
Learning Compatible Embeddings

Qiang Meng Chixiang Zhang Xiaoqiang Xu Feng Zhou
Algorithm Research, AiBee Inc.

{qmeng, cxzhang, xiaoqiangxu, fzhou}@aibee.com

Abstract

Achieving backward compatibility when rolling out new
models can highly reduce costs or even bypass feature re-
encoding of existing gallery images for in-production vi-
sual retrieval systems. Previous related works usually lever-
age losses used in knowledge distillation which can cause
performance degradations or not guarantee compatibility.
To address these issues, we propose a general framework
called Learning Compatible Embeddings (LCE) which is
applicable for both cross model compatibility and com-
patible training in direct/forward/backward manners. Our
compatibility is achieved by aligning class centers between
models directly or via a transformation, and restricting
more compact intra-class distributions for the new model.
Experiments are conducted in extensive scenarios such as
changes of training dataset, loss functions, network archi-
tectures as well as feature dimensions, and demonstrate that
LCE efficiently enables model compatibility with marginal
sacrifices of accuracies. The code will be available at
https://github.com/IrvingMeng/LCE.

1. Introduction
Visual search or retrieval systems [36, 37] are widely

used in many real-world applications such as face recog-
nition [42, 39, 33, 26, 27], person re-identification [40, 16,
34], car re-identification [19] and image retrieval [2, 12]. To
obtain steady improvement, models would be occasionally
upgraded by training on larger or cleaner datasets, adopting
more powerful network structures and training losses, or ap-
plying techniques like network architecture search [56, 50],
knowledge distillation [17] and network pruning [23, 11].
However, to harvest the benefits of new models, a pro-
cess known as “backfilling” or “re-indexing” [38] is in-
dispensable to re-encode all images in the gallery set to
recreate clusters. This process could be impractical to ex-
ecute when there are limited computational resources for
re-encoding, or original images are legally forbidden to be
preserved without user authorization. Model compatibility
techniques, which can heavily reduce costs of or even by-
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Figure 1: An overview of model compatibility problems. (a)
Model compatibility matches model 1 and model 2 through three
optional directions. Features f1, f2 from two models can make
a direct comparison, noted as direct compatible method. With
transformations T 2

1 and T 1
2 involved, we achieve either backward

compatible by comparing f2→1 with f1, or forward compatible
if compare f1→2 and f2. (b) Our compatibility is achieved by
aligning the class centers across models through a direct compar-
ison (by setting T s to identity mappings) or via transformations,
and restricting more compact intra-class distributions for the new
model. Best viewed in color.

pass the process, therefore are of great practical values.

Because of the multiplicity of application scenarios in
visual search/retrieval fields, as well as compatibility direc-
tions to implement, model compatibility has never been em-
ployed via a general, unified set of patterns. Viewing in the
perspective of application scenarios, there are two types of
model compatibility methods. The first type is called cross
model compatibility (CMC) whose goal is to find compat-
ible mappings between the previous and upgraded models,
where the upgraded models already exist. As model per-
formance may degrade if compatibility is considered, CMC
serves well for the scenarios that model performances are
more valuable than compatibility. The second type is com-
patible training (CT) which aims at upgrading models with
compatibility constraints. When bringing up against the
scenarios where frequent iterations for online models are re-
quired, CT possesses an inherent feasibility to take charge.

The perspective of compatible directions categorizes
model compatibility into three types: backward, forward
and direct compatible methods (Fig. 1a). Direct compati-
ble methods compare new features with old gallery sets di-
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rectly, which is the most efficient as it completely prevents
“backfilling” processes. Backward compatible methods en-
dow a backward transformation that maps new features into
old feature spaces, and they are capable of waiving re-
encoding large gallery sets. Lightweight improvement for
cumbersome model architectures is another potential sce-
nario for backward compatible methods since old models
spawn more separable feature spaces than new models in
the circumstances. Forward compatible methods utilize
a forward transformation that maps old features into new
feature spaces, which is aimed at upgrading small gallery
sets, especially when new models have much better perfor-
mances than old ones.

Despite its great practical values, model compatibil-
ity is a relatively unexplored research area. Few efforts,
R3AN [4], RBT [44] (for CMC) and BCT [38] (for CT),
are proposed and reach comparable results. However, these
three works are only appropriate for limited application sce-
narios or compatible directions. Moreover, their model per-
formances and compatibility are still arduous to be guaran-
teed, not only because of the further intensified nature of
incompatibility for two different feature spaces when up-
graded models dramatically changing training factors (e.g.,
backbones, losses, training datasets, or even settings of op-
timizers), but also as a result of the point-wise losses they
utilize, which align each feature pair and therefore prevent
learning of more discriminative features.

To address the above issues, we propose a general frame-
work called LCE for model compatibility as shown in
Fig. 1. Model 1 represents the target compatible model.
Model 2 is pre-existed for CMC while trained for CT. Trans-
formations T 1, T 2 map features to another spaces and en-
able direct/backward/forward compatibility. Our compati-
bility is achieved by aligning feature classes across models
and restricting the mapped features to be distributed within
the original boundaries (i.e., more compact intra-class dis-
tributions). By this means, the mapped feature f2→1 is dis-
tributed inside the correct class in the original feature space
and that makes features comparable.

Besides the compatibility, our framework also benefits
the learning of more discriminative features in the follow-
ing aspects: (a) Our method works in a point-to-set manner
instead of employing point-wise constraints. As shown in
Fig. 1b, features from same instance are not restricted to
be distributed closely. (b) By the restriction of the original
boundary, intra-class distributions are more compact com-
pared to those from the old model. (c) The introduced trans-
formation T relaxes the requirement for consistent inter-
class distributions, as inter-class distributions may vary a
lot across models (e.g., ResNet100 [15] can separate fea-
tures more easily than MobileFace [5]). Overall, we make
the following contributions:

• Compared to previous methods which work in a point-

wise manner, we reformulate the model compatibility
from the aspect of classes and highly decouple mod-
els. Specifically, we align feature classes across mod-
els and restrict the new-to-old mapped features to be
distributed within the original boundaries. With the
proposed point-to-set constraints and transformations,
we achieve model compatibility with marginal sacri-
fices of accuracies.

• We unify the two model compatibility problems (e.g.,
CMC and CT) into a unified training framework called
LCE, which can work in direct/backward/forward
manners. Extensive experiments and ablation study
are conducted on both problems with various factors
such as network structures and losses. The proposed
method achieves noteworthy results compared to cur-
rent state-of-the-arts.

2. Related Works
Model compatibility is essentially transferring knowl-

edge across models. This section reviews related works in
fields of transfer learning, knowledge distillation and model
compatibility, from the perspective of feature embeddings.

2.1. Feature Representation Transfer Learning

Feature representation transfer learning aims at trans-
forming each original feature into a new feature represen-
tation for knowledge transfer [55]. Pan et al. [29] propose
to learn a low-dimensional latent feature space where the
distributions between the source and target domain data are
the same or close to each other. JDA [24] jointly adapts
both the marginal distribution and conditional distribution
and constructs new feature representation for substantial
distribution difference. JDA is further extended by utiliz-
ing the label and structure information [18], clustering in-
formation [41], various statistical and geometrical informa-
tion [53] and balanced distributions [47], etc. Feature aug-
mentation based methods [7, 21, 10, 22] transfer the original
features by feature replication to augment datasets for tar-
get domain. Even though is related to model compatibility,
feature representation transfer learning focuses on transfer-
ring the knowledge contained in source domains to target
domains instead of achieving comparable features.

2.2. Knowledge Distillation

Knowledge distillation (KD), which aims at transferring
knowledge acquired in a teacher model to a student model,
was first proposed by Hinton et al. [17]. There exists a great
amount of knowledge sources and knowledge types in this
field (see [13, 48] for recent reviews). Various knowledge
sources are adopted in literature such as classification log-
its [17, 1, 28], hint layers [35, 54, 49, 3] and multi-layer
groups [52, 51, 20]. Knowledge types can be categorized
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into feature embeddings [35, 49], feature maps [3] and in-
stance relationships [30, 32], etc. Despite the diverse cat-
egories, most works adopt KL-divergence or l2 distance as
the loss to transfer knowledge. For example, both Dark-
Rank [6] and Mirzadeh et al. [28] learn to match softened
logits between teacher model and student model using KL-
divergence. PKT [31] proposes to align probability distri-
butions in the feature spaces for representation/metric learn-
ing tasks. RKD [30] introduces distance-wise and angle-
wise distillation losses that mimic structural differences in
relations. CCKD [32] combines the two losses to ensure
congruence between teacher and student models, in both
instance-level and group-level. Their experiments are con-
ducted on classification tasks and metric learning tasks and
achieve promising results.

2.3. Model Compatibility

Model compatibility is to make features comparable
across models and is of great practical values for visual re-
trieval systems. This technique can heavily reduce com-
putational costs of re-encoding gallery sets which is large-
volume in modern applications but less studied in liter-
atures. For CMC whose goal is to find mappings be-
tween models, R3AN [4] learns feature transformation by
a process of reconstruction, representation and regression
for face recognition. RBT [44] designs a light-weight
residual bottleneck transformation module following the
split-transform-merge strategy and achieves remarkable im-
provements compared to R3AN in their experiments. Their
module is trained by a classification loss, an l2 similarity
loss between feature embeddings and a KL-divergence loss
between logits in classifiers. For CT, BCT [38] introduces
an influence loss and trains new features on both new and
old classifiers, which is essentially aligning the logits. As
sharing the same high-level idea of transferring knowledge
in KD, RBT [44] and BCT [38] both utilize similar ideas
and losses to achieve their compatibility.

The main differences between KD and model compati-
bility mainly lie in two aspects. The first difference is that
the old model in KD is a teacher model and normally per-
forms better than the student model. For model compati-
bility, performances of upgraded models may decrease in
some special cases such as light-weight structures or small
feature dimensions introduced. However, in most scenarios,
the upgrade models have potentially better performances
with more data involved and technological advances. Di-
rectly distilling the exact logits or locations between each
pair of old and new features, usually adopted by previous
works, is too strict and could inherit bad inter-class distri-
butions from old models to new ones. For example, class C
and D in the old feature space are overlapped in Fig. 2a. Di-
rectly aligning features prevents the new model from learn-
ing more discriminative features.

B
A

𝑓" 𝑓#
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A
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Figure 2: Model compatibility in an open-set system. f1, f2 are
features from model 1, 2. Regions inside dash lines represent fea-
ture clusters from model 1 and the colored region are from model
2. In this example, class A, C, D are from the training dataset.
Class B is an absent class in training dataset but can appear dur-
ing test. (a) Traditional methods can lead to incompatible feature
spaces. (b) Feature distributions in our method. Here f2→1 is the
mapped feature, whose distribution is restricted inside the bound-
ary of model 1.

Another difference is that traditional losses used in KD
cannot fully guarantee model compatibility, as intra-class
boundaries are difficult to be constrained by traditional KD
losses. As shown in Fig. 2a, f1, f2 have similar logits and a
small l2 distance during training because of the absence of
class B. Therefore, the conventional losses in KD perform
weak penalties. While during the testing phase, f2 belongs
to cluster B and thus is not compatible with the original
feature f1.

Our proposed LCE framework is capable of alleviating
the vulnerabilities of traditional KD losses. As Fig. 2b de-
picts, our method not only forces more compact intra-class
distributions (class A, C, D), but also renders more discrimi-
native inter-class distributions (class C, D are separable with
new features) for the new model.

3. Methodology
Our LCE framework is developed following three rules:

(1) Compatibility should be ensured and the issues pre-
sented in Fig. 2a are expected to be prevented whenever
possible. (2) The new model should be decoupled from the
previous one as much as possible to reduce performance
drops. (3) The method should fit both CMC and CT prob-
lems.

3.1. Criterions for Compatibility

Suppose there are N samples {xi, yi}Ni=1 of n classes
and their embeddings from two models are {f1

i , f
2
i }Ni=1, re-

spectively. For ∀i1,∀i2 ∈ {1, 2, · · ·N} and i1 ̸= i2, the
point-wise compatibility criterion (e.g., BCT [38]) is de-
fined as

(Point-wise)
d(f2

i1 , f
1
i2) ≥ d(f1

i1 , f
1
i2), if yi1 ̸= yi2 ,

d(f2
i1 , f

1
i2) ≤ d(f1

i1 , f
1
i2), if yi1 = yi2 .

(1)

Here d measures the distances. This criterion is too strict as
it adds constraints to all pairs of samples (i.e., N2−N con-
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Figure 3: Overview of the proposed LCE method and the associated losses. We assume model 1 is the compatible target model and
therefore its weights are fixed during the training. In the feature space of model 1, denote class j has a maximum angle b1j to its class center
w1

j . The model 2 can be pre-existed or to be trained based on the real situations, and transformations T 2
1 , T

1
2 map embeddings {fi}Ni=1 and

class centers {wj}nj=1 from one feature space to another. Our compatibility is achieved by (1) an alignment loss which aligns class centers
between two models, (2) a boundary loss which enforces the mapped f2→1

i to have more compact intra-class distributions (formulated as
the angle between f2→1

i and w1
yi is smaller than b1yi in our work) and (3) a classification loss.

straints) and leads to excluded solutions especially if mod-
els are trained with different networks/losses.

Our compatibility is defined differently. To start with,
we first map features to another feature space, which re-
laxes the requirement for direct comparisons. We call the
mapped features as f1→2

i , f2→1
i . Denote features of class

j from model 1 are distributed in a feature region C1
j . Our

criterion for compatibility is simply defined as f2→1
i ∈ C1

yi

for all i, which is from the perspective of point-to-set com-
parison. Specifically, we restrict the f2→1

i to be distributed
inside the corresponding original boundary as indicated in
Fig. 2b. By this means, the new feature space regulates
more constrictive intra-class boundaries and more diacrit-
ical inter-class distributions.

As the real feature region is unavailable (i.e., a feature
region contains an infinity number of features while the esti-
mated features are of a limited number), we estimate the set
C1

yi
by the class center w1

yi
and its boundary b1yi

(as shown
in Fig. 3, boundary loss). Then the criterion is re-formulated
by

(Point-to-set) θ(f2→1
i , w1

yi) ≤ b1yi ∀i ∈ {1, 2, · · · , N}.
(2)

Here θ(w, f) = arccos( wT f
∥w∥∥f∥ ) which measures the angle

between vectors w and f .

3.2. Transformation Module

Besides the point-to-set compatibility, we further decou-
ple models by transformations T 2

1 , T
1
2 which relieve gaps

between feature spaces preferred by various models. The
transformations T 2

1 , T
1
2 map features/class centers from one

feature space to another and mapped embeddings are de-

noted by superscripts 1 → 2, 2 → 1. Specifically, we have

f2→1
i = T 1

2 (f
2
i ), f

1→2
i = T 2

1 (f
1
i ), ∀j ∈ {1, 2, · · · , N}

w2→1
j = T 1

2 (w
2
j ), w

1→2
j = T 2

1 (w
1
j ), ∀j ∈ {1, 2, · · · , n}

(3)
With the transformations, we can map new features to the
old feature space, map old features to the new feature space
or direct compare features. These correspond to backward,
forward and direct compatibility respectively. The struc-
ture of our used transformation module is presented in top
left of Fig. 3. The module is modified from the residual
bottleneck transformation module introduced in RBT [44].
Note that original module requires same feature dimension
for input and output. Thus, we append one additional fully
connected layer if dimension changes. Besides, the number
of sub-modules K = 4 for backward and forward compati-
bility. For direct compatibility, K = 0 and therefore T 2

1 , T
1
2

degrades to identity mappings.
To train the transformations, we define four types of class

regions C1
j , C

2
j , C

1→2
j , C2→1

j . Our transformations are es-
timated by aligning locations of class regions {C1

j , C
2→1
j }

and {C2
j , C

1→2
j }. In the end, the module is learned by en-

forcing the consistency between class centers (i.e., w1
j =

w2→1
j and w2

j = w1→2
j ).

3.3. The General Framework

Fig. 3 illustrates the details of our method. As a gen-
eral framework, our method can fit both CMC and CT prob-
lems. Specifically, model 1 is the compatible target model
and therefore its weights are always fixed. For CMC, model
2 is also fixed and the purpose is to find mappings between
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feature spaces of two models. For CT, we aim at training
the model 2 while keeping compatible with model 1.
Pre-processing. Before training, we first pre-compute nor-
malized feature f1

i of training sample {xi, yi} from model
1. For each class j ∈ {1, 2, · · · , n} with Nj samples, we
calculate the class center w1

j by taking the average of the
features. After that, we calculate Nj angles between the
class center and corresponding samples and denote them as
{θ1i }

Nj

i=1. Then the original boundary for class j in the old
feature space b1j is estimated by

b1j = max{I(θ11) · θ11, I(θ12) · θ12, · · · , I(θ1Nj
) · θ1Nj

}. (4)

Here I(θ) is 0 if θ is estimated as an outlier and 1 otherwise.
The outliers are identified by the 1.5IQR rule which is a
common method in statistical analysis [43].

{w2
j}nj=1 is also pre-computed for the CMC problem.

For CT, {w2
j}nj=1 are weights in the classifier and are

learned from data. As mentioned before, our compatibility
is achieved by aligning class centers between new and old
models via the transformation module, and force the new-
learned features to be more compact than the old ones. That
corresponds to the alignment loss La and boundary loss Lb

in the framework. A classification loss Lcls is further intro-
duced to guarantee model performances.
Alignment loss. Define function d(·) as a measurement of
cosine distances. Our alignment loss is used to align class
locations between two models and defined as

La =

n∑
j=1

(
d(w1→2

j , w2
j ) + d(w2→1

j , w1
j )
)
. (5)

Boundary loss. The boundary loss constrains the new fea-
tures to be more centralized to class centers than the old
models and is defined as

Lb =

N∑
i=1

max
(
0, θ(f2→1

i , w1
yi)− b1yi

)
. (6)

It not only contributes to the compatibility, but also leads
to smaller intra-class variations and helps learns more dis-
criminative embeddings.
Classification loss. The general format of a classification
loss for sample i is

Lcls(w, fi) = − log
es·µ(wyi

,fi)

es·µ(wyi
,fi) +

n∑
j=1,j ̸=yi

es·ν(wj ,fi)

. (7)

µ, ν generate similarity scores and are in various formats
for different losses. For example, µ(w, f) = ν(w, f) =
wT f

∥wT f∥ for NormFace [45] while µ(w, f) = wT f
∥wT f∥ −

m, ν(w, f) = wT f
∥wT f∥ for CosFace [46].

For CMC, as f1
i , f

2
i are already well-trained for clas-

sification, we compute the classification loss on f1→2
i

and precalculated class centers for model 2 (i.e., Lc =
Lcls(w

2, f1→2
i )). For CT, the loss is Lc = Lcls(w, f

2
i )

where w are learned during training.
The whole loss. In the end, the loss for the framework is

LLCE = λaLa + λbLb + Lc (8)

Here λa, λb are two hyperparameters.

4. Experiments
In our experiments, we begin describing implementa-

tion details in Sec. 4.1 and evaluation metrics in Sec. 4.2.
Sec. 4.3 is the ablation study which examines effects of
the components in LCE. Then we evaluate our proposed
method on CMC in Sec. 4.4. For the CT problem, only di-
rect compatibility is studied for fair comparisons with base-
lines. Sec. 4.5 presents the results on CT with different
training dataset, loss functions and network architectures,
while experiments on different feature dimensions and se-
quential compatibility are in Sec. A (in the supplementary).

4.1. Implementation Details

Datasets. The original MS-Celeb-1M dataset [14] con-
tains about 10 million images of 100k identities. How-
ever, it consists of a great many noisy face images. Instead,
MS1Mv2 [9] (5.8M images, 85k identities) is adpoted as
our training dataset. For change of training datasets, we
also collect faces from the first 50% of identities from
MS1Mv2 and call the dataset as MS1Mv2(1/2). For eval-
uation, we adopt a top challenging benchmark called IJB-
C [25], which covers about 3,500 identities with a total
of 31,334 images and 117,542 unconstrained video frames.
We calculate the TARs at FAR=1e-4 in the 1:1 verification
on IJB-C benchmark, where 19k positive and 15M nega-
tive matches are involved. All the images are aligned to
112× 112 following the setting in ArcFace [9].
Training. All the models are trained on 8 1080Tis by
stochastic gradient descent. For CMC, we train the trans-
formations for 20 epochs, with learning rate initialized at
0.1 and divided by 10 at epoch 5, 10, 15. For CT, we initial-
ize the learning rate by 0.1 and divide it by 10 at 10, 18, 22
epochs. The training stops at the 25th epoch. The weight
decay is set to 5e-4 and the momentum is 0.9. The recom-
mended hyper-parameters are used for classification losses
from the original papers (e.g., m = 0.5, s = 64 for Arc-
Face [9]). We only augment training samples by random
horizontal flipping and empirically set λa = 100, λb = 0.1
for LCE.
Baselines. In our experiments, the main baselines are
RBT [44] for CMC and BCT [38] for CT, which are cur-
rent state-of-the-arts in the corresponding fields. For RBT,
we use the recommended hyper-parameters in their paper.
For BCT, the recommended weight for their influence loss
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are not provided. We tried several values and found 0.5 is
the best value in our implementation. Therefore, 0.5 is used
for all BCT experiments.

4.2. Evaluation Metrics

Model performance and compatibility performance. We
evaluate model performance by 1v1 verification accuracy
(abbreviated as Ver. Acc. in all tables) on the IJB-C bench-
mark. To measure the compatibility performance between
the old model ϕ1 and the new model ϕ2, we use ϕ1 to extract
the feature embedding for the first template in the pair and
ϕ2 for the second, and report the cross verification accuracy
(abbreviated as Cross Veri. Acc. in all tables).
Performance gain. For the scenario of CT, the performance
of the upgraded model is also vital to the whole system be-
sides the compatibility. Therefore, we report the relative
performance improvement from ϕ1 to ϕ2 by

Gper. =
M(ϕ2)−M(ϕ1)

|M(ϕ2
upper)−M(ϕ1)|

. (9)

Here M(ϕ) measures the recognition performance of
model ϕ. Compared to ϕ2, ϕ2

upper is trained without com-
patibility purpose and therefore serves as the upper bound
for the new model. We add the absolute symbol to the de-
nominator as it can be negative (i.e., M(ϕ2

upper) < M(ϕ1)).
For example, the previous deployed model has a high la-
tency and the new model is of a light-weight structure. In
this case, the model performance will degrade.
Upgrade gain. The upgrade gain is similarly defined in
BCT [38]. We revise their definition by taking the absolute
value of the denominator to handle the model degradation
and define our upgrade gain as

Gupgrade =
M(ϕ2, ϕ1)−M(ϕ1)

|M(ϕ2
upper)−M(ϕ1)|

. (10)

Here M(ϕ2, ϕ1) measures the cross-model recognition per-
formances between ϕ2 and ϕ1 (i.e., compatibility perfor-
mances). If using transformations, upgrade gain is the better
result of backward and forward compatibility.

4.3. Ablation Study

In this part, we conduct several ablation studies to in-
vestigate the effects of different components in our method.
ResNet50 [15] is adopted as the backbone network, and we
use the full version of MS1Mv2 as the training data. The
classification loss used in the old model is NormFace [45]
and that used in new models is ArcFace [9].
Effects of components in LCE. We train the new mod-
els with different combinations of alignment loss, bound-
ary loss as well as the transformation module as shown in
Tab. 1. Note that ϕ2

upper is trained directly without addi-
tional losses and therefore serves as the upper bound of

the recognition performances for new models. The per-
formance gain is 84.28% and the upgrade gain is 60.82%
with only alignment loss used. If introducing boundary loss,
the performance gain is 89.07% and upgrade gain increases
evidently with the number of 7.52%. The transformation
module can significantly increase the model performance
as it loose the constraints of directly aligning class loca-
tions. Performance gains of ϕ2

a t and ϕ2
a b t are all over 96%,

which is close to the upper bound. Also, the transformation
module offers the choices of whether to transform features
forward and backward. As the full version of LCE, ϕ2

a b t

achieves a verification accuracy of 91.92% when transform-
ing new features to the original feature space, and 93.11% in
the opposite direction. In addition, ϕ2

a b t achieves the best
performance gain of 99.32% and upgrade gain of 72.44%,
which demonstrates the efficacy of our proposed method.

y

x

Figure 4: A visualization of deep features from two models. The
area of class 6 is magnified for better revealing pair information.
Each dash line connects features of a same instance from two mod-
els. Best viewed in color.

Visualization. To reveal the effects of the proposed method,
we sample 8 classes from MS1Mv2 and visualize deep fea-
tures in Fig. 4. Here model 1 is ϕ1 and model 2 is ϕ2

a b t

from Tab. 1. Model 2→1 produces features by mapping
those from model 2 to the feature space of model 1 by the
learned transformations. T-SNE is chosen to map high-
dimensional features into top 2 dimensions. The figure
demonstrates that the mapped features are well-aligned with
the original features and have more compact intra-class dis-
tributions than original ones.

We further pick class 6 and visualize feature pairs of its
first 10 samples to show their pair-wise relationships. Fea-
tures of the same image from two models can be either close
to or far away from each other, as shown in the figure, which
reveals our compatibility works in a point-to-set instead of
strict point-wise manner.

Tab. 2 presents the intra-class and inter-class dis-
tances of three types of features. The average intra-
class distance is calculated by 1

N

∑N
i=1(

fi
∥fi∥ − wyi

∥wyi
∥ )

2

and the average inter-class distance is calculated by
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New Model Old Model Losses Transformation Veri. Cross Veri. Acc. Perf. Upgrade
Alignment Boundary Classification Acc. Direct Backward Forward Gain (%) Gain (%)

ϕ1 - - - NormFace - 89.93 - - - - -
ϕ2
a ϕ1 ✓ ArcFace 93.63 92.60 - - 84.28 60.82

ϕ2
a b ϕ1 ✓ ✓ ArcFace 93.84 92.93 - - 89.07 68.34

ϕ2
a t ϕ1 ✓ ArcFace ✓ 94.16 - 89.25 92.89 96.36 67.43

ϕ2
a b t ϕ1 ✓ ✓ ArcFace ✓ 94.29 - 91.92 93.11 99.32 72.44

ϕ2
upper - - - ArcFace - 94.32 0.01 - - +100.00 -

Table 1: 1:1 verification TAR (%@FAR=1e-4) on the IJB-C dataset with different combinations of components.

model 1 model 2→1 model 2
intra-class 0.347 0.283 0.277
inter-class 1.767 1.792 1.827

Table 2: Average intra-class and inter-class distances of features
from different models.

Model Backbone Loss Training Dataset Ver. Acc.
ϕ∗
a ResNet100 ArcFace [9] MS1Mv2 95.72

ϕ∗
b ResNet50 ArcFace [9] MS1M-REFINE-v1 92.52

ϕ∗
c ResNet50 Subcenter [8] MS1Mv0 95.44

Table 3: Details of selected pretrained models. Here MS1Mv0
is the original MS-Celeb-1M dataset [14] while the other two
datasets are cleaned versions by authors of ArcFace [9]. Verifi-
cation accuracies (%) are TARs@FAR=1e-4 on IJB-C.

1
n(n−1)

∑n
i

∑n
j=i+1(

wi

∥wi∥ − wj

∥wj∥ )
2. Because of the pro-

posed alignment and boundary loss, model 2→1 shrinks
the distribution of each class and therefore its features have
much smaller intra-class distances than the original model
1 (0.283 vs. 0.347). The transformations further add flexi-
bility of class locations and helps model to learn more sep-
arated inter-class distributions. The average inter-class dis-
tance increases from 1.767 to 1.827 in this case.

4.4. Cross Model Compatibility

For CMC, we adopt three pretrained models provided
by the InsightFace project1, which are of different network
architectures and trained on different version of MS1M
datasets as well as different losses. Details of the models
and their abbreviations can be found in Tab. 3. We select
NormFace [45] and ArcFace [9] as the classification loss to
train the transformations and present the experimental re-
sults in Tab. 4.

RBT maps features from two models to a third feature
space. In contrast, our LCE maps feature forward or back-
ward and therefore has two cross verification accuracies in
each experiment. In all results, (ϕ∗

a, ϕ
∗
c) always have the

best cross verification accuracies than other two combina-
tions. That indicates compatibility performances are also
influenced by performances of source models. When using
ArcFace, both methods achieve similar compatibility per-

1https://github.com/deepinsight/insightface/

Method Classification
(ϕ∗

a, ϕ
∗
b ) (ϕ∗

a, ϕ
∗
c) (ϕ∗

b , ϕ
∗
c)Loss

direct - 0.01 0.01 0.03
RBT [44] ArcFace 94.04 95.29 93.68

LCE ArcFace 94.08/93.90 95.19/95.27 93.72/93.51
RBT [44] NormFace 92.78 94.01 92.33

LCE NormFace 94.08/93.86 95.20/95.02 93.72/93.40

Table 4: 1:1 verification TAR (%@FAR=1e-4) on the IJB-C for
cross model compatibility.

formances. While using NormFace, the performances of
RBT drop dramatically with more than 1% for all cases.
That is because RBT compare features in the third feature
space and therefore the performance is heavily relied on the
goodness of that feature space. In contrast, our method is
robust to changes of classification losses and achieves con-
sistent high cross verification accuracies. Besides the ro-
bustness, the computational costs of LCE are only half of
RBT. Our method is also more flexible in real-world appli-
cations as one can choose to either re-encode the feature in
gallery sets or map new feature to the old feature space.

4.5. Compatible Training

In this section and Sec. A in the supplementary, we ex-
plore the scenario of CT. The new models are upgraded
from a compatible target model with the change of differ-
ent training datasets, classification losses, network archi-
tectures as well as the feature dimensions. We adopt two
baselines: (1) a naive KD baseline which uses l2-distance
and (2) BCT [38]. For fair comparison with BCT [38],
we set K = 0 in the transformation module and only con-
sider direct compatibility. We call the old model as ϕ1, the
new model without compatibility losses as ϕ2

upper and with
l2 baseline, BCT, LCE as ϕ2

l2, ϕ
2
bct, ϕ

2
lce, respectively. In

all the experiments below, cross verification accuracies be-
tween ϕ1 and ϕ2

upper are all near 0, which demonstrates that
model compatibility cannot be directly achieved without us-
age of compatibility methods.

Unless stated otherwise, the default setting is to employ
MS1Mv2 as the training dataset, ResNet50 [15] as the back-
bone network, ArcFace as the classification loss and feature
dimension as 512. Below we present results with one factor
changed each time while others are set to default. Note that
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ϕ1 in different tables may refer to different models.
Changes of training datasets. The old model ϕ1 is trained
on MS1Mv2(1/2) and all the new models are trained with
the full version of MS1Mv2. Tab. 5 presents the results. ϕ2

l2
directly matches features and therefore has a performance
similar to the previous one. ϕ2

bct has a performance gain
of 47.06% but its upgrade gain is close to ϕ2

l2
(both around

23%). A possible reason is that the old model is trained
on a reduced dataset and therefore cannot clearly separate
classes in the full data. The point-wise compatibility con-
straints used in baselines prevent simultaneous improving
recognition performances and achieving model compatibil-
ity. In contrast, we use a point-to-set constraint and that
makes our ϕ2

lce achieve much better results. The gains are
84.31% and 81.37% respectively in our implementation.

Model
Veri. Cross Veri. Perf. Upgrade
Acc. Acc. Gain (%) Gain (%)

ϕ1 93.16 - - -
ϕ2
l2 92.92 93.40 -23.53 +23.53

ϕ2
bct 93.64 93.39 +47.06 +22.54

ϕ2
lce 94.02 93.99 +84.31 +81.37

ϕ2
upper 94.18 0.02 +100.00 -

Table 5: 1:1 verification TAR (%@FAR=1e-4) on the IJB-C
dataset with changes of training datasets.

Changes of classification losses. With old model trained
on ArcFace, we train new models on different classification
losses. We pick NormFace [45], CosFace [46] and report
the results in Tab. 6. The old model is trained on the best
classification loss and therefore can separate classes well.
ϕ2
l2 trained by the naive approach performs poorly in this

scenario. Our ϕ2
lce still achieve better results especially for

the model compatibility. In particular, the upgrade gains
are 27.69% and 12.76% higher than those from ϕ2

bct when
training with CosFace.

Model
Classification Veri. Cross Veri. Perf. Upgrade

Loss Acc. Acc. Gain (%) Gain (%)
ϕ1 ArcFace 94.18 - - -
ϕ2
l2 CosFace 92.79 93.09 -106.92 -83.84

ϕ2
bct CosFace 93.56 93.20 -47.69 -75.38

ϕ2
lce CosFace 93.53 93.56 -50.00 -47.69

ϕ2
upper CosFace 92.88 0.01 -100.00 -

ϕ2
l2 NormFace 89.28 92.32 -192.91 -73.22

ϕ2
bct NormFace 90.42 93.25 -97.92 -24.22

ϕ2
lce NormFace 90.58 93.74 -93.75 -11.46

ϕ2
upper NormFace 90.34 0.00 -100.00 -

Table 6: 1:1 verification TAR (@FAR=1e-4) on the IJB-C dataset
with changes of classification losses.

Another interesting phenomenon is that the verification
performances of ϕ2

lce, ϕ
2
bct are higher than the ϕ2

upper. This

Model Backbone
Veri. Cross Veri. Perf. Upgrade
Acc. Acc. Gain (%) Gain (%)

ϕ1 ResNet50 94.18 - - -
ϕ2
l2 ResNet18 89.52 90.10 -119.79 -104.88

ϕ2
bct ResNet18 88.78 92.06 -138.82 -54.49

ϕ2
lce ResNet18 89.71 92.81 -114.91 -35.22

ϕ2
upper ResNet18 90.29 0.01 -100.00 -

ϕ2
l2 MobileFace 87.60 83.93 -109.67 -170.83

ϕ2
bct MobileFace 87.10 91.46 -118.00 -45.33

ϕ2
lce MobileFace 87.84 91.31 -105.66 -47.50

ϕ2
upper MobileFace 88.18 0.00 -100.00 -

ϕ2
l2 ResNet100 94.40 93.43 +22.45 -76.53

ϕ2
bct ResNet100 94.01 94.69 -17.35 +52.04

ϕ2
lce ResNet100 94.64 95.07 +46.94 +90.82

ϕ2
upper ResNet100 95.16 0.03 +100.00 -

Table 7: 1:1 verification TAR (%@FAR=1e-4) on the IJB-C
dataset with changes of network architectures.

is probably because the old model performs better than
ϕ2
upper, the compatibility losses in ϕ2

lce, ϕ
2
bct help transfer-

ring good knowledge to new models. In Tab. 7, the old
model is also better than ϕ2

upper with ResNet50 when new
models have structures of ResNet18 or MobileFace. How-
ever, we do not observe similar phenomenon. We guess
the reason is that compared to losses, knowledge is hard to
transfer across models with different network architectures.
Changes of network architectures. In this part, we study
the model compatibility across different network architec-
tures. The old model is trained with ResNet50 while the
new models are trained with ResNet100, ResNet18 [15] or
MobileFaceNet [5]. Results are presented in Tab. 7. In all
cases, ϕ2

l2 has good performance gains while poor upgrade
gains. The gains of ϕ2

bct are in completely opposite patterns.
In contrast, our ϕ2

lce achieves remarkable results for both
recognition and compatibility performance, which demon-
strates the superiority of the proposed method.

5. Conclusion
In this paper, we design a general framework called

LCE for model compatibility. Our compatibility works
in a point-to-set manner which is realized by aligning the
class centers between models and restricting more com-
pact intra-class distributions for the new model. The ad-
equate experimental results demonstrate that our method
can achieve model compatibility in various scenarios while
with marginal sacrifices of accuracies. As a general frame-
work, our method can be applied to different combina-
tions of scenarios (CMC/CT) and compatible directions
(direct/forward/backward). Moreover, it can be poten-
tially extended to benefit other tasks such as person/car re-
identification and image retrieval.
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