning a
coarse generative network with limited data and refining it
with photometric constraints.

3. Preliminary
We first introduce the basic camera and scene represen-

tation, as well as notations for our method in this section.

Camera Pose Formally, we represent the camera
pose/extrinsic parameters based on its position/location in
3D space and its rotation from a canonical view. For the
camera position, we simply adopt a 3D embedding vector
in Euclidean space, denoted as t ∈ R3. For the camera ro-
tation, the widely-used representations such as quaternions
and Euler angles are discontinuous and difficult for neural
networks to learn. Following the seminal work [64], we use
a continuous 6D embedding vector r ∈ R6 to represent 3D
rotations, which is more suitable for learning. Concretely,
given a rotation matrix R =

[
a1 a2 a3

]
∈ R3×3, we

compute the rotation vector r by dropping the last column
of the rotation matrix.

From the 6D pose embedding vector, we can also recover
the original rotation matrix using a Gram-Schmidt-like pro-
cess, in which the last column is computed by a generaliza-
tion of the cross product to three dimension [64].

NeRF Scene Representation We adopt the NeRF [31]
framework to represent the underlying 3D scene and image
formation, which encodes a scene as continuous volumetric
radiance field of color and density. Specifically, given a 3D
location x ∈ R3 and 2D viewing direction d ∈ [−π, π]2 as
inputs, the NeRF model defines a 5D vector-valued function
FΘ : (x,d) → (c, σ) based on an MLP network, where its
outputs are an emitted color c ∈ R3 and volume density σ,
and Θ are network parameters. To render an image from a
NeRF model, the NeRF model follows the classical volume
rendering principles [19].

For each scene, the NeRF framework learns a separate
neural representation network with a dataset of RGB im-
ages of the scene, the corresponding camera poses and in-
trinsic parameters, and scene bounds. Concretely, given a
dataset of calibrated RGB images I = {I1, I2, · · · , In}
of a single scene, the corresponding camera poses Φ =
{ϕ1, ϕ2, · · · , ϕn} and a differentiable volume renderer G,

the NeRF model optimizes the continuous volumetric scene
function FΘ by a photometric loss as below,

LN (Θ,Φ) =
1

n

n∑
i=1

∥Ii − Îi∥22, Îi = G(ϕi;FΘ) (1)

4. Methods

Our goal is to learn a NeRF model FΘ from n uncal-
ibrated images I of a single scene without knowing their
camera poses. To this end, we treat the camera poses Φ
of those images as values of a latent variable, and propose
an iterative learning strategy that jointly estimates the cam-
era poses and learns the NeRF model. As the overview of
our approach in Fig. 2 illustrates, the key ingredient of our
method is a novel NeRF estimation strategy based on an
integration of an adversarial loss and an inversion network
(Phase A). This enables us to generate a coarse estimate of
the implicit scene representation FΘ and the camera poses
Φ from a learned inversion network. Given the initial esti-
mate, we utilize photometric loss to refine the NeRF scene
model and those camera poses (Phase B). Interestingly, our
pose-free NeRF estimation process can also further improve
the refined scene representation and camera poses. Addi-
tionally, we develop a regularized NeRF optimization step
that refines the NeRF scene model and those camera poses.
Consequently, our learning algorithm also iterates over the
NeRF estimation and optimization step to further overcome
local minima between the two phases (AB...AB).

In the following, we first present our pose-free NeRF es-
timation procedure in Sec 4.1, and then introduce the regu-
larized and iterative NeRF optimization step in Sec 4.2. The
training strategy is detailed in Sec 4.3 and model architec-
ture is detailed in Sec 4.4.

4.1. Pose-free NeRF Estimation

As the initial stage of our method, in phase A, we do
not have a reasonable camera pose estimation for each im-
age or a pre-trained radiance field. Our goal for this stage
is to predict a rough pose for each image and also learn a
rough radiance field of the scene. As shown in the left part
of Fig. 2, we use adversarial learning to achieve the goals.
Our architecture contains two parts: a generator G and a
discriminator D. Taking a random camera pose ϕ as input,
the generator G will synthesize the image observed at the
view by querying the neural radiance field and performing
NeRF-like volume rendering. The set of synthesized im-
ages from many sampled camera poses will be decomposed
into patches and compared against the set of real patches by
the discriminator D. The fake and real patches are sampled
via the dynamic patch sampling strategy which will be de-
scribed in Sec 4.3. G and D are trained adversarially, as
is done by the classical GAN work [14]. This adversarial
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Figure 2. The pipeline of GNeRF. Our pipeline learns the radiance fields and camera poses jointly in two phases. In phase A, we randomly
sample poses from a predefined poses sampling space and generate corresponding images with the NeRF (G) model. The discriminator
(D) learns to classify real and fake image patches. The inversion network (E) takes in the fake image patches and learns to output their
poses. Then, with the inversion network’s parameters frozen, we optimize the pose embeddings of real images in the dataset. In phase B,
we utilize the photometric loss to refine radiance fields and pose embeddings jointly. We follow a hybrid and iterative optimization strategy
of the pattern ‘A → AB. . .AB → B’ in the training process.

training allows us to roughly learn the radiance field and
estimate camera poses at random initialization.

Formally, we minimize a distribution distance between
the real image patches Pd(I) from the training set I and
the generated image patches Pg(I|Θ), which are defined as
below:

Θ∗ = argmin
Θ

Dist (Pg(I|Θ)||Pd(I)) (2)

Pg(I|Θ) =

∫
ϕ

G(ϕ;FΘ)P (ϕ)dϕ (3)

To minimize the distribution distance, we adopt the fol-
lowing GAN learning framework based on an adversarial
loss LA defined as follows:

min
Θ

max
η

LA(Θ, η) =EI∼Pd
[log(D(I; η))]

+EÎ∼Pg
[log(1−D(Î; η))] (4)

where η are the network parameters of the discriminator
D and E denotes expectation.

Along with the two standard components, we train an
inversion network E that maps image patches to the cor-
responding camera poses. We train the inversion network
with the pairs of randomly sampled camera poses and gen-
erated image patches. The image patches are determinis-
tically sampled from original images via a static sampling
strategy which will be described in Sec 4.3. The inputs of
the inversion network are these image patches, and the out-
puts are the corresponding camera poses. Formally, we de-
note the parameters of the inversion network E as θE , and

its loss function can be written as,

LE(θE) = Eϕ∼P (ϕ)

[
∥E(G(ϕ;FΘ); θE)− ϕ∥22

]
(5)

We note that the inversion network is trained in a self-
supervised manner, which exploits the synthetic image
patches and their corresponding camera poses as the train-
ing data. With the increasingly better-trained generator, the
inversion network would be able to predict camera poses for
real image patches. After the overall training is converged,
we apply the inverse network to generate camera pose esti-
mates {ϕ′

i = E(Ii), Ii ∈ I} for the training set I.

4.2. Regularized Learning Strategy

After the pose-free NeRF estimation step, we obtain an
initial NeRF model and camera pose estimates for the train-
ing images. Due to the sparse sampling of the input im-
age patches and the constrained capability of the inversion
network, neither the NeRF representation nor the estimated
camera poses Φ′ = {ϕ′

i} are accurate enough. However,
they provide a good initialization for the overall training
procedure. This allows us to introduce a refinement step for
the NeRF model and camera poses, phase B, as illustrated
in the right part of Fig. 2. Specifically, this phase optimizes
the pose embedding and the NeRF model by minimizing
the photometric reconstruction error LN (Θ,Φ) as defined
in Eqn. 1.

We note that existing work like iNeRF and NeRF−− can
search a limited scope in the pose space during NeRF op-
timization. However, the pose optimization problem in the
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standard NeRF model is highly non-convex, and hence their
results strongly depend on camera pose initialization and
are still insufficient for our challenging test scenarios. To
mitigate this issue, we propose a regularized learning strat-
egy (AB . . .AB) by interleaving the pose-free NeRF esti-
mation step (phase A) and the NeRF refinement step (phase
B) to further improve the quality of the NeRF model and
pose estimation. Such a design is based on our empirical
findings that the pose-free NeRF estimation can also im-
prove NeRF model and camera poses from the refinement
step.

This strategy regularizes the gradient descent-based
model optimization by the pose prediction from the learned
inversion network. Intuitively, with the adversarial train-
ing of the NeRF model, the domain gap between synthe-
sized fake images and true images is narrowing, so those
pose predictions provide a reasonable and effective con-
straint for the joint radiance fields and pose optimization.
Formally, we define a hybrid loss function LR that com-
bines the photometric reconstruction errors and an L2 loss
penalizing the deviation from the predictions of the inver-
sion network, which can be written as below,

LR(Θ,Φ) = LN (Θ,Φ) +
λ

n

n∑
i=1

∥E(Ii; θE)− ϕi∥22 (6)

where λ is the weighting coefficient and LN (Θ,Φ) is the
photometric loss defined in Eqn. 1.

4.3. Training

Initially, we set all camera extrinsics to be an identity
matrix. In phase A, we sample camera poses ϕ randomly
from the prior pose distribution. In the Synthetic-NeRF
dataset, the cameras are uniformly distributed at the upper
hemisphere and towards the origin. In practice, we com-
pute the rotation matrix directly from the camera position
and the lookat point. In the DTU dataset, the cameras are
uniformly distributed at the upper hemisphere with an az-
imuth range of [0, 150], and the lookat point is distributed
at a gaussian distribution N (0, 0.012). We analyze how the
mismatch of prior pose distribution influences the perfor-
mance in the supplemental material.

To train the generative radiance field, we follow a simi-
lar patch sampling strategy as GRAF [45] for computation
and memory efficiency. Specifically, for the GAN training
process, we adopt a dynamic patch sampling strategy, as is
illustrated in the lower left part of Fig. 2. Each patch is sam-
pled within the image domain with a fixed size of 16 × 16
but dynamic scale and random offset. For the pose opti-
mization process, we adopt a static patch sampling strategy,
as is illustrated in the upper left part of Fig. 2. Each patch is
uniformly sampled across the whole image domain with a
fixed size of 64× 64. This sampling strategy uniquely rep-
resents the whole image with a sparse patch with which we

estimate the corresponding camera pose. We also scale the
camera intrinsics at the beginning to maximize the recep-
tive field and progressively increase it to the original value
to concentrate on fine details. In practice, these strategies
bring great benefits to the stability of the GAN training pro-
cess.

4.4. Implementation Details

We adopt the network architecture of the original
NeRF [31] and its hierarchical sampling strategy to our gen-
erator. The numbers of sampled points of both coarse sam-
pling and importance sampling are set to 64. Differently,
because the GAN training only narrows the distribution of
real patches and fake patches (“coarse” and “fine”), we uti-
lize the same MLPs in hierarchical sampling strategy to en-
sure the pose spaces of “coarse” and “fine” networks are
aligned. For a fair comparison, we increase the dimension
of the MLPs from the original 256 to 360 to keep the overall
parameters nearly unchanged. The discriminator network
follows GRAF [45], in which instance normalization [50]
over features and spectral normalization [33] over weights
are applied. We borrow the Vision Transformer Network [9]
to build our inversion network, whose last layer is modified
to output a camera pose.

We use RMSprop [24] algorithm to optimize the gener-
ator and the discriminator with learning rates of 0.0005 and
0.0001, respectively. As for the inversion network and cam-
era poses, we use Adam [23] algorithm with learning rates
of 0.0001 and 0.005.

5. Experiments

Here we compare our method with other approaches
which require camera poses or a coarse camera initializa-
tion on view synthesis task and evaluate our method in var-
ious scenarios. We run our experiments on a PC with Intel
i7-8700K CPU, 32GB RAM, and a single Nvidia RTX TI-
TAN GPU, where our approach takes 30 hours to train the
network on a single scene.

5.1. Performance Evaluations

Novel View Synthesis Comparison We firstly compare
novel view synthesis quality on the Synthetic-NeRF [31]
and DTU [17] datasets with three other approaches: Orig-
inal NeRF [31] with precalibrated camera poses from
COLMAP [44], denoted by C+n; Original NeRF with pre-
calibrated camera poses from COLMAP but jointly refined
via gradient descent, denoted by C+r; Original NeRF with
ground-truth camera poses, denoted by G+n. We report the
standard image quality metrics Peak Signal-to-Noise Ra-
tio (PSNR), Structural Similarity Index (SSIM) [54] and
Learned Perceptual Image Patch Similarity (LPIPS) [62] to
evaluate image perceptual quality.
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Data Scene ↑ PSNR ↑ SSIM ↓ LPIPS

C+n C+r Ours G+n C+n C+r Ours G+n C+n C+r Ours G+n

Sy
nt

he
tic

-
N

eR
F

Chair 33.75 32.70 31.30 32.84 0.97 0.95 0.94 0.97 0.03 0.05 0.08 0.04
Drums 22.39 23.42 24.30 26.71 0.91 0.88 0.90 0.93 0.10 0.13 0.13 0.07
Hotdog 25.14 33.59 32.00 29.72 0.96 0.97 0.96 0.95 0.05 0.03 0.07 0.04
Lego 29.13 28.73 28.52 31.06 0.93 0.92 0.91 0.95 0.06 0.08 0.09 0.04
Mic 26.62 31.58 31.07 34.65 0.96 0.97 0.96 0.97 0.04 0.03 0.06 0.02
Ship 27.49 28.04 26.51 28.97 0.88 0.86 0.85 0.82 0.16 0.18 0.21 0.15

D
T

U

Scan4 22.05 24.23 22.88 25.52 0.69 0.72 0.82 0.78 0.32 0.20 0.37 0.18
Scan48 6.718 10.40 23.25 26.20 0.52 0.62 0.87 0.90 0.65 0.60 0.21 0.21
Scan63 27.80 26.61 25.11 32.19 0.90 0.90 0.90 0.93 0.21 0.19 0.29 0.24
Scan104 10.52 13.92 21.40 23.35 0.48 0.55 0.76 0.82 0.60 0.59 0.44 0.36

Table 1. Quantitative comparison among COLMAP-based NeRF [31] (C+n), COLMAP-based NeRF with additional refinement
(C+r), NeRF with ground-truth poses(G+n), and ours on the Synthetic-NeRF [31] dataset and DTU [17] dataset. We report PSNR,
SSIM and LPIPS metrics to evaluate novel view synthesis quality. Our method without posed camera generates novel views on par with
COLMAP-based NeRF and is more robust to challenging scene where COLMAP-based NeRF fails.

Figure 3. Qualitative comparison between COLMAP-based NeRF (C+n) and ours on novel view synthesis quality on Synthetic-
NeRF [31] dataset and DTU [17] dataset. ‘GT’ means ground-truth images.

For evaluation, we need to estimate the camera poses
of the test view images. Since our method can predict the
poses of new images, the camera poses of the test view are
directly estimated by our well-trained model. Conversely,
for the COLMAP-based methods, we need to estimate the
camera poses of images in the training set and test set to-
gether to keep them lie in the same space. We note that the
COLMAP produces more accurate poses estimation with
more input images, so for fair evaluation, we only choose
a limited number of test images. The selection is based on
maximizing their mutual angular distance between views so
that test samples can cover different perspectives of the ob-
ject as much as possible. For the Synthetic-NeRF dataset,
we follow the same split as the original but randomly sam-

ple eight images from the test set for testing. The COLMAP
is incapable to register the images with the resolution of
400× 400 as shown in the supplement material, so 108 im-
ages of 800 × 800 are used for camera registration with
which COLMAP performs much better. The training im-
age resolution for all the methods is 400 × 400. For the
DTU dataset, we use four representative scenes, on each of
which we take every 8-th image as test images and take the
rest 43 images for training. The input image resolution is
500 × 400. The scene selection is based on consideration
of diversity: synthetic scenes (Synthetic-NeRF); real scenes
with rich texture (scan4 and scan63); real scenes with less
texture (scan48 and scan104).

As in Tab. 1, We also show the quantitative performance
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Methods Scan48 Scan97 Scan104

IDR(masked) [59] 21.17 17.42 12.26
Ours(masked) 20.40 19.40 19.81

Ours 25.71 24.52 25.70
Table 2. Quantitiative rendering quality comparison between
IDR and ours on DTU [17] dataset. The evaluation metric is
PSNR.

Figure 4. Qualitative rendering quality comparison between
IDR [59] and ours on DTU dataset.

of all the three methods on the Synthetic-NeRF and DTU
datasets. We notice that our method outperforms the C+n
in scenes (drums, hotdog, mic, ship, scan48, and scan104)
without enough reliable keypoints. C+r has a better perfor-
mance than C+n’s. However, limited by the poor pose ini-
tialization, C+r can not produce the same performance as
ours in some challenging scenes (scan48 and scan104). For
other scenes, our method generates satisfactory results on
par with the COLMAP-based NeRF methods. As in Fig. 3,
We also show the visualization comparison. Our method
outperforms the C+n in those challenging scenes while
achieving similar results on regular scenes with enough key-
points. These challenging scenes do not have enough key-
points for pose estimation, so make NeRF which needs
precise poses as input fail to synthesis good results. Con-
versely, our method optimizes the pose and radiance fields
jointly by learning the global appearance distribution, so
does not rely on texture or keypoints.

Additionally, to further demonstrate our architecture’s
ability to learn the high-quality 3D representation without
camera poses, we also compare with the state-of-the-art
3D surface reconstruction method, IDR [59], by compar-
ing the rendering quality. Note that the IDR method re-
quires image masks and noisy camera initializations, while
our method does not need them. We follow the same setting

Scene COLMAP [44] Ours

↓ Rot(deg) ↓ Trans ↓ Rot(deg) ↓ Trans

Chair 0.119 0.006 0.363 0.018
Drums 9.985 0.522 0.204 0.010
Hotdog 0.542 0.024 2.349 0.122
Lego 7.492 0.332 0.430 0.023
Mic 0.746 0.047 1.865 0.031
Ship 0.191 0.010 3.721 0.176

Table 3. Quantitative camera poses accuracy comparison be-
tween COLMAP and ours on Synthetic-NeRF [31] dataset. We
report the mean camera rotation difference (Rot) and translation
difference (Trans) over the training set.

of optimizing the model and camera extrinsics jointly on 49
training images of each scene and report the mean PSNR
as evaluation metrics. We report the PSNR computed on
the whole image and within the mask, which is the same
evaluation protocol as IDR. The qualitative and quantita-
tive results are in Tab. 2 and Fig. 4. It can be seen that our
volume-rendering-based method produces more natural im-
ages, while IDR produces results with more artifacts and
fewer fine details.

Camera Poses Comparison We evaluate the accuracy
of camera poses estimation on the Synthetic-NeRF dataset
which contains several relatively challenging scenes with
repeated patterns or less texture. The camera model of
COLMAP is SIMPLE PINHOLE with shared intrinsics,
f = 1111.111, cx = 400, cy = 400. For COLMAP, the in-
put image size is 800×800 and the number is 108, while for
our method, the input image size is 400× 400 and the num-
ber is 100. We note that COLMAP produces more accu-
rate estimates with more input images. In Tab. 3, we report
the mean translation and rotation difference on the training
set computed with the ATE toolbox [63]. Our method out-
performs the COLMAP [44] on the drums and lego scenes
which have less texture and repeated patterns. However, on
the other scenes, which still contain enough reliable key-
points, our method is not accurate as the COLMAP.

5.2. Ablation Study

In Tab. 4 and Fig. 5, we show an ablation study over dif-
ferent components of our model. Our full architecture of
the combination of adversarial training, inversion network,
and photometric loss achieves the best performance. With-
out either the adversarial loss or the inversion network, the
model is incapable to learn correct geometry, as illustrated
in the depth map; without the photometric loss, the model
is only capable to get coarse radiance fields.

In Tab. 5 and Fig. 6, we analyze different optimization
schemes. We represent Phase A and Phase B as A and B
respectively. Our adopted iterative optimization scheme on
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Adver Inver Photo ↑ PSNR ↓ Rot(deg) ↓ Trans

✓ ✓ 19.31 108.22 2.53
✓ ✓ 13.82 132.85 3.05
✓ ✓ 20.60 5.91 0.24
✓ ✓ ✓ 31.30 0.36 0.02

Table 4. Ablation study. We report PSNR, camera rotation dif-
ference (Rot), and translation difference (Trans) of the full model
(the last row) and three configurations by removing the adversarial
loss (Adver), the inversion network (Inver), and the photometric
loss (Photo), respectively. Removing adversarial loss and inver-
sion network prevents the model from learning reasonable camera
poses. Removing photometric loss prevents the model from get-
ting accurate camera poses.

Figure 5. Ablation study. We visualize novel view RGB images
and depth maps of the four different configurations.

A, B A, AB...AB, B ↑ PSNR ↓ Rot(deg) ↓ Trans

✓ 29.23 0.592 0.034
✓ 31.30 0.363 0.018

Table 5. Optimization schemes analysis. We compare two op-
timization schemes: ‘A, B’ and ‘A, AB...AB, B’. The additional
iterative optimization step enables our model to achieve much bet-
ter results.

.

Figure 6. Optimization schemes analysis. On the left, we visu-
alize the projection of camera poses on xy-plane of the obtained
image from the two optimization schemes. On the right, we show
depth maps of the view in the circled camera region and two de-
tailed parts (yellow and purple insets) of them.

the pattern ‘A, AB...AB, B’ achieves much higher image
quality and camera pose accuracy than that of ‘A, B’. In
Fig. 6, the iterative optimization scheme gets much finer
geometry along the edge, and the estimated camera poses
align much closer to the ground-truth camera poses. These
results demonstrate that the iterative learning strategy can

further help overcome local minima.

6. Discussion and Conclusion

Discussion First, our method does not depend on camera
pose initialization, but it does require a reasonable camera
pose sampling distribution. For different datasets, we rely
on a camera sampling distribution not far from the true dis-
tribution to alleviate the difficulties for radiance field and
pose estimation. This could potentially be mitigated by
learning the underlying pose sampling space automatically.
A promising future direction would be combining global
appearance distribution optimization (our approach) and lo-
cal feature matching (pose distribution estimator) for the
appearance and geometric reconstruction in an end-to-end
manner. This combination potentially preserves our capa-
bility to challenging cases and relax to more general scenes
without accurate distribution prior. Second, jointly optimiz-
ing camera poses and scene representation is a challeng-
ing task and opt to fall in local minima. Although in real
datasets, we achieve good novel view synthesis quality on
par with NeRF if the accurate camera poses are present,
our optimized camera poses are still not so accurate as of
the COLMAP when there are sufficient amount of reliable
keypoints. This may be due to that our inversion network,
which maps images to camera poses, could only take in
image patches with limited size for computation efficiency.
This might be fixed by importance sampling.
Conclusion We have presented GNeRF, a GAN-based
framework to reconstruct neural radiance fields and esti-
mate camera poses when the camera poses are completely
unknown and scene conditions can be complicated. Our
framework is fully differentiable and end-to-end trainable.
Specifically, our first phase enables GAN-based joint opti-
mization for the 3D representation and the camera poses,
and our hybrid and iterative scheme by interleaving the first
and second phases would further refine the results robustly.
Extensive experiments demonstrate the effectiveness of our
approach. Impressively, our approach has demonstrated
promising results on those scenes with repeated patterns or
even less texture, which have been regarded as extremely
challenging before. We believe our approach is a critical
step towards the more general neural scene modeling goal
using less human-crafted priors.
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