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Abstract

Recent state-of-the-art learning-based approaches to
point cloud registration have largely been based on graph
neural networks (GNN). However, these prominent GNN
backbones suffer from the indistinguishable features prob-
lem associated with oversmoothing and structural ambigu-
ity of the high-level features, a crucial bottleneck to point
cloud registration that has evaded scrutiny in the recent
relevant literature. To address this issue, we propose the
Distinctiveness oriented Positional Equilibrium (DoPE)
module, a novel positional embedding scheme that signifi-
cantly improves the distinctiveness of the high-level features
within both the source and target point clouds, resulting in
superior point matching and hence registration accuracy.
Specifically, we use the DoPE module in an iterative regis-
tration framework, whereby the two point clouds are gradu-
ally registered via rigid transformations that are computed
from DoPE’s position-aware features. With every successive
iteration, the DoPE module feeds increasingly consistent
positional information to would-be corresponding pairs,
which in turn enhances the resulting point-to-point corre-
spondence predictions used to estimate the rigid transfor-
mation. Within only a few iterations, the network converges
to a desired equilibrium, where the positional embeddings
given to matching pairs become essentially identical. We
validate the effectiveness of DoPE through comprehensive
experiments on various registration benchmarks, registra-
tion task settings, and prominent backbones, yielding un-
precedented performance improvement across all combina-
tions.

1. Introduction

Point cloud registration is a well-known task by which
two point clouds are matched via a rigid transformation.
For a source point cloud X and a target point cloud Y ,
the registration problem is finding a rigid transformation
that minimizes the geometric shape differences between Y
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and the transformed X . In many applications such as 3D
reconstruction and simultaneous localization and mapping
(SLAM), the registration process has long relied on tradi-
tional, non-learning-based algorithms to predict the optimal
rigid transformations.

Recently, deep learning methods have brought remark-
able advances in a variety of 3D vision tasks, ranging from
classification, segmentation, and, point cloud registration.
A common theme among many learning-based registration
methods [18, 19, 24, 5, 25] is the fact they are comprised
of 1) a feature extraction backbone, usually a graph neural
network (GNN), which generates per-point feature descrip-
tors via iterative local aggregation, followed by 2) a feature
matching step, which computes point-to-point matchability
scores, or (soft) correspondences, between the source and
target point clouds using their extracted features.

For example, Deep Closest Point (DCP) [18] computes
point correspondences from learned features, via atten-
tion combined with pointer generation, in order to desen-
sitize the network from initialization and avoid local min-
ima. RPM-Net [24] incorporates Robust Point Matching
(RPM) [3] into the feature matching step to be able to also
handle outliers and missing correspondences. On the other
hand, DeepGMR [25] avoids exhaustive point-to-point cor-
respondences all together by learning correspondences from
both point clouds to a common distribution inside a learned
latent space.

While these recent methods have made significant im-
provements to the feature matching step and displayed state-
of-the-art performance, they overlook a key design consid-
eration for feature extraction that can critically affect reg-
istration accuracy: the distinctiveness of the per-point fea-
tures within both the source and target point clouds; that is,
in order to obtain accurate point-to-point correspondences
for estimating the optimal rigid transformation, the desired
point features should sufficiently represent the geometric
pattern in the neighborhood of any given point while still
being distinguishable enough from the local patterns sur-
rounding other points within the same point cloud. How-
ever, many of the GNN backbones typically used to em-
bed the input point clouds into the feature space [12, 20]
are susceptible to oversmoothing [6, 17, 1] and structural
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Figure 1: Visualization of indistinguishable features problem with cosine similarity scores in the feature space. The upper-row
figures represent the self-similarity matrices of the source point cloud; those in the bottom row visualize the similarity scores,
in 3D space, between the point in the red enclosed circle with all points that comprise the chair. DoPE∗ and DoPE∗∗ use
local and non-local attention, respectively, for feature disambiguation. The numbers beneath each figure denote the rotation
(R) and translation (t) errors. Note that enhancing the intra-set distinctiveness consistently improves registration accuracy.

ambiguity, resulting in indistinguishable point features. Fig-
ure 1a demonstrates this phenomenon, henceforth referred
to as the indistinguishable feature problem, which results in
an overwhelming number of ambiguous point-to-point cor-
respondences as opposed to the sharp matches desired for
accurate registration.

To address these issues, we propose Distinctiveness
oriented Positional Equilibrium (DoPE), a novel, light-
weight positional embedding module that significantly im-
proves the intra-set distinctiveness of both the source and
target point cloud embeddings, thereby enhancing the re-
sulting point-to-point correspondences. Specifically, DoPE
disambiguates the per-point features by augmenting them
with global positional information computed with respect
to the centroid of the combined source and target point
clouds, which act as the origin of a shared coordinate sys-
tem. We use this DoPE module in an iterative registration
framework, where by the two point clouds are gradually
aligned via rigid transformations that are computed from
DoPE’s position-aware features. The joint origin and the
correspondence matrix are alternately refined such that, the
DoPE module feeds increasingly consistent positional in-
formation to would-be corresponding pairs and enhances
the resulting correspondence predictions used to estimate
the rigid transformation, which in turn updates the joint-
origin used to provide positional embeddings in the next
iteration. Within only a few iterations, the network con-
verges to the so-called positional equilibrium, the desired

fixed point with high registration accuracy where the posi-
tional embeddings given to matching pairs become essen-
tially identical. In summary, the contributions are as fol-
lows:

• We identify and analyze the contributing factors to
the indistinguishable features problem, a critical bot-
tleneck to point-cloud registration that is prevalent in
GNN-based architectures but has evaded scrutiny in
the recent registration literature.

• To address this issue, we propose the Distinctiveness
oriented Positional Equilibrium (DoPE) module,
a novel positional embedding scheme that disam-
biguates point features and enhances the resulting
rigid-transformation predictions. We use DoPE as part
of an iterative registration framework, whereby the two
point clouds are gradually aligned by rigid transforma-
tions computed from DoPE’s position-aware features.

• We demonstrate the effectiveness of DoPE by incor-
porating the module into the state-of-the-art registra-
tion architectures and performing comprehensive ex-
periments on various registration datasets and task set-
tings, yielding unprecedented performance improve-
ment across all combinations.

2. Related Work
Deep Learning on Point Clouds Deep Learning on point
clouds was pioneered by PointNet [11], which directly con-

5491



sumes the input point clouds without any approximating
transforms (e.g., voxelization or 2D projection) by embed-
ding each input point independently using a shared multi-
layer perceptron (MLP). PointNet also achieves permuta-
tion invariance by aggregating the final features using a
max-pooling layer as a symmetric function. However, the
independent processing of the input points precludes Point-
Net from being able to capture local geometry in its fea-
tures, a trait that has shown to be significant to point cloud
registration [18].

Graph neural networks (GNN) provide a natural way
to encode the local geometry of point clouds by virtue
of local aggregation at each layer. For example, Point-
Net++ [12] recursively applies PointNet on a locally con-
structed graph (e.g., ball query or k-NN graphs); dynamic
graph convolutional neural networks (DGCNN) [20] con-
structs a local neighborhood graph in the feature space and
applies local feature aggregation on the edges connecting
neighboring pairs of points. While GNN-based approaches
have made significant improvements to 3D vision tasks such
as point cloud classification and segmentation, many GNN
backbones are prone to oversmoothing [6, 17, 1] and struc-
tural ambiguity, resulting in indistinguishable point fea-
tures, which are detrimental to the feature matching step in
point cloud registration.

Learning-based Registration The latest learning-based
approaches to registration [18, 19, 24, 5, 25] have largely
focused on improving the matching process between the
embedded feature descriptors of the input point clouds,
which are typically generated by a graph neural network
(GNN). Specifically, DCP [18] finds matched correspon-
dences from learned features via attention combined with
pointer generation, while RPM-Net [24] incorporates Ro-
bust Point Matching [3] into a learning framework to be
able to handle missing correspondences. PRNet [19] and
IDAM [5] both extract keypoints and then iteratively find
keypoint-to-keypoint correspondences. DeepGMR [25] ex-
plicitly proposes a probabilistic registration model by using
Gaussian Mixture Model (GMM) parameters.

However, these methods remain oblivious to the fact
that the GNN backbones typically used to embed the in-
put point clouds are prone to the indistinguishable feature
problem, thereby severely lacking the intra-set distinctive-
ness required to generate accurate point-to-point correspon-
dences from the embedded features. In this paper, we iden-
tify and analyze the contributing factors to the indistinguish-
able features problem and propose a novel positional em-
bedding module to significantly enhance the intra-set dis-
tinctiveness of the per-point features.

Concurrent work [8] has also suggested the use of po-
sitional encoding to improve the intra-set distinctiveness
of the point descriptors. However, the positional encoding
scheme in [8] remains local to each point cloud and was
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Figure 2: Overall flow for iterative registration process

not born out of the full awareness of the underlying regis-
tration bottleneck inadvertently addressed by the proposed
method. On the other hand, DoPE, fully motivated by the
indistinguishable features problem, feeds positional embed-
dings computed with respect to the centroid of the combined
source and target point clouds, which act as the origin of a
shared coordinate system. As a result, the network remains
aware of the relative spatial orientation of the point clouds
during the iterative registration process, a trait that we em-
pirically show to be indispensable to DoPE’s outstanding
performance.

3. Preliminaries
3.1. Problem Statement

Point cloud registration is the process of finding a rigid
transformation that best aligns two unaligned point clouds.
Let {X ,Y} be two finite point sets, which contain J and K
points, respectively. Assuming that {x1,x2,x3, ...,xN} ⊂
X and {yx1

,yx2
,yx3

, ...,yxN
} ⊂ Y are two sets of corre-

sponding point clouds and N is the number of correspond-
ing pairs (N ≤ J and N ≤ K), the optimal rotation R̂ and
translation t̂ are estimated as follows:

(R̂, t̂) = arg min
R∈SO(3),t∈R3

N∑
i=1

‖(Rxi + t)− yi‖2, (1)

where (R̂, t̂) comprise the rigid transformation that best
aligns the two point clouds.

3.2. Iterative Registration Process

To find the optimal transformation in Eq. (1), many
works [19, 24, 5] follow the iterative procedure shown in
Figure 2. In each iteration, the source and target point clouds
X and Y are first fed into the feature extraction layer to
generate the high-level features. Next, the feature matching
layer finds point-to-point correspondence. Finally, the opti-
mal transformation T̂ =

[
R̂ t̂; 0 1

]
is estimated using

Singular Value Decomposition (SVD) [14]. The whole pro-
cess is repeated with Y and X transformed by T̂ computed
in the previous iteration, until the estimated transformation
converges to the ground-truth. In this work, we propose a
lightweight, efficient module called DoPE and use it as part
of this iterative registration framework in between the fea-
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ture extraction and matching layers. By doing so, we en-
hance the intra-set distinctiveness of the intermediate fea-
tures of every iteration and achieve increasingly more accu-
rate point-to-point correspondences.

3.3. Feature Ambiguity in Learning-based Point
Cloud Registration

In this sub-section, we identify and analyze the con-
tributing factors to the above-mentioned indistinguishable
feature problem. In doing so, we demonstrate that lack of
intra-set distinctiveness has been a huge bottleneck to the
latest GNN-based registration architectures and describe the
motivations for DoPE’s design.

Indistinguishable features in GNNs are largely mani-
fested in two ways: first, it has been empirically shown
that a wide variety of GNN is prone to the oversmooth-
ing problem [6, 17, 1], a phenomenon whereby repeated
application of the message propagation step in each GNN
layer renders all graph nodes to converge towards similar
features across the entire point cloud, as displayed in Fig-
ure 1a. This is severely detrimental to the downstream reg-
istration procedure as it makes it challenging for the net-
work to find the best match for a given point of point set
X if there is very little difference amongst all of the point
features of point set Y , and vice versa. The oversmooth-
ing problem in GNNs can be alleviated to an extent by at-
tention mechanisms [10, 9] thanks to their data-dependent,
attention-weighted aggregation scheme, with a similar ar-
gument having been made for oversmoothing in CNNs for
images [27, 21]. This is corroborated in Figure 1, where
the features of the backbone processed by both local (Fig-
ure 1b) and non-local (Figure 1c) attention are significantly
more distinctive than the raw vanilla features (Figure 1a).
More notably, the increase in intra-set distinctiveness is ac-
companied by a meaningful improvement to the registration
error.

However, attention-based feature aggregation fails to ad-
dress what is a more subtle contributing factor to indistin-
guishable GNN features: structural ambiguity, a problem
induced by the (partial) translation invariance encoded in
the message propagation step of prominent GNN backbones
[18, 19, 24, 5] that renders points that are separate, but en-
code locally similar structures of the point cloud to have
near-identical features. For example, the point feature en-
closed by the red circle in Figure 1b and 1c remain sim-
ilar to the corresponding points that lie on the other legs
of the chair. Such features can potentially hamper the reg-
istration process due to spurious matches between locally
similar structures in the source and target point clouds. This
is where the positional embedding in the proposed DoPE
module comes into the equation; it provides the network
with additional cues to distinguish between the four legs and
to be able to appropriately match the constituent points of

each leg to the correct counterpart in the target point cloud.
As shown in Figure 1d and 1e, the positional embedding
further enhances the intra-set distinctiveness to its upper
limit, yielding significant improvements to registration ac-
curacy. This demonstrates that although structural ambigu-
ity isn’t as conspicuous of a phenomenon as is oversmooth-
ing, it has been the biggest bottleneck to the latest GNN-
based registration architectures, an observation that has not
only motivated our work but one that will hopefully moti-
vate the future design of GNNs for registration.

4. Proposed Method
We now present DoPE, a novel positional embedding

unit used as part of an iterative registration framework (Fig-
ure 2) that disambiguates the backbone GNN features for
more effective point cloud registration. In Section 4.1, we
introduce the constituent operations of the DoPE module
and its properties; in Section 4.2, we describe how the it-
erative application of the DoPE module converges the net-
work to the positional equilibrium, a fixed point with high
registration accuracy where matching points are given es-
sentially identical positional embeddings; finally, in Sec-
tion 4.3, we outline the loss function that we use to further
encourage feature disambiguation in an end-to-end manner.

4.1. DoPE Module

Joint-origin Update The DoPE module disambiguates
the backbone features via positional embeddings followed
by a non-local attention operation. In order to feed posi-
tional embeddings to both the source and target point clouds
X and Y , we first compute the joint origin, the origin of a
shared coordinate system where the positional information
is defined. In iteration t of the forward pass of the registra-
tion pipeline, we update the joint-origin z̄(t) as the center-
of-mass of the union of X (t) = {x(t)

1 ,x
(t)
2 , · · · ,x(t)

J } and
Y = {y1,y2, · · · ,yK}:

z̄(t) =
1

J +K
(

J∑
i=1

x
(t)
i +

K∑
i=1

yi), (2)

The joint-origin is an essential aspect of the DoPE mod-
ule. Computing positional embeddings with respect to a
shared coordinate frame allows the network to remain aware
of the relative spatial orientation of the point clouds during
iterative registration. Furthermore, updating the joint-origin
as the centroid of the combined point clouds enforces a spe-
cial type of translation invariance, whereby the DoPE mod-
ule feeds the same set of positional embeddings to point
cloud pairs with the same relative configuration in 3D space,
but located in different absolute positions. As a result, our
registration architecture is invariant to such variations that
may occur within the dataset itself or even throughout the it-
erative process, thereby narrowing down the space of regis-
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Figure 3: The update process of joint-origin z̄(t) according to the registration iteration. The positional information from the
joint-origin of two matching points x

(t)
j and yk become increasingly identical.

tration scenarios faced by the DoPE module and benefiting
the overall training procedure.

Feature Disambiguation To disambiguate the backbone
features, the positional equilibrium explicitly combines the
positional information with respect to the joint-origin with
the backbone high-level features via self-attention. After es-
timating joint origin z̄(t) after t-th iteration, the positional
equilibrium first computes the positional embedding of each
point, and then add to the backbone features as follows:

Fxi
← Fxi

+M(x
(t)
i − z̄(t)),

Fyi
← Fyi

+M(yi − z̄(t)),
(3)

whereM is a shared multi-layer perceptron (MLP). In ad-
dition to adding the positional embedding into the back-
bone features, aggregating other contextual cues via self-
attention [16] can intuitively increase the distinctiveness of
each point as follows:

Fxi
←

∑
j∈S(X)

αxij
Fxj

, Fyi
←

∑
j∈S(Y )

αyij
Fyj

, (4)

where αxij = Softmaxj(qxi
Tkxj) is the similarity be-

tween i-th query and j-th key features of x by setting
qxi

= Fxi
and kxj

= Fxj
. αyij

is also defined as iden-
tical to αxij

. Because the feature update process in Eq. (4)
has quadratic space-time complexity when the features are
aggregated from all points, we sample the features to be ag-
gregated (i.e. we sample the keys) to model the long-range
dependencies with light-weight memory and computation.
Inspired by [4], we use random sampling to uniformly select
‖S‖ points from which the features are aggregated. Since
N � ‖S‖, the complexity of DoPE is low with the order
of O(N ·‖S‖).

4.2. Positional Equilibrium

In the iterative registration framework outlined in Fig-
ure 2, the joint origin and the correspondence matrix are al-
ternately refined such that, the DoPE module feeds increas-
ingly consistent positional information to would-be corre-
sponding pairs and enhances the resulting correspondence

predictions. In turn, the rigid transformation estimated from
this correspondence matrix updates the joint-origin used to
provide positional embeddings in the next iteration. For ex-
ample, in Figure 3, we conduct point cloud registration on
source (blue-green) and target (pink) point clouds of the air-
plane. Assume that xj and yk are the corresponding pair of
the source and target points located in the engine part of
the airplane. We denote x0

j as the initial point of xj . At the
beginning of the registration process (Figure 3b,) the po-
sitional information of x0

j and yk is not so close to each
other, leading to the mismatch in Figure 3c. Because the
positional information of x0

j and yk is closer, the network
predicts more correct correspondence matrix (Figure 3d.)
Within only a few iterations, x

(t)
j converges to yk, indica-

tive of the positional equilibrium where the positional em-
beddings given to matching pairs become essentially iden-
tical, as shown in Figure 3e.

4.3. Loss Function

To encourage the network to learn distinctive feature de-
scriptors, we adopt a loss function based on the equilibrium-
state correspondence matrix of our architecture. For the ide-
ally distinctive feature descriptors, the feature descriptors
should have high similarity between matching pairs and
should have low similarity between non-matching pairs. Let
assume that the correspondence matrix outputted from the
feature matching layer is as follows:

P = {pjk}J×K , 0 ≤ pjk ≤ 1 (5)

Without loss of generality, pjk is scaled similarity between
Fxj and Fyk

. Because each element of the equilibrium-state
correspondence matrix, pjk, represents zero for all j and k
except that xj and yk are matching pair (i.e. pjk = 1 if
xj and yk are matching pair and pjk = 0 if not) which
are identical to the elements of ground-truth correspondence
matrix, we thus supervise our network to learn ground-truth
correspondences as:

Lcorr = −
J∑

j=1

log(pjk∗), (6)
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where yk∗ is the ground truth target point corresponded
with source point xj . The correspondence loss, Lcorr, is a
cross-entropy loss used in [5, 2]. We employ this loss specif-
ically because the correspondence loss further strength-
ens the distinctiveness of feature descriptors between non-
matching pairs and the matchability between matching
pairs (∵

∑K
k=1 pjk = 1.)

The correspondence loss is prone to the overfitting prob-
lem because it guides the point-to-point correspondence
about all matching pairs. To alleviate the overfitting, we
additionally add the transformation loss Ltrans to the total
loss of network as the regularization term as follows:

Ltotal = Lcorr + λLtrans, (7)

where Ltrans = ‖R̂TR∗− I‖22 + ‖t̂− t∗‖22 is also used by
existing methods [18, 19, 24, 2, 25]. As mentioned in Sec-
tion 3.2, we fuse our DoPE into the other registration meth-
ods and compute the total loss at every t-th iteration.

5. Experiments

For following sections, we evaluate the performance
of our DoPE by inserting it into the various base-
line registration methods with the various datsets. The
learning-based registration methods such as Deep Clos-
est Point (DCP [18]), PRNet [19], RPM-Net [24], It-
erative Distance-Aware Matrix convolution (IDAM [5]),
DeepGMR [25], and Deep Global Registration (DGR [2])
are considered as our baseline networks. The object-level
datasets (ModelNet40 [22], ScanObjectNN [15]) and the
scene-level dataset (3DMatch [26]) are employed. We re-
ported the superior result between the original paper and
our reruns for the results of baseline methods.

5.1. Object-level Dataset

The ModelNet40 dataset consists of 12, 311 models from
40 categories. As with the DCP [18], we divide 12, 311
models into 9, 843 for training and 2, 468 for testing. During
training, we pick rotation R and translation t randomly at
[0, 45◦] and [−0.5, 0.5], respectively. Then, we measure the
root-mean-square error (RMSE), and the mean absolute er-
ror (MAE) between the ground-truth (R∗, t∗), and the pre-
dicted (R̂, t̂). The rotation measurements is the degree. We
use DCP, PRNet, IDAM, RPM-Net as our baseline methods
of the object-level dataset.

Full Data Full data setting implies that source and target
point clouds have exact one-to-one correspondences for all
points. Specifically, we follow the experimental settings of
DCP [18] for the full data of ModelNet40, sampling 1, 024
points from the surface of each model of ModelNet40. Ta-
ble 1 shows the registration results on full data without

Models RMSE(R)↓ MAE(R)↓ RMSE(t)↓ MAE(t)↓

DCP [18] 1.143385 0.770573 0.001786 0.001195
DCP+DoPE 0.383430 0.085278 0.001224 0.000512
PRNet [19] 2.1425 0.960 0.00943 0.006
PRNet+DoPE 0.264531 0.158885 0.003669 0.002054
IDAM [5] 1.556997 1.014915 0.019774 0.012126
IDAM+DoPE 0.543097 0.309420 0.003495 0.002103
RPMNet [24] 0.084 0.028 0.00032 0.00016
RPMNet+DoPE 0.0017 0.0009 0.00003 0.00003
DeepGMR [25] 0.0125 0.0008 0.0001 0.0000
DeepGMR+DoPE 0.003 0.0002 0.0000 0.0000

Table 1: Results on ModelNet40 full+clean dataset

Models RMSE(R)↓ MAE(R)↓ RMSE(t)↓ MAE(t)↓

DCP [18] 7.224 4.528 0.0514 0.0345
DCP+DoPE 3.4770 1.6240 0.0071 0.004396
PRNet [19] 2.755183 1.219011 0.010428 0.007927
PRNet+DoPE 0.615637 0.425077 0.006396 0.004585
IDAM [5] 2.3917 0.8335 0.008760 0.004363
IDAM+DoPE 0.900124 0.564658 0.005179 0.003647
RPMNet [24] 1.1587 0.343 0.0068 0.0030
RPMNet+DoPE 0.1057 0.0795 0.001011 0.0007823
DeepGMR [25] 1.75319 1.00646 0.00485 0.002849
DeepGMR+DoPE 0.9205 0.6073 0.002959 0.001998

Table 2: Results on ModelNet40 full+noisy dataset

any perturbation of points (full+clean dataset.) DoPE re-
markably enhances the performance of baseline methods.
RPM-Net+DoPE especially achieves dozens of times per-
formance improvement in terms of rotational metric com-
pare to baseline performance. Moreover, we also investigate
the robustness to Gaussian noise in Table 2. We add ran-
dom Gaussian noise with the distribution of N (0, 0.01) to
each point of source and target point clouds independently
so that some points could not have exact matching points.
Table 2 shows that DoPE still noticeably improves the reg-
istration performance across all benchmarks in the presence
of noise, although the positional information of matching
points could not be identical due to the noise.

Partial Data Because point cloud registration mostly oc-
curs between partially overlapped point clouds in real-world
applications, we generate the partially overlapped data of
ModelNet40. We randomly pick one point from each source
and target point clouds and then compute 768 nearest-
neighbor points out of the full 1, 024 points as in PR-
Net [19]. Table 3 shows the results of partial+clean Model-
Net40. DoPE enhances all baseline’s performance even bet-
ter than the existing SOTA performance. Especially, DCP
with DoPE surprisingly outperforms other baseline meth-
ods about the all performance metrics, although DCP does
not explicitly handle the partially-overlapped registration
problem. This indicates that the distinctiveness of features is
significant for point cloud registration. We also experiment
with Gaussian noise (partial+noisy dataset) and show that
our proposed module is also robust to the noise in Table 4.
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Figure 4: Qualitative comparison of matching pairs between DCP+DoPE (upper) and DCP (lower). Green line indicates the
correct matching pair whereas red line indicates the incorrect matching pair.

Models RMSE(R)↓ MAE(R)↓ RMSE(t)↓ MAE(t)↓

DCP [18] 6.709 4.448 0.027 0.020
DCP+DoPE 1.9125 0.800102 0.011467 0.006442
PRNet [19] 3.1993 1.454 0.016 0.010
PRNet+DoPE 0.514125 0.311634 0.008571 0.005826
IDAM [5] 2.95 0.76 0.021 0.005
IDAM+DoPE 0.405834 0.307274 0.002063 0.001598
RPMNet [24] 2.4961 0.8428 0.01919 0.007871
RPMNet+DoPE 0.1944 0.1178 0.001889 0.001250

Table 3: Results on ModelNet40 partial+clean dataset

Models RMSE(R)↓ MAE(R)↓ RMSE(t)↓ MAE(t)↓

DCP [18] 7.884786 5.834028 0.040586 0.030548
DCP+DoPE 5.8885 3.1487 0.0170 0.0104
PRNet [19] 4.323 2.051 0.017 0.012
PRNet+DoPE 0.614777 0.406517 0.009008 0.006338
IDAM [5] 3.72 1.85 0.023 0.011
IDAM+DoPE 0.560017 0.423182 0.003644 0.002962
RPMNet [24] 2.8818 1.0038 0.02054 0.008715
RPMNet+DoPE 0.2143 0.1566 0.001917 0.001437

Table 4: Results on ModelNet40 partial+noisy dataset

Unfamiliar Data To compare each method’s generaliz-
ability, we test on ScanObjectNN dataset using the mod-
els that are trained on full+noisy ModelNet40 dataset
in Table 4. Because the ScanObjectNN is a real-world
point cloud object dataset extracted from scanned indoor
scene data consisting of 15, 000 objects categorized into
15 categories, ScanObjectNN contains objects which are
significantly different from the synthetic CAD dataset-
ModelNet40. Because the ScanObjectNN data are extracted
from scanned scene data, background elements or parts of
nearby objects could be included in each object data, and
even the density of point clouds is non-uniform. The results
on ScanObjectNN is shown in Table 5, indicating that the
DoPE module works well even in the unfamiliar data.

5.2. Scene-level Dataset

For the scene-level dataset, we use the real-world indoor
3DMatch dataset [26], which consists of 3D point cloud

Models RMSE(R)↓ MAE(R)↓ RMSE(t)↓ MAE(t)↓

DCP [18] 7.923467 5.749913 0.025723 0.020359
DCP+DoPE 4.556273 1.731377 0.009549 0.004982
PRNet [19] 1.4486 0.711052 0.0066 0.0050
PRNet+DoPE 0.271568 0.201960 0.004669 0.003531
IDAM [5] 2.3718 1.2968 0.010578 0.005594
IDAM+DoPE 0.9063 0.5737 0.0058 0.0037
DeepGMR [25] 2.79 1.223 0.0085 0.0061
DeepGMR+DoPE 1.48 0.7713 0.0057 0.0038

Table 5: Results on ScanObjectNN dataset

Models Recall↑ TE(cm)↓ RE(deg)↓

FGR [28] 42.70% 10.60 4.08
RANSAC-2M [13] 66.10% 8.85 3.00
RANSAC-4M [13] 70.70% 9.16 2.95
RANSAC-8M [13] 74.90% 8.96 2.92
Go-ICP [23] 22.90% 14.70 5.38
Super4PCS [7] 21.60% 14.10 5.25
ICP (P2Point) [29] 6.04% 18.10 8.25
ICP (P2Plane) [29] 6.59% 15.20 6.61
DGR [2] 91.3% 7.34 2.43
DGR+DoPE 96.6% 6.09 1.63

Table 6: Results on 3DMatch dataset

pairs from eight different scenes with ground truth trans-
formations estimated from RGB-D reconstruction and use
DGR as our baseline. A single point is subsampled within
each 5cm voxel to generate point clouds with uniform den-
sity. We follow the train/test split and the standard proce-
dure to generate pairs with at least 30% overlap for train-
ing and testing. Different from the error metrics in synthetic
dataset, we use the error metric as DGR does for fair com-
parison: rotation error (RE) as arccosTr(R̂TR)−1

2 , transla-
tional error (TE) as ‖t̂− t‖22, and recall. Recall is the ratio
of successful registrations, and we define a successful regis-
tration as the case in which RE is less than 15 degrees, and
TE is less than 0.3m. Table 6 summarizes the experimental
results of the 3DMatch dataset. DGR+DoPE outperforms
the baseline significantly, demonstrating that DoPE can be
scalable well in the scene-level dataset.
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GNN(DCP) LA N-LA Indiv. Joint MAE(R)↓ MAE(t)↓
X 5.34 0.022
X X 4.74 0.022
X X X 2.38 0.021
X X X 1.04 0.006
X X 4.45 0.020
X X X 3.86 0.025
X X X 0.80 0.006

Table 7: Effects of each component on registration perfor-
mance. LA: Local attention, N-LA: Non-local attention, In-
div.: Positional embeddings computed w.r.t. individual ori-
gin (centroid of each point cloud), Joint: Positional embed-
dings computed w.r.t. joint-origin

6. Analysis
6.1. Ablation Study

Effects of Different Components Table 7 shows that the
performance improvement induced by DoPE is largely at-
tributed to the use of positional embeddings w.r.t. the joint
origin rather than mere vanilla adoptions of existing opera-
tions such as self-attention and positional embeddings. Ta-
ble 7 demonstrates that the use of the joint-origin is not ar-
bitrary and is in fact an crucial aspect of DoPE’s design.

Models Lcorr MAE(R)↓ MAE(t)↓

DCP [18] No 4.45 0.02
Yes 5.61 0.03

DCP+DoPE No 1.33 0.009

Yes 0.80 0.006

PRNet [19] No 1.45 0.010
Yes 1.72 0.018

PRNet+DoPE No 0.31 0.006

Yes 0.20 0.002

RPMNet [24] No 0.84 0.008
Yes 1.41 0.012

RPMNet+DoPE No 0.14 0.0013

Yes 0.12 0.0011

Table 8: Effects of Lcorr

Effects of Lcorr

Table 8 shows that
the increase in reg-
istration accuracy is
mainly attributed to
DoPE as opposed to
the correspondence
loss Lcorr. Simply
adding the corre-
spondence loss to
the baselines actu-
ally hampers per-
formance, whereas
the DoPE module
improves registration accuracy by enhancing the point-wise
correspondences and thereby enabling the backbone net-
work to better leverage the correspondence loss.

6.2. Visualization Analysis

In Figure 4, we visualize influence of the DoPE module
through its point-to-point correspondence matrix. Specifi-
cally, we plot the line connecting points xj and yk of source
and target point clouds, respectively, when the matching
score between the two points exceeds 0.01 (i.e., if pjk >
0.01). The line is colored green if the correspondence is
correct and red if it is incorrect. By comparing the corre-
spondence matrices of DCP and DCP+DoPE for several
ModelNet40 objects, we see that DCP+DoPE predicts more
accurate matching matrices than does DCP for all objects.

Models # of params # of FLOPs Inference time(ms)

DCP [18] 5.60M 29B 18
DCP+DoPE 7.80M 33B 21
PRNet [19] 5.70M 90B 60
PRNet+DoPE 8.00M 99B 68
IDAM [5] 0.09M 1B 0.4
IDAM+DoPE 0.12M 1.3B 0.5
RPMNet [24] 1.82M 61B 36
RPMNet+DoPE 2.13M 78B 46
DeepGMR [25] 1.64M 5.8B 3
DeepGMR+DoPE 1.84M 6.4B 4
DGR [2] 243.87M 2,796B 2,100
DGR+DoPE 244.11M 2,802B 2,200

Table 9: Efficiency on various methods

The leftmost object in Figure 4 shows in greater detail that
the lines on the horizontal stabilizer represent exact one-
to-one matching between source and target point clouds in
DCP+DoPE whereas the lines in DCP represent ambiguous
and incorrect matching. Through these qualitative visualiza-
tion results, we further illustrate the problems induced by
oversmoothing and structural ambiguity of the GNN back-
bone, and how DoPE alleviates their effects.

6.3. Efficiency Analysis

We estimate the efficiency of various models using the
number of network parameters, the number of FLOPs, and
the inference time. The FLOPs and inference time are es-
timated for processing one pair of input point clouds. We
use the same hyper-parameter settings as reported by each
method. Table 9 demonstrates that the the DoPE module
incurs little additional complexity compared to the base-
line models, indicating the potential scaleability of DoPE
to models that handle large data settings.

7. Conclusion
In this paper, we call to attention the shortcomings of

GNN-based features for registration, namely the indistin-
guishable feature problem associated with oversmoothing
and structural ambiguity. These constituent issues motivate
DoPE, a novel positional embedding module that signif-
icantly enhances the intra-set distinctiveness of the per-
point features generated by prominent GNN backbones, and
hence the resulting point-to-point correspondences. DoPE
computes positional information with respect to the joint-
origin of the combined point clouds, iteratively refining
the joint-origin and the correspondence matrix until con-
vergence to an equilibrium where the positional embed-
ding for both point clouds become essentially identical. We
demonstrate that the DoPE module significantly increases
the registration performance across all combinations of ex-
perimental settings. Furthermore, we hope that our analy-
sis of the indistinguishable features problem motivates the
future design of a stand-alone GNN backbone specifically
tailored to point cloud registration.
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