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Abstract

We present a novel approach to robustly detect and per-
ceive vehicles in different camera views as part of a coop-
erative vehicle-infrastructure system (CVIS). Our formula-
tion is designed for arbitrary camera views and makes no
assumptions about intrinsic or extrinsic parameters. First,
to deal with multi-view data scarcity, we propose a part-
assisted novel view synthesis algorithm for data augmenta-
tion. We train a part-based texture inpainting network in a
self-supervised manner. Then we render the textured model
into the background image with the target 6-DoF pose. Sec-
ond, to handle various camera parameters, we present a
new method that produces dense mappings between im-
age pixels and 3D points to perform robust 2D/3D vehicle
parsing. Third, we build the first CVIS dataset for bench-
marking, which annotates more than 1540 images (14017
instances) from real-world traffic scenarios. We combine
these novel algorithms and datasets to develop a robust ap-
proach for 2D/3D vehicle parsing for CVIS. In practice, our
approach outperforms SOTA methods on 2D detection, in-
stance segmentation, and 6-DoF pose estimation by 3.8%,
4.3%, and 2.9%, respectively.

1. Introduction

Cooperative vehicle-infrastructure system (CVIS) have
become a key focus of research and technology in the field
of autonomous driving (AD) [43, 41]. In a CVIS, camera,
radar, LiDAR, and other sensors are mounted on vehicles
and street-light poles at different locations (e.g., front, side,
top, etc.). The simultaneous perception of vehicles and road
terminals can minimize blind zones and provide warning for
out-of-sight collisions in advance. An example is shown in
Fig. 1, which is a typical traffic scenario. From the front-
view of the autonomous vehicle, many of the other vehi-
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Figure 1: We highlight a scene rendered from multiple
views in a CVIS. We use our approach to detect and parse
novel-view vehicles from a single image corresponding to
the front view.

cles are partially or completely occluded, presenting per-
ception challenges. From the side/top-view, we can clearly
see many of these occluded vehicles’ views. Although mul-
tiple views can get better perception results, in the end, per-
formance relies on improvement w.r.t. each of these single
views. The ultimate perception problem in a CVIS, there-
fore, is how to effectively detect the vehicles in novel views.
Many widely used AD datasets (e.g., KITTI [15], CitySca-
pers [7], ApolloScape [18], ApolloCar3D [45]) only pro-
vide labeled front-view data. If we directly use these la-
beled front-view datasets to train the deep neural networks
(DNNs), the detection performance would degrade dramat-
ically when testing these networks on the data from other
views (e.g., the side view or the top-view). A common
strategy is to capture new images for manual annotation,
which is labor-intensive, costly, and inefficient. As a result,
we need a novel set of view synthesis algorithms for data
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augmentation that can enable us to perform robust 2D/3D
vehicle parsing for CVIS.

To address the data scarcity challenge, we propose aug-
menting existing AD datasets via novel view synthesis. In
computer vision, view synthesis has been extensively stud-
ied. Researchers use 3D model rendering techniques (e.g.,
[46], [39]), image-based appearance flow approaches (e.g.,
[63], [64]), or generative adversarial network (GAN) (e.g.,
[65], [44]) to synthesize novel-view images. Although they
can achieve good results, these methods have several lim-
itations in the context of CVIS. First, their synthesized re-
sults are mostly used for visualization, which are difficult
for deep networks to learn due to the domain gap. Sec-
ond, it is difficult to obtain ground-truth annotations, espe-
cially 3D information (e.g., a 3D bounding box and a 6-DoF
pose). Third, these approaches rely on multi-view or paired
images as guidance for training, which can be obtained by
3D model rendering or a camera array in the laboratory set-
ting. However, it is difficult to obtain such data in real AD
scenarios due to occlusions and fast vehicle motion.

Some of these synthesis problems can also be addressed
using techniques for 3D parsing from single images. 3D
parsing from a single image is important for AD, but re-
mains challenging because pinhole cameras cannot obtain
absolute 3D positions due to projective mapping. Many
state-of-the-art (SOTA) methods (e.g., [30], [3], [9]) require
training a depth estimation network using the ground-truth
depth map or stereo pairs, with fixed intrinsic and extrinsic
parameters for the cameras. They can get good results on
the training dataset, but their generalizability and robustness
are limited because 1) it is difficult to obtain the depth map
in the real world, especially the depth of the background and
2) cameras have distinct intrinsic and extrinsic parameters.
Therefore, it is difficult for the trained model in camera A
to estimate the 6-DoF vehicle pose in camera B.

1.1. Main Contributions

In this paper, we address the problem of data augmen-
tation to achieve novel-view 2D/3D vehicles parsing for
CVIS. We address two main challenges: 1) automatic view
synthesis for data augmentation and ground-truth 2D/3D
labels generation in novel views and 2) robust 3D parsing
from a single image in novel views. We present a novel ap-
proach to detect and parse novel-view vehicles from a single
image. This includes a new method for data augmentation
of front-views in AD datasets and a novel robust approach
for 2D/3D vehicle parsing. The key innovation of our data
augmentation approach is the use of part-based texture in-
painting for novel view synthesis. Specifically, we use the
existing vehicle-based datasets that provide 3D vehicle tem-
plates and associated 6-DOF datasets. We first project the
image pixels to the texture map of the template. Because
there could be some holes or blank regions due to the pro-

jective mapping, we then train a part-based texture inpaint-
ing network to fill the missing data. After obtaining the
complete texture map, we render the textured 3D templates
with arbitrary 6-DoF poses into novel views.

Based on this synthesized data generated from vehicle
templates, we present a new approach for 2D/3D parsing
that is robust for arbitrary camera parameters. Instead of
directly learning depth from images, the key idea of our
approach is learning dense mappings between the image
pixels and the canonical 3D vehicle template. Specifically,
we design a multi-task network that outputs results of 2D
detection, instance segmentation, a 3D bounding box (i.e.
width, height, and length), and canonical 3D points. These
canonical 3D points are one-to-one mapped to the image
pixels; thus, we can compute the 6-DoF pose by solving the
RANSAC-PnP problem using the input intrinsic and extrin-
sic parameters of the camera.

Finally, to benchmark our synthesized data and 2D/3D
parsing approach, we have constructed, to the best of our
knowledge, the first CVIS-oriented dataset with vehicles in
different camera views, which contains 1540 labeled images
and 14017 2D vehicle instances. For each vehicle instance
in our dataset, we annotate its 2D bounding box, instance-
level segmentation, 3D bounding box, and 6-DoF pose.

In summary, our contributions include:
1) We present a novel and compact data augmentation

pipeline for vehicle parsing in CVIS. This includes synthe-
sized data generation, data learning for 2D/3D parsing, and
real-world dataset construction for benchmarking.

2) A 3D-assisted image augmentation approach is pro-
posed to handle novel views. The key innovation is a part-
based texture inpainting network with a self-supervised ap-
proach, which can automatically synthesize novel-view im-
ages with ground-truth annotations.

3) For robust 2D/3D vehicle parsing, we learn dense cor-
respondences between the image pixels and the 3D points
in a 3D vehicle template, which is robust for 6-DoF pose
estimation under arbitrary camera parameters.

4) We build a real-world CVIS dataset with 2D/3D vehi-
cle annotation for benchmarking. We compare with other
SOTA methods of data augmentation and 2D/3D vehicle
parsing. We highlight the accuracy improvements.

2. Related Work

2.1. Data Augmentation

The “fuel” of deep networks is labeled datasets. The
most common strategy for generating enough data to train a
model is manually crowd sourcing real images to annotate,
which is labor intensive [16]. To decrease overhead and im-
prove efficiency, researchers have recently focused on data
augmentation techniques. Existing approaches can be cat-
egorized into four classes: 1) 3D model-based approaches;
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2) image editing approaches; 3) appearance flow-based ap-
proaches; and 4) GAN-based approaches.

With the publication of large-scale 3D model datasets
[5, 8, 32], we can render these 3D models to generate im-
ages with ground-truth annotations such as view-point [46],
segmentation [39], and depth map [42]. Based on the ren-
dering data, explicit methods [22, 6, 21, 62, 39, 52, 20] and
implicit methods [55, 50, 54, 59] are developed to synthe-
size the novel-view images. However, rendering is a time-
consuming process that requires a lot of human interactions
such as pre-building 3D scenes [19, 11]. In addition, it is
not easy to reduce the domain gap between the rendering
data (CG style) and the real captured data (photo), though
there are some domain adaptation methods (e.g., [49]).

Another approach for data augmentation is image edit-
ing [26]. Dwibedi et al. [10] cut objects from images and
then paste them to other backgrounds to synthesize photo-
realistic training data. However, these “cut-paste” data can-
not rotate or translate in the 3D space. Moreover, this
method is limited to handling occlusion problems.

Appearance flow-based approaches [63, 35, 64] use
dense pixel-to-pixel correspondences to generate the novel-
view images directly, which can be regarded as optical flow
prediction. However, these methods are supervised on the
target images, requiring controlled environments (e.g., cam-
era pose, scene geometry). For AD, it is difficult to obtain
such dense correspondences from street-view images.

Recently, GAN-based approaches [65, 51, 2, 57, 53, 29]
have been proposed to generate photo-realistic images us-
ing a generator-discriminator architecture. However, GAN-
based methods have some limitations. First, GAN results
are not controllable or robust. Second, as with the major-
ity of deep networks, their results largely depend on the
training data. More importantly, it is difficult to generate
ground-truth 3D annotations (e.g., 6-DoF pose) for training.

2.2. Image-based Vehicle Parsing in AD

For AD, it is important to parse the vehicles as 2D and
3D objects. Prior techniques can be divided into three cate-
gories: 1) 2D detection (e.g., SSD513 [14], YOLOv3 [38],
Faster-RCNN [40]); 2) instance segmentation (e.g., Mask-
RCNN [17]); and 3) 6-DoF pose estimation or 3D detection
(e.g., AM3D [30], DPOD [60], PV-Net [36], D4LCN [9]).
These prior works can get good results in the current cam-
era view-point, but their performance degrades in different
or arbitrary views. In other words, it is difficult for their
trained models in camera A to parse vehicles in camera B.

2.3. Vehicle Re-Identification

Our approach is related to the prior works on vehicle
re-identification (Re-ID) [56, 25, 24, 31], which aims to
identify all the images of vehicles with the same vehicle
ID in different camera views. However, the Re-ID images

are cropped for classification/retrieval/categorization and do
not have 2D instance or 6-DoF pose annotations. Thus, ex-
isting vehicle Re-ID methods are limited to instance-level
segmentation and 6-DoF pose estimation, though Re-ID is
an essential module in the context of CVIS.

2.4. Datasets for CVIS

Recently, several datasets have been constructed and
released for 2D/3D perception in autonomous driving
(e.g., KITTI [15], CityScapes [7], Mapillary [34], Apol-
loScape [18], and ApolloCar3D [45]). However, these data
are captured from the front view, meaning the trained model
is limited to the test data on the side view or the top view.
For CVIS, we focus more on 2D/3D vehicle perception
from multiple camera views. The AI-City-Challenge [33]
provides city-scale multi-camera images/videos for vehi-
cle Re-ID [47], tracking [48], and retrieval [13], which are
important to make transportation systems “smart” and ef-
ficient. However, these data and tasks focus more on 2D
vehicle parsing [58], while our goal is 2D/3D parsing, par-
ticularly 6-DoF poses. We believe 3D information is critical
to CVIS, enabling safer roads and reducing traffic jams.

3. Method

In this section, we present a novel and compact data aug-
mentation pipeline for 2D/3D vehicle parsing, which in-
cludes three main components:

1) Data (Sec. 3.1). We present a part-assisted data
augmentation method to synthesize images and generate
ground-truth annotations for the training network. The key
innovation is the part-based inpainting network (Sec. 3.1.1).

2) Learning (Sec. 3.2). Based on our synthesized data,
we present a robust approach to perform 2D/3D parsing.

3) Evaluation (Sec. 3.3). We construct a real-world,
novel dataset for benchmarking on 2D/3D tasks.

3.1. Part-Assisted Data Augmentation

To generate the novel-view data for the training net-
work, we propose a novel part-assisted data augmentation
approach (Fig. 2). The inputs are the 3D vehicle template
and associated 6-DoF pose datasets (e.g., [45], [28]) and
the background images with camera calibration. The out-
put is the synthesized novel-view images with ground-truth
2D/3D annotations. In a word, our approach can be divided
into three main modules: 1) foreground generation, 2) back-
ground processing, and 3) synthesized images with 2D/3D
ground-truth annotations.

In this paper, for the foreground, we focus on vehicle.
The input is the labeled 2D-3D vehicle dataset, which anno-
tates the 6-DoF pose and the real-size 3D shape (deformed
from the parametric geometric vehicle representation) for
each 2D vehicle instance. As shown in the top-right of
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Figure 2: Our data augmentation approach includes three main modules. 1) Foreground: (a) We use a part-level vehicle
template representation to synthesize the foreground (i.e. vehicles). Based on the labeled 6-DoF pose between the 2D instance
and the 3D template, we can project the image pixels to the texture map with missing regions. (b) A part-based texture
inpainting network is proposed to synthesize a complete texture map. (c) Then we can render the textured vehicle template to
generate novel-view images. 2) Background: (d) We use the real traffic images with the pre-calibrated intrinsic and extrinsic
parameters. (e) The moving objects are inpainted to generate a clean background. (f) We further compute the 3D structure of
the background using the camera parameters. 3) Annotations: (g) We render the textured vehicle template to the background
to synthesize color images with ground-truth 2D/3D annotations.

Fig. 2 (a), the parametric geometric vehicle representation
has two features. First, it is a geometric model with an un-
folded texture map and multiple uniform vehicle parts (e.g.,
door, body, trunk). Second, it is also a parametric model
with the PCA representation, where any new vehicle model
can be represented as a linear combination of several prin-
cipal components with coefficients. Based on the labeled
6-DoF pose and the camera parameters, we can project the
3D template to the image plane. Thus, the image pixels can
be mapped to the texture map of the 3D template, which
inevitably yields a lot of missing regions due to projective
mapping (Fig. 2 (b)). Then we design a part-based texture
inpainting network to fill these missing regions (details in
Sec. 3.1.1). After that, we can obtain complete texture maps
for 3D model rendering with different intrinsic and extrinsic
parameters of cameras under various illuminations (Fig. 2
(c)). Note that our vehicle data augmentation approach is
generic and can be used to handle pedestrians. Such objects
can be constructed from parts, and we can use part-based
PCA templates (e.g., SMPL [27]).

For the background, we capture a lot of images from
multiple views, especially the side-view and the top-view,
where the camera’s intrinsic and extrinsic parameters are
pre-calibrated (Fig. 2 (d)). Next, we detect the existing ve-
hicles and then remove them through the inpainting method
(i.e. [61]) to generate a clean background (Fig. 2 (e)). Then
we estimate the 3D structure of the background (i.e. the nor-
mal of the road plane) based on the camera’s intrinsic and
extrinsic parameters (Fig. 2 (f)).

Based on the “clean” background image and the associ-

ated 3D structure (module 2), we randomly put the 3D tex-
tured vehicles (module 1) with collision avoidance through
intersection detection of 3D bounding boxes. Then we ren-
der the posed vehicle model to the background images. To
enhance the fidelity of the synthesized results, we further
generate the vehicle shadows according to the environment
illumination and the road plane (Fig. 2 (g)). In contrast to
existing view synthesis methods for visualization, our ap-
proach can generate the ground-truth 2D/3D annotations,
including 2D/3D bounding boxes, instance-level segmen-
tation, and 6-DoF poses. Benefiting from the 3D vehicle
template, we can further generate the dense mapping data
between the image pixels and the 3D template vertices ac-
cording to the 6-DoF pose. We take these dense mapping
data as a bridge to perform vehicle parsing from the 2D
space to the 3D space (details in Sec. 3.2).

3.1.1 Part-Based Texture Inpainting Network

From the 3D vehicle template, we propose a novel part-
level texture inpainting network, which has two advantages.
First, our network does not need paired multi-view images
as guidance, and the input texture maps are directly pro-
jected from real-world images. Second, we use a graph-
based module to learn the texture inpainting features, and
this module not only encodes the individual parts but also
maintains the consistency among different parts.

Fig. 3 shows our inpainting network, which adopts an
encoder-decoder architecture. Specifically, in the encoder
stage, our network aggregates local features from the in-
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Figure 3: Our part-based texture inpainting network. We
design an encoder-decoder network with the graph-based
inpainting module using the smooth L1 loss.

dividual parts and then propagates to other parts for com-
pletion. As highlighted in Sec. 3.1, the texture map P has
multiple parts (i.e. 18) {p1, p2, ..., p18}. Each part can be
regarded as a node in the graph. Then we define a single
layer of the graph propagation operation as

p
(l+1)
i = φrel

{
genc

(
p
(l)
i

)
, φagg

[
genc

(
p
(l)
j

)]}
, (1)

where p
(l)
i indicates the node feature in the l-th layer of the

graph network and p
(0)
i is the input patch of the image. The

function genc (·) encodes the individual node/part features,
φagg [·] aggregates the features of all nodes (i.e. 1∼18),
and φrel {·} is the relational operator between node/part pi
and the aggregation of all nodes. In the decoder stage, we
use a part-level decoder to recover each part from the last
node/part feature plasti , which is defined as

p̃i = gidec
(
plasti

)
. (2)

In our implementation, genc (·) is a convolutional layer
followed by batch normalization and then ReLU non-
linearity. φagg [·] is the part axis maxpooling. φrel {·} con-
catenates the aggregated feature to each part. gdec (·) is a
sequential deconvolutional layer to recover the i-th part im-
age. We use a four-level part-wise graph network to encode
the relations among all parts. In the training stage, we ran-
domly mask the existing part patches to train the network to
recover them in a self-supervised manner. We compute the
smooth-L1 loss between pi and p̃i for all existing parts.

3.2. Robust Approach for 2D/3D Vehicle Parsing

Estimating 3D information from a single image is a very
challenging task due to projective mapping. Thanks to the
synthesized data with ground-truth 6-DoF pose and real-
size 3D shape (Sec. 3.1), we can perform 2D/3D vehicle

Figure 4: Robust 2D/3D vehicle parsing in different cam-
era views using our synthesized data. We train a multi-task
deep network and then utilize classical 2D/3D registration
techniques to perform the 2D/3D vehicle parsing.

parsing in different camera views. Specifically, our ap-
proach combines the strengths of deep learning and the clas-
sical 2D/3D registration techniques, which are robust for
arbitrary camera intrinsic and extrinsic parameters. The
key idea is producing dense 2D/3D mappings between
the image pixels and the canonical 3D template vertices.
More specifically, we propose a multi-task network to learn
the synthesized images with ground-truth annotations. As
shown in Fig. 4, our network can output the parsing results
of 2D detection, instance-level segmentation, a 3D bound-
ing box (width, height, length), and dense 3D points.

In contrast to existing “key-points”-based pose estima-
tion approaches (e.g., ApolloCar3D [45]), the key to our
network is directly regressing each pixel’s 3D points of the
vehicle template in the canonical space. Specifically, for
each pixel ci = (ui, vi)

⊤ in the region of interest (RoI),
we estimate its 3D point vi = (xi, yi, zi)

⊤ in the canonical
space. This process can be formulated as

Ṽ = Regressor(C), (3)

where C = {c1, c2, c3, ..., cn} and Ṽ = {ṽ1, ṽ2, ṽ3, ..., ṽn}.
Based on the predicted 3D points, we formulate the 6-DoF
pose estimation as a typical 2D/3D registration problem,
which can be defined as

Pose = κ
(
Ṽ , C,Kint,Kext

)
, (4)

where Kint and Kext indicate the camera’s intrinsic and ex-
trinsic parameters, respectively. κ is the solver of the 2D/3D
registration (i.e. Efficient-PnP or RANSAC-PnP).

In our implementation, we first use the 3D vehicle tem-
plate to generate dense ground-truth mappings between C
and V according to the 6-DoF poses. Then we integrate our
canonical point regression module into Mask-RCNN [17]
as a new branch. In addition, we add another branch to esti-
mate the dimension [w, h, l] of the vehicle. As a result, our
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new multi-task network can detect/segment a vehicle and
regress its 3D points and 3D dimension. The loss function
of 3D points is defined as

Llocal3d = SmoothL1
(
Ṽ , V

)
, (5)

and the loss function of 3D dimension is defined as

Ldimen = SmoothL1
([

w̃, h̃, l̃
]
, [w, h, l]

)
. (6)

3.3. CVIS Dataset

To the best of our knowledge, none of the existing
datasets provide detailed 2D/3D annotation of vehicles from
different views in real traffic scenarios. In this paper, we
construct the first 2D/3D vehicle parsing dataset in CVIS for
testing. Specifically, we capture source data from 20 street-
lights in three different cities, where 1 camera and 1 Lidar
are mounted at each street-light. The intrinsic and extrin-
sic parameters of the camera and LiDAR are pre-calibrated.
Then we manually annotate the 2D bounding box and in-
stance mask for each vehicle in the image. The associated
3D bounding box and the 6-DoF pose are labeled on the 3D
point clouds. In summary, our dataset contains 14017 an-
notated car instances from 1540 images in different views,
which are collected from the urban environment.

The size of our dataset is comparable to other datasets
(e.g., CityScapes (1525 images), ApolloCar3D (1041 im-
ages) for testing). Our dataset along with the source code
is avaliable at https://github.com/mh-miao/CVIS. Note that
our trained deep model is used directly for testing without
any “fine-tuning” or “mix-data-training” strategies, while
the training data consists of only synthesized images.

4. Experiments and Discussion
Our approach can robustly output 2D/3D parsing results

under arbitrary camera parameters. Owing to the high-
quality synthesized data and the efficient parsing network,
our approach performs well even for long-range perception,
where the vehicles have very small footprints (Fig. 5).

4.1. Implementation Details and Computation Time

We use the PerMO dataset [28] and the ApolloCar3D
dataset [45] to generate our synthesized data. Specifically,
PerMO provides a part-level 3D deformable vehicle tem-
plate with an unfolded texture map, and ApolloCar3D la-
bels the 6-DoF pose for each vehicle instance. The runtime
for each synthesized vehicle is about 1.07 seconds. Specif-
ically, it takes 0.07s for texture inpainting, 0.5s for back-
ground processing, and 0.5s for textured model rendering.

The training time of our network depends on the data
number. In general, training 20K images costs 16 hours (8
Nvidia P40 graphics cards). In the testing phase, we directly

Figure 5: The 2D/3D parsing results using our approach,
which is robust even for long-range perception (>450m).

use the trained model to perform 2D and 3D parsing on our
dataset. For an image with 10 vehicles, the average runtime
is 0.23s. Specifically, it takes 0.2s for network prediction
and 0.03s for 6-DoF pose estimation.

4.2. Evaluation Metric

We use mAP as an evaluative criterion for 2D detection
and instance-level segmentation because it is commonly
used in many perception tasks [12].

We follow the evaluation criteria proposed in Apollo-
Car3D [45] for 6-DoF pose evaluation, where “A3DP-Abs”
(“A3DP-Rel”) means the absolute (relative) distance cri-
terion. In addition, “c-l” (“c-s”) indicates results from a
loose (strict) criterion. More details are introduced in [45].

4.3. Comparisons

4.3.1 Comparison with Data Augmentation Methods

To demonstrate that our synthesized data can effectively im-
prove the network performance, we compare it with other
data, including 1) the existing dataset, 2) rendering data,
and 3) GAN-based data. Specifically, we use KITTI [15]
as the existing dataset, which provides the vehicle anno-
tations in the front view. We follow the approach [26] to
obtain the rendering data using the 3dsMax software. The
GAN-based data is generated by the approach from [29],
which can synthesize novel-view vehicles according to the
pre-defined poses.

To perform a fair comparison, we maintain the same
number of training data to train the Faster-RCNN [40]
network on the 2D detection task, the Mask-RCNN [17]
network on the instance-level segmentation task, and the
DensePose [1] network on the 6-DoF pose estimation task.
As shown in Tab. 1, our synthesized data outperforms other
data by a large margin. Specifically, the existing dataset
only labels the front-view data, and thus the trained model is
limited to other views. Rendering data has a natural domain
gap with the real images, resulting in low performance. In
addition, 3D rendering costs more than 5x our data aug-
mentation approach. Although the GAN-based data look
more photo-realistic, their extracted features are different
from the real images in AD, limiting the network training.
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Methods 2D Det. Ins. Seg. 6-DoF Pose
(mAP) (mAP) (Abs-mean)

Existing Dataset 49.8 48.1 22.4
Rendering Data 46.0 45.7 20.2
GAN-based Data 39.4 37.4 /

Our Data 53.6 52.4 25.3

Table 1: 2D/3D results with different data augmentation
approaches. Note that these tasks are evaluated by SOTA
methods (i.e. Faster-RCNN for 2D detection, Mask-RCNN
for instance segmentation, and DensePose for 6-DoF pose).

Methods 2D Det. (mAP) Ins. Seg. (mAP)
Pure Color 55.0 50.6
KNN Filling 57.5 51.1

Image Inpainting 55.3 47.4
Ours 59.7 54.6

Table 2: We use our network (Sec. 3.2) to quantitatively
compare our inpainting method with other inpainting meth-
ods on the tasks of 2D detection and instance segmentation.

4.3.2 Comparison with Hole-Filling Methods

To justify the effectiveness of our part-based texture inpaint-
ing approach, the following hole-filling methods are com-
pared. 1) Pure Color Filling. We directly fill the missing
regions using a pure color, which is a mean value of the ex-
isting region. 2) KNN Filling. We fill the missing regions
using a linear blending algorithm where each pixel value is
determined by the K-nearest neighbors (KNN). 3) Image-
based Inpainting. We consider each vehicle instance, re-
move the complete area randomly, and use the information
of the remaining area to train an encoder-decoder network
to inpaint the removed area. The removed area can be re-
garded as ground-truth for the training network. 4) Ours:
Part-based Texture Inpainting. We train a part-based in-
painting network on the texture map. Here, we use our net-
work (Sec. 3.2) to train these data. Tab. 2 shows that our
approach outperforms the second-best results on 2D detec-
tion and instance segmentation by 2.2% and 3.5%, respec-
tively. The filling results of different approaches are shown
in Fig. 6. Our approach can inpaint the missing regions
while maintaining the color and structure consistency.

4.3.3 Robust Performance on 6-DoF Pose Estimation

Existing pose estimation methods can be categorized
into three classes: 1) “Direct” methods, which directly
regress the vehicle poses from the 2D images (e.g., 3D-
RCNN [23]); 2) “Key-points”-based methods, which ex-

Figure 6: Visualization results of our part-based inpainting
approach and other hole-filling methods.

Methods A3DP-Abs A3DP-Rel
mean c-l c-s mean c-l c-s

ApolloCar3D 23.3 31.7 26.7 22.5 28.7 23.8
DensePose 25.3 35.6 28.7 25.1 32.7 26.7
Our Method 33.0 47.5 38.6 27.8 38.6 29.7

Table 3: 6-DoF pose evaluation with different approaches.
We introduce the evaluation metric in Sec. 4.2.

tract the pre-defined key-points and then solve a PnP prob-
lem to obtain the 6-DoF pose (e.g., DeepMANTA [4], Apol-
loCar3D [45]); and 3) “Dense mapping”-based methods,
which regress the dense mapping between the 2D image
and the UV map of the 3D model before solving the 6-DoF
pose. (e.g., DensePose [1]). As reported by [45], Apol-
loCar3D advances 3D-RCNN and DeepMANTA by a big
margin. Therefore, we retrain the ApolloCar3D network
and the DensePose network using the same training data for
fair comparison. Tab. 3 shows the 6-DoF pose estimation
results. Our approach outperforms the ApolloCar3D and
DensePose on “Abs-mean” by 9.7% and 7.7%, respectively.

4.3.4 Robust Performance on 3D Detection

To justify the robustness of our 2D/3D parsing approach,
we generate images with different intrinsic parameters of
the camera while maintaining the same camera extrinsic pa-
rameters and vehicles’ poses (Fig. 7). Many SOTA meth-
ods (e.g., [30], [3], [9]) fail in such cases because they are
trained by the depth with fixed camera parameters. As a re-
sult, they predict these vehicles with varying poses, which
follow perspective projection (big for near and small for
far). In contrast, our method outputs the canonical 3D
points which are one-2-one mapped to image pixels, and
then computes the 6-DoF poses using the RANSAC-PnP
algorithm. Fig. 7 shows that our 3D detection results are
accurate compared to the ground-truth.
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Figure 7: 3D detection results in bird’s eye view with differ-
ent intrinsic parameters. The red box indicates the ground-
truth, and the boxes in other colors indicate our results. Our
detection results are very close to the ground-truth in the 3D
space, though the visual 2D images are different.

4.4. Performance Analysis

4.4.1 The Impact of Vehicle Shadow

As highlighted in Sec. 3.1, generating a vehicle’s shadow is
important for improving the quality of synthesized images.
Here, we train our network using the synthesized data with
and without shadows. Tab. 4 lists the evaluation results.
The data synthesized with shadows outperforms the other
data on the tasks of 2D detection, instance segmentation,
and 6-DoF pose by 1.4%, 1.5%, and 2.1%, respectively.

Tasks w/o Shadow with Shadow
2D Detection (mAP) 58.3 59.7

Ins. Seg. (mAP) 53.1 54.6
6-DoF Pose (Abs-mean) 30.9 33.0
6-DoF Pose (Rel-mean) 25.9 27.8

Table 4: Ablation study of shadows on 2D/3D tasks. The
data synthesized with shadows can effectively improve the
performance of 2D/3D parsing.

4.4.2 Diversity of the Synthesized Data

We highlight that we can generate diverse data. As shown
in Fig. 8, we can synthesize photo-realistic texture maps
from the real images. These texture maps are mapped to a
deformable vehicle template (e.g., [28]), which can be de-
formed to many vehicle models with different types (e.g.,
car, SUV, MPV, etc.). Finally, we render these textured
models with different intrinsic and extrinsic parameters of
cameras under various illuminations.

4.4.3 Improvements on the KITTI Dataset

In this paper, we synthesize images for vehicle perception
in CVIS. To justify the effectiveness and generalizability of

Figure 8: We use the real-traffic images for texture genera-
tion and the deformable 3D template for model generation,
plus various illuminations for 3D rendering. All of the fac-
tors ensure the diversity and fidelity of our synthesized data.

our approach, we evaluate it on the KITTI dataset [15, 37].
Specifically, we mix our synthesized data of CVIS (2593
images) with the existing training data of KITTI (7481 im-
ages) to train Mask-RCNN [17]. As shown in Tab. 5, the
mAP values of 2D detection and instance segmentation are
improved by 1.4% and 1.5%, respectively.

Methods 2D Det. Ins. Seg.
Existing Training Data 43.7 39.4

Mix Data (Existing + Ours) 45.1 40.9

Table 5: Our synthesized data can also improve the 2D de-
tection and instance segmentation performance on KITTI.
The mAP values are the higher the better.

5. Conclusions
In this paper, we present a novel approach for 2D/3D

vehicle parsing corresponding to novel views for CVIS. In-
stead of manually annotating data for network training, we
propose a part-assisted view synthesis approach for data
augmentation, which can automatically synthesize novel-
view images with ground-truth 2D/3D annotations. More-
over, we present a new approach that combines deep learn-
ing and classical 2D/3D registration techniques to perform
robust 2D/3D parsing of vehicles, which can be applied to
distinct camera parameters. As part of developing these al-
gorithms for CVIS, we will be able to re-utilize the capabil-
ities of prior AD datasets in a novel manner.
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